OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [include/] [asm-x86_64/] [bitops.h] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1275 phoenix
#ifndef _X86_64_BITOPS_H
2
#define _X86_64_BITOPS_H
3
 
4
/*
5
 * Copyright 1992, Linus Torvalds.
6
 */
7
 
8
#include <linux/config.h>
9
 
10
/*
11
 * These have to be done with inline assembly: that way the bit-setting
12
 * is guaranteed to be atomic. All bit operations return 0 if the bit
13
 * was cleared before the operation and != 0 if it was not.
14
 *
15
 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
16
 */
17
 
18
#ifdef CONFIG_SMP
19
#define LOCK_PREFIX "lock ; "
20
#else
21
#define LOCK_PREFIX ""
22
#endif
23
 
24
#define ADDR (*(volatile long *) addr)
25
 
26
/**
27
 * set_bit - Atomically set a bit in memory
28
 * @nr: the bit to set
29
 * @addr: the address to start counting from
30
 *
31
 * This function is atomic and may not be reordered.  See __set_bit()
32
 * if you do not require the atomic guarantees.
33
 * Note that @nr may be almost arbitrarily large; this function is not
34
 * restricted to acting on a single-word quantity.
35
 */
36
static __inline__ void set_bit(long nr, volatile void * addr)
37
{
38
        __asm__ __volatile__( LOCK_PREFIX
39
                "btsq %1,%0"
40
                :"=m" (ADDR)
41
                :"dIr" (nr));
42
}
43
 
44
/**
45
 * __set_bit - Set a bit in memory
46
 * @nr: the bit to set
47
 * @addr: the address to start counting from
48
 *
49
 * Unlike set_bit(), this function is non-atomic and may be reordered.
50
 * If it's called on the same region of memory simultaneously, the effect
51
 * may be that only one operation succeeds.
52
 */
53
static __inline__ void __set_bit(long nr, volatile void * addr)
54
{
55
        __asm__(
56
                "btsq %1,%0"
57
                :"=m" (ADDR)
58
                :"dIr" (nr));
59
}
60
 
61
/**
62
 * clear_bit - Clears a bit in memory
63
 * @nr: Bit to clear
64
 * @addr: Address to start counting from
65
 *
66
 * clear_bit() is atomic and may not be reordered.  However, it does
67
 * not contain a memory barrier, so if it is used for locking purposes,
68
 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
69
 * in order to ensure changes are visible on other processors.
70
 */
71
static __inline__ void clear_bit(long nr, volatile void * addr)
72
{
73
        __asm__ __volatile__( LOCK_PREFIX
74
                "btrq %1,%0"
75
                :"=m" (ADDR)
76
                :"dIr" (nr));
77
}
78
#define smp_mb__before_clear_bit()      barrier()
79
#define smp_mb__after_clear_bit()       barrier()
80
 
81
/**
82
 * __change_bit - Toggle a bit in memory
83
 * @nr: the bit to set
84
 * @addr: the address to start counting from
85
 *
86
 * Unlike change_bit(), this function is non-atomic and may be reordered.
87
 * If it's called on the same region of memory simultaneously, the effect
88
 * may be that only one operation succeeds.
89
 */
90
static __inline__ void __change_bit(long nr, volatile void * addr)
91
{
92
        __asm__ __volatile__(
93
                "btcq %1,%0"
94
                :"=m" (ADDR)
95
                :"dIr" (nr));
96
}
97
 
98
/**
99
 * change_bit - Toggle a bit in memory
100
 * @nr: Bit to clear
101
 * @addr: Address to start counting from
102
 *
103
 * change_bit() is atomic and may not be reordered.
104
 * Note that @nr may be almost arbitrarily large; this function is not
105
 * restricted to acting on a single-word quantity.
106
 */
107
static __inline__ void change_bit(long nr, volatile void * addr)
108
{
109
        __asm__ __volatile__( LOCK_PREFIX
110
                "btcq %1,%0"
111
                :"=m" (ADDR)
112
                :"dIr" (nr));
113
}
114
 
115
/**
116
 * test_and_set_bit - Set a bit and return its old value
117
 * @nr: Bit to set
118
 * @addr: Address to count from
119
 *
120
 * This operation is atomic and cannot be reordered.
121
 * It also implies a memory barrier.
122
 */
123
static __inline__ int test_and_set_bit(long nr, volatile void * addr)
124
{
125
        long oldbit;
126
 
127
        __asm__ __volatile__( LOCK_PREFIX
128
                "btsq %2,%1\n\tsbbq %0,%0"
129
                :"=r" (oldbit),"=m" (ADDR)
130
                :"dIr" (nr) : "memory");
131
        return oldbit;
132
}
133
 
