OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [include/] [math-emu/] [op-1.h] - Blame information for rev 1275

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1275 phoenix
/* Software floating-point emulation.
2
   Basic one-word fraction declaration and manipulation.
3
   Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
4
   This file is part of the GNU C Library.
5
   Contributed by Richard Henderson (rth@cygnus.com),
6
                  Jakub Jelinek (jj@ultra.linux.cz),
7
                  David S. Miller (davem@redhat.com) and
8
                  Peter Maydell (pmaydell@chiark.greenend.org.uk).
9
 
10
   The GNU C Library is free software; you can redistribute it and/or
11
   modify it under the terms of the GNU Library General Public License as
12
   published by the Free Software Foundation; either version 2 of the
13
   License, or (at your option) any later version.
14
 
15
   The GNU C Library is distributed in the hope that it will be useful,
16
   but WITHOUT ANY WARRANTY; without even the implied warranty of
17
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18
   Library General Public License for more details.
19
 
20
   You should have received a copy of the GNU Library General Public
21
   License along with the GNU C Library; see the file COPYING.LIB.  If
22
   not, write to the Free Software Foundation, Inc.,
23
   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
24
 
25
#ifndef    __MATH_EMU_OP_1_H__
26
#define    __MATH_EMU_OP_1_H__
27
 
28
#define _FP_FRAC_DECL_1(X)      _FP_W_TYPE X##_f=0
29
#define _FP_FRAC_COPY_1(D,S)    (D##_f = S##_f)
30
#define _FP_FRAC_SET_1(X,I)     (X##_f = I)
31
#define _FP_FRAC_HIGH_1(X)      (X##_f)
32
#define _FP_FRAC_LOW_1(X)       (X##_f)
33
#define _FP_FRAC_WORD_1(X,w)    (X##_f)
34
 
35
#define _FP_FRAC_ADDI_1(X,I)    (X##_f += I)
36
#define _FP_FRAC_SLL_1(X,N)                     \
37
  do {                                          \
38
    if (__builtin_constant_p(N) && (N) == 1)    \
39
      X##_f += X##_f;                           \
40
    else                                        \
41
      X##_f <<= (N);                            \
42
  } while (0)
43
#define _FP_FRAC_SRL_1(X,N)     (X##_f >>= N)
44
 
45
/* Right shift with sticky-lsb.  */
46
#define _FP_FRAC_SRS_1(X,N,sz)  __FP_FRAC_SRS_1(X##_f, N, sz)
47
 
48
#define __FP_FRAC_SRS_1(X,N,sz)                                         \
49
   (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1                \
50
                     ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
51
 
52
#define _FP_FRAC_ADD_1(R,X,Y)   (R##_f = X##_f + Y##_f)
53
#define _FP_FRAC_SUB_1(R,X,Y)   (R##_f = X##_f - Y##_f)
54
#define _FP_FRAC_DEC_1(X,Y)     (X##_f -= Y##_f)
55
#define _FP_FRAC_CLZ_1(z, X)    __FP_CLZ(z, X##_f)
56
 
57
/* Predicates */
58
#define _FP_FRAC_NEGP_1(X)      ((_FP_WS_TYPE)X##_f < 0)
59
#define _FP_FRAC_ZEROP_1(X)     (X##_f == 0)
60
#define _FP_FRAC_OVERP_1(fs,X)  (X##_f & _FP_OVERFLOW_##fs)
61
#define _FP_FRAC_CLEAR_OVERP_1(fs,X)    (X##_f &= ~_FP_OVERFLOW_##fs)
62
#define _FP_FRAC_EQ_1(X, Y)     (X##_f == Y##_f)
63
#define _FP_FRAC_GE_1(X, Y)     (X##_f >= Y##_f)
64
#define _FP_FRAC_GT_1(X, Y)     (X##_f > Y##_f)
65
 
66
#define _FP_ZEROFRAC_1          0
67
#define _FP_MINFRAC_1           1
68
#define _FP_MAXFRAC_1           (~(_FP_WS_TYPE)0)
69
 
70
/*
71
 * Unpack the raw bits of a native fp value.  Do not classify or
72
 * normalize the data.
73
 */
74
 
75
#define _FP_UNPACK_RAW_1(fs, X, val)                            \
76
  do {                                                          \
77
    union _FP_UNION_##fs _flo; _flo.flt = (val);                \
78
                                                                \
79
    X##_f = _flo.bits.frac;                                     \
80
    X##_e = _flo.bits.exp;                                      \
81
    X##_s = _flo.bits.sign;                                     \
82
  } while (0)
83
 