134
/**
135
 * __test_and_set_bit - Set a bit and return its old value
136
 * @nr: Bit to set
137
 * @addr: Address to count from
138
 *
139
 * This operation is non-atomic and can be reordered.
140
 * If two examples of this operation race, one can appear to succeed
141
 * but actually fail.  You must protect multiple accesses with a lock.
142
 */
143
static __inline__ int __test_and_set_bit(long nr, volatile void * addr)
144
{
145
        long oldbit;
146
 
147
        __asm__(
148
                "btsq %2,%1\n\tsbbq %0,%0"
149
                :"=r" (oldbit),"=m" (ADDR)
150
                :"dIr" (nr));
151
        return oldbit;
152
}
153
 
154
/**
155
 * test_and_clear_bit - Clear a bit and return its old value
156
 * @nr: Bit to set
157
 * @addr: Address to count from
158
 *
159
 * This operation is atomic and cannot be reordered.
160
 * It also implies a memory barrier.
161
 */
162
static __inline__ int test_and_clear_bit(long nr, volatile void * addr)
163
{
164
        long oldbit;
165
 
166
        __asm__ __volatile__( LOCK_PREFIX
167
                "btrq %2,%1\n\tsbbq %0,%0"
168
                :"=r" (oldbit),"=m" (ADDR)
169
                :"dIr" (nr) : "memory");
170
        return oldbit;
171
}
172
 
173
/**
174
 * __test_and_clear_bit - Clear a bit and return its old value
175
 * @nr: Bit to set
176
 * @addr: Address to count from
177
 *
178
 * This operation is non-atomic and can be reordered.
179
 * If two examples of this operation race, one can appear to succeed
180
 * but actually fail.  You must protect multiple accesses with a lock.
181
 */
182
static __inline__ int __test_and_clear_bit(long nr, volatile void * addr)
183
{
184
        long oldbit;
185
 
186
        __asm__(
187
                "btrq %2,%1\n\tsbbq %0,%0"
188
                :"=r" (oldbit),"=m" (ADDR)
189
                :"dIr" (nr));
190
        return oldbit;
191
}
192
 
193
/* WARNING: non atomic and it can be reordered! */
194
static __inline__ int __test_and_change_bit(long nr, volatile void * addr)
195
{
196
        long oldbit;
197
 
198
        __asm__ __volatile__(
199
                "btcq %2,%1\n\tsbbq %0,%0"
200
                :"=r" (oldbit),"=m" (ADDR)
201
                :"dIr" (nr) : "memory");
202
        return oldbit;
203
}
204
 
205
/**
206
 * test_and_change_bit - Change a bit and return its new value
207
 * @nr: Bit to set
208
 * @addr: Address to count from
209
 *
210
 * This operation is atomic and cannot be reordered.
211
 * It also implies a memory barrier.
212
 */
213
static __inline__ int test_and_change_bit(long nr, volatile void * addr)
214
{
215
        long oldbit;
216
 
217
        __asm__ __volatile__( LOCK_PREFIX
218
                "btcq %2,%1\n\tsbbq %0,%0"
219
                :"=r" (oldbit),"=m" (ADDR)
220
                :"dIr" (nr) : "memory");
221
        return oldbit;
222
}
223
 
224
#if 0 /* Fool kernel-doc since it doesn't do macros yet */
225
/**
226
 * test_bit - Determine whether a bit is set
227
 * @nr: bit number to test
228
 * @addr: Address to start counting from
229
 */
230
static int test_bit(int nr, const volatile void * addr);
231
#endif
232
 
233
static __inline__ int constant_test_bit(long nr, const volatile void * addr)
234
{
235
        return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
236
}
237
 
238
static __inline__ int variable_test_bit(long nr, volatile void * addr)
239
{
240
        long oldbit;
241
 
242
        __asm__ __volatile__(
243
                "btq %2,%1\n\tsbbq %0,%0"
244
                :"=r" (oldbit)
245
                :"m" (ADDR),"dIr" (nr));
246
        return oldbit;
247
}
248
 
249
#define test_bit(nr,addr) \
250
(__builtin_constant_p(nr) ? \
251
 constant_test_bit((nr),(addr)) : \
252
 variable_test_bit((nr),(addr)))
253
 
254
/**
255
 * find_first_zero_bit - find the first zero bit in a memory region
256
 * @addr: The address to start the search at
257
 * @size: The maximum bitnumber to search
258
 *
259
 * Returns the bit-number of the first zero bit, not the number of the byte
260
 * containing a bit. -1 when none found.
261
 */
262
static __inline__ int find_first_zero_bit(void * addr, unsigned size)
263
{
264
        int d0, d1, d2;
265
        int res;
266
 
267
        if (!size)
268
                return 0;
269
        __asm__ __volatile__(
270
                "movl $-1,%%eax\n\t"
271
                "xorl %%edx,%%edx\n\t"
272
                "repe; scasl\n\t"
273
                "je 1f\n\t"
274
                "xorl -4(%%rdi),%%eax\n\t"
275
                "subq $4,%%rdi\n\t"
276
                "bsfl %%eax,%%edx\n"
277
                "1:\tsubq %%rbx,%%rdi\n\t"
278
                "shlq $3,%%rdi\n\t"
279
                "addq %%rdi,%%rdx"
280
                :"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
281
                :"1" ((size + 31) >> 5), "2" (addr), "b" (addr) : "memory");
282
        return res;
283
}
284
 
285
/**
286
 * find_next_zero_bit - find the first zero bit in a memory region
287
 * @addr: The address to base the search on
288
 * @offset: The bitnumber to start searching at
289
 * @size: The maximum size to search
290
 */
291
static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
292
{
293
        unsigned int * p = ((unsigned int *) addr) + (offset >> 5);
294
        int set = 0, bit = offset & 31, res;
295
 
296
        if (bit) {
297
                /*
298
                 * Look for zero in first byte
299
                 */
300
                __asm__("bsfl %1,%0\n\t"
301
                        "jne 1f\n\t"
302
                        "movl $32, %0\n"
303
                        "1:"
304
                        : "=r" (set)
305
                        : "r" (~(*p >> bit)));
306
                if (set < (32 - bit))
307
                        return set + offset;
308
                set = 32 - bit;
309
                p++;
310
        }
311
        /*
312
         * No zero yet, search remaining full bytes for a zero
313
         */
314
        res = find_first_zero_bit (p, size - 32 * (p - (unsigned int *) addr));
315
        return (offset + set + res);
316
}
317
 
318
/*
319
 * Find string of zero bits in a bitmap. -1 when not found.
320
 */
321
extern unsigned long
322
find_next_zero_string(unsigned long *bitmap, long start, long nbits, int len);
323
 
324
static inline void set_bit_string(unsigned long *bitmap, unsigned long i,
325
                                  int len)
326
{
327
        unsigned long end = i + len;
328
        while (i < end) {
329
                __set_bit(i, bitmap);
330
                i++;
331
        }
332
}
333
 
334
static inline void clear_bit_string(unsigned long *bitmap, unsigned long i,
335
                                    int len)
336
{
337
        unsigned long end = i + len;
338
        while (i < end) {
339
                clear_bit(i, bitmap);
340
                i++;
341
        }
342
}
343
 
344
/**
345
 * ffz - find first zero in word.
346
 * @word: The word to search
347
 *
348
 * Undefined if no zero exists, so code should check against ~0UL first.
349
 */
350
static __inline__ unsigned long ffz(unsigned long word)
351
{
352
        __asm__("bsfq %1,%0"
353
                :"=r" (word)
354
                :"r" (~word));
355
        return word;
356
}
357
 
358
#ifdef __KERNEL__
359
 
360
/**
361
 * ffs - find first bit set
362
 * @x: the word to search
363
 *
364
 * This is defined the same way as
365
 * the libc and compiler builtin ffs routines, therefore
366
 * differs in spirit from the above ffz (man ffs).
367
 */
368
static __inline__ int ffs(int x)
369
{
370
        int r;
371
 
372
        __asm__("bsfl %1,%0\n\t"
373
                "jnz 1f\n\t"
374
                "movl $-1,%0\n"
375
                "1:" : "=r" (r) : "g" (x));
376
        return r+1;
377
}
378
 
379
/**
380
 * hweightN - returns the hamming weight of a N-bit word
381
 * @x: the word to weigh
382
 *
383
 * The Hamming Weight of a number is the total number of bits set in it.
384
 */
385
 
386
#define hweight32(x) generic_hweight32(x)
387
#define hweight16(x) generic_hweight16(x)
388
#define hweight8(x) generic_hweight8(x)
389
 
390
#endif /* __KERNEL__ */
391
 
392
#ifdef __KERNEL__
393
 
394
#define ext2_set_bit                 __test_and_set_bit
395
#define ext2_clear_bit               __test_and_clear_bit
396
#define ext2_test_bit                test_bit
397
#define ext2_find_first_zero_bit     find_first_zero_bit
398
#define ext2_find_next_zero_bit      find_next_zero_bit
399
 
400
/* Bitmap functions for the minix filesystem.  */
401
#define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
402
#define minix_set_bit(nr,addr) __set_bit(nr,addr)
403
#define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
404
#define minix_test_bit(nr,addr) test_bit(nr,addr)
405
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
406
 
407
#endif /* __KERNEL__ */
408
 
409
#endif /* _X86_64_BITOPS_H */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.