84
#define _FP_UNPACK_RAW_1_P(fs, X, val)                          \
85
  do {                                                          \
86
    union _FP_UNION_##fs *_flo =                                \
87
      (union _FP_UNION_##fs *)(val);                            \
88
                                                                \
89
    X##_f = _flo->bits.frac;                                    \
90
    X##_e = _flo->bits.exp;                                     \
91
    X##_s = _flo->bits.sign;                                    \
92
  } while (0)
93
 
94
/*
95
 * Repack the raw bits of a native fp value.
96
 */
97
 
98
#define _FP_PACK_RAW_1(fs, val, X)                              \
99
  do {                                                          \
100
    union _FP_UNION_##fs _flo;                                  \
101
                                                                \
102
    _flo.bits.frac = X##_f;                                     \
103
    _flo.bits.exp  = X##_e;                                     \
104
    _flo.bits.sign = X##_s;                                     \
105
                                                                \
106
    (val) = _flo.flt;                                           \
107
  } while (0)
108
 
109
#define _FP_PACK_RAW_1_P(fs, val, X)                            \
110
  do {                                                          \
111
    union _FP_UNION_##fs *_flo =                                \
112
      (union _FP_UNION_##fs *)(val);                            \
113
                                                                \
114
    _flo->bits.frac = X##_f;                                    \
115
    _flo->bits.exp  = X##_e;                                    \
116
    _flo->bits.sign = X##_s;                                    \
117
  } while (0)
118
 
119
 
120
/*
121
 * Multiplication algorithms:
122
 */
123
 
124
/* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
125
   multiplication immediately.  */
126
 
127
#define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y)                          \
128
  do {                                                                  \
129
    R##_f = X##_f * Y##_f;                                              \
130
    /* Normalize since we know where the msb of the multiplicands       \
131
       were (bit B), we know that the msb of the of the product is      \
132
       at either 2B or 2B-1.  */                                        \
133
    _FP_FRAC_SRS_1(R, wfracbits-1, 2*wfracbits);                        \
134
  } while (0)
135
 
136
/* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */
137
 
138
#define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit)                   \
139
  do {                                                                  \
140
    _FP_W_TYPE _Z_f0, _Z_f1;                                            \
141
    doit(_Z_f1, _Z_f0, X##_f, Y##_f);                                   \
142
    /* Normalize since we know where the msb of the multiplicands       \
143
       were (bit B), we know that the msb of the of the product is      \
144
       at either 2B or 2B-1.  */                                        \
145
    _FP_FRAC_SRS_2(_Z, wfracbits-1, 2*wfracbits);                       \
146
    R##_f = _Z_f0;                                                      \
147
  } while (0)
148
 
149
/* Finally, a simple widening multiply algorithm.  What fun!  */
150
 
151
#define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y)                         \
152
  do {                                                                  \
153
    _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1;          \
154
                                                                        \
155
    /* split the words in half */                                       \
156
    _xh = X##_f >> (_FP_W_TYPE_SIZE/2);                                 \
157
    _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);         \
158
    _yh = Y##_f >> (_FP_W_TYPE_SIZE/2);                                 \
159
    _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);         \
160
                                                                        \
161
    /* multiply the pieces */                                           \
162
    _z_f0 = _xl * _yl;                                                  \
163
    _a_f0 = _xh * _yl;                                                  \
164
    _a_f1 = _xl * _yh;                                                  \
165
    _z_f1 = _xh * _yh;                                                  \
166
                                                                        \
167
    /* reassemble into two full words */                                \
168
    if ((_a_f0 += _a_f1) < _a_f1)                                       \
169
      _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2);                    \
170
    _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2);                               \
171
    _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2);                               \
172
    _FP_FRAC_ADD_2(_z, _z, _a);                                         \
173
                                                                        \
174
    /* normalize */                                                     \
175
    _FP_FRAC_SRS_2(_z, wfracbits - 1, 2*wfracbits);                     \
176
    R##_f = _z_f0;                                                      \
177
  } while (0)
178
 
179
 
180
/*
181
 * Division algorithms:
182
 */
183
 
184
/* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
185
   division immediately.  Give this macro either _FP_DIV_HELP_imm for
186
   C primitives or _FP_DIV_HELP_ldiv for the ISO function.  Which you
187
   choose will depend on what the compiler does with divrem4.  */
188
 
189
#define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit)           \
190
  do {                                                  \
191
    _FP_W_TYPE _q, _r;                                  \
192
    X##_f <<= (X##_f < Y##_f                            \
193
               ? R##_e--, _FP_WFRACBITS_##fs            \
194
               : _FP_WFRACBITS_##fs - 1);               \
195
    doit(_q, _r, X##_f, Y##_f);                         \
196
    R##_f = _q | (_r != 0);                             \
197
  } while (0)
198
 
199
/* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
200
   that may be useful in this situation.  This first is for a primitive
201
   that requires normalization, the second for one that does not.  Look
202
   for UDIV_NEEDS_NORMALIZATION to tell which your machine needs.  */
203
 
204
#define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y)                           \
205
  do {                                                                  \
206
    _FP_W_TYPE _nh, _nl, _q, _r, _y;                                    \
207
                                                                        \
208
    /* Normalize Y -- i.e. make the most significant bit set.  */       \
209
    _y = Y##_f << _FP_WFRACXBITS_##fs;                                  \
210
                                                                        \
211
    /* Shift X op correspondingly high, that is, up one full word.  */  \
212
    if (X##_f < Y##_f)                                                  \
213
      {                                                                 \
214
        R##_e--;                                                        \
215
        _nl = 0;                                                 \
216
        _nh = X##_f;                                                    \
217
      }                                                                 \
218
    else                                                                \
219
      {                                                                 \
220
        _nl = X##_f << (_FP_W_TYPE_SIZE - 1);                           \
221
        _nh = X##_f >> 1;                                               \
222
      }                                                                 \
223
                                                                        \
224
    udiv_qrnnd(_q, _r, _nh, _nl, _y);                                   \
225
    R##_f = _q | (_r != 0);                                             \
226
  } while (0)
227
 
228
#define _FP_DIV_MEAT_1_udiv(fs, R, X, Y)                \
229
  do {                                                  \
230
    _FP_W_TYPE _nh, _nl, _q, _r;                        \
231
    if (X##_f < Y##_f)                                  \
232
      {                                                 \
233
        R##_e--;                                        \
234
        _nl = X##_f << _FP_WFRACBITS_##fs;              \
235
        _nh = X##_f >> _FP_WFRACXBITS_##fs;             \
236
      }                                                 \
237
    else                                                \
238
      {                                                 \
239
        _nl = X##_f << (_FP_WFRACBITS_##fs - 1);        \
240
        _nh = X##_f >> (_FP_WFRACXBITS_##fs + 1);       \
241
      }                                                 \
242
    udiv_qrnnd(_q, _r, _nh, _nl, Y##_f);                \
243
    R##_f = _q | (_r != 0);                             \
244
  } while (0)
245
 
246
 
247
/*
248
 * Square root algorithms:
249
 * We have just one right now, maybe Newton approximation
250
 * should be added for those machines where division is fast.
251
 */
252
 
253
#define _FP_SQRT_MEAT_1(R, S, T, X, q)                  \
254
  do {                                                  \
255
    while (q != _FP_WORK_ROUND)                         \
256
      {                                                 \
257
        T##_f = S##_f + q;                              \
258
        if (T##_f <= X##_f)                             \
259
          {                                             \
260
            S##_f = T##_f + q;                          \
261
            X##_f -= T##_f;                             \
262
            R##_f += q;                                 \
263
          }                                             \
264
        _FP_FRAC_SLL_1(X, 1);                           \
265
        q >>= 1;                                        \
266
      }                                                 \
267
    if (X##_f)                                          \
268
      {                                                 \
269
        if (S##_f < X##_f)                              \
270
          R##_f |= _FP_WORK_ROUND;                      \
271
        R##_f |= _FP_WORK_STICKY;                       \
272
      }                                                 \
273
  } while (0)
274
 
275
/*
276
 * Assembly/disassembly for converting to/from integral types.
277
 * No shifting or overflow handled here.
278
 */
279
 
280
#define _FP_FRAC_ASSEMBLE_1(r, X, rsize)        (r = X##_f)
281
#define _FP_FRAC_DISASSEMBLE_1(X, r, rsize)     (X##_f = r)
282
 
283
 
284
/*
285
 * Convert FP values between word sizes
286
 */
287
 
288
#define _FP_FRAC_CONV_1_1(dfs, sfs, D, S)                               \
289
  do {                                                                  \
290
    D##_f = S##_f;                                                      \
291
    if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs)                      \
292
      {                                                                 \
293
        if (S##_c != FP_CLS_NAN)                                        \
294
          _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs),  \
295
                         _FP_WFRACBITS_##sfs);                          \
296
        else                                                            \
297
          _FP_FRAC_SRL_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs)); \
298
      }                                                                 \
299
    else                                                                \
300
      D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs;              \
301
  } while (0)
302
 
303
#endif /* __MATH_EMU_OP_1_H__ */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.