1 |
1275 |
phoenix |
/*
|
2 |
|
|
* linux/kernel/sched.c
|
3 |
|
|
*
|
4 |
|
|
* Kernel scheduler and related syscalls
|
5 |
|
|
*
|
6 |
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
7 |
|
|
*
|
8 |
|
|
* 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
|
9 |
|
|
* make semaphores SMP safe
|
10 |
|
|
* 1998-11-19 Implemented schedule_timeout() and related stuff
|
11 |
|
|
* by Andrea Arcangeli
|
12 |
|
|
* 1998-12-28 Implemented better SMP scheduling by Ingo Molnar
|
13 |
|
|
*/
|
14 |
|
|
|
15 |
|
|
/*
|
16 |
|
|
* 'sched.c' is the main kernel file. It contains scheduling primitives
|
17 |
|
|
* (sleep_on, wakeup, schedule etc) as well as a number of simple system
|
18 |
|
|
* call functions (type getpid()), which just extract a field from
|
19 |
|
|
* current-task
|
20 |
|
|
*/
|
21 |
|
|
|
22 |
|
|
#include <linux/config.h>
|
23 |
|
|
#include <linux/mm.h>
|
24 |
|
|
#include <linux/init.h>
|
25 |
|
|
#include <linux/smp_lock.h>
|
26 |
|
|
#include <linux/nmi.h>
|
27 |
|
|
#include <linux/interrupt.h>
|
28 |
|
|
#include <linux/kernel_stat.h>
|
29 |
|
|
#include <linux/completion.h>
|
30 |
|
|
#include <linux/prefetch.h>
|
31 |
|
|
#include <linux/compiler.h>
|
32 |
|
|
|
33 |
|
|
#include <asm/uaccess.h>
|
34 |
|
|
#include <asm/mmu_context.h>
|
35 |
|
|
|
36 |
|
|
extern void timer_bh(void);
|
37 |
|
|
extern void tqueue_bh(void);
|
38 |
|
|
extern void immediate_bh(void);
|
39 |
|
|
|
40 |
|
|
/*
|
41 |
|
|
* scheduler variables
|
42 |
|
|
*/
|
43 |
|
|
|
44 |
|
|
unsigned securebits = SECUREBITS_DEFAULT; /* systemwide security settings */
|
45 |
|
|
|
46 |
|
|
extern void mem_use(void);
|
47 |
|
|
|
48 |
|
|
/*
|
49 |
|
|
* Scheduling quanta.
|
50 |
|
|
*
|
51 |
|
|
* NOTE! The unix "nice" value influences how long a process
|
52 |
|
|
* gets. The nice value ranges from -20 to +19, where a -20
|
53 |
|
|
* is a "high-priority" task, and a "+10" is a low-priority
|
54 |
|
|
* task.
|
55 |
|
|
*
|
56 |
|
|
* We want the time-slice to be around 50ms or so, so this
|
57 |
|
|
* calculation depends on the value of HZ.
|
58 |
|
|
*/
|
59 |
|
|
#if HZ < 200
|
60 |
|
|
#define TICK_SCALE(x) ((x) >> 2)
|
61 |
|
|
#elif HZ < 400
|
62 |
|
|
#define TICK_SCALE(x) ((x) >> 1)
|
63 |
|
|
#elif HZ < 800
|
64 |
|
|
#define TICK_SCALE(x) (x)
|
65 |
|
|
#elif HZ < 1600
|
66 |
|
|
#define TICK_SCALE(x) ((x) << 1)
|
67 |
|
|
#else
|
68 |
|
|
#define TICK_SCALE(x) ((x) << 2)
|
69 |
|
|
#endif
|
70 |
|
|
|
71 |
|
|
#define NICE_TO_TICKS(nice) (TICK_SCALE(20-(nice))+1)
|
72 |
|
|
|
73 |
|
|
|
74 |
|
|
/*
|
75 |
|
|
* Init task must be ok at boot for the ix86 as we will check its signals
|
76 |
|
|
* via the SMP irq return path.
|
77 |
|
|
*/
|
78 |
|
|
|
79 |
|
|
struct task_struct * init_tasks[NR_CPUS] = {&init_task, };
|
80 |
|
|
|
81 |
|
|
/*
|
82 |
|
|
* The tasklist_lock protects the linked list of processes.
|
83 |
|
|
*
|
84 |
|
|
* The runqueue_lock locks the parts that actually access
|
85 |
|
|
* and change the run-queues, and have to be interrupt-safe.
|
86 |
|
|
*
|
87 |
|
|
* If both locks are to be concurrently held, the runqueue_lock
|
88 |
|
|
* nests inside the tasklist_lock.
|
89 |
|
|
*
|
90 |
|
|
* task->alloc_lock nests inside tasklist_lock.
|
91 |
|
|
*/
|
92 |
|
|
spinlock_t runqueue_lock __cacheline_aligned = SPIN_LOCK_UNLOCKED; /* inner */
|
93 |
|
|
rwlock_t tasklist_lock __cacheline_aligned = RW_LOCK_UNLOCKED; /* outer */
|
94 |
|
|
|
95 |
|
|
static LIST_HEAD(runqueue_head);
|
96 |
|
|
|
97 |
|
|
/*
|
98 |
|
|
* We align per-CPU scheduling data on cacheline boundaries,
|
99 |
|
|
* to prevent cacheline ping-pong.
|
100 |
|
|
*/
|
101 |
|
|
static union {
|
102 |
|
|
struct schedule_data {
|
103 |
|
|
struct task_struct * curr;
|
104 |
|
|
cycles_t last_schedule;
|
105 |
|
|
} schedule_data;
|
106 |
|
|
char __pad [SMP_CACHE_BYTES];
|
107 |
|
|
} aligned_data [NR_CPUS] __cacheline_aligned = { {{&init_task,0}}};
|
108 |
|
|
|
109 |
|
|
#define cpu_curr(cpu) aligned_data[(cpu)].schedule_data.curr
|
110 |
|
|
#define last_schedule(cpu) aligned_data[(cpu)].schedule_data.last_schedule
|
111 |
|
|
|
112 |
|
|
struct kernel_stat kstat;
|
113 |
|
|
extern struct task_struct *child_reaper;
|
114 |
|
|
|
115 |
|
|
#ifdef CONFIG_SMP
|
116 |
|
|
|
117 |
|
|
#define idle_task(cpu) (init_tasks[cpu_number_map(cpu)])
|
118 |
|
|
#define can_schedule(p,cpu) \
|
119 |
|
|
((p)->cpus_runnable & (p)->cpus_allowed & (1UL << cpu))
|
120 |
|
|
|
121 |
|
|
#else
|
122 |
|
|
|
123 |
|
|
#define idle_task(cpu) (&init_task)
|
124 |
|
|
#define can_schedule(p,cpu) (1)
|
125 |
|
|
|
126 |
|
|
#endif
|
127 |
|
|
|
128 |
|
|
void scheduling_functions_start_here(void) { }
|
129 |
|
|
|
130 |
|
|
/*
|
131 |
|
|
* This is the function that decides how desirable a process is..
|
132 |
|
|
* You can weigh different processes against each other depending
|
133 |
|
|
* on what CPU they've run on lately etc to try to handle cache
|
134 |
|
|
* and TLB miss penalties.
|
135 |
|
|
*
|
136 |
|
|
* Return values:
|
137 |
|
|
* -1000: never select this
|
138 |
|
|
* 0: out of time, recalculate counters (but it might still be
|
139 |
|
|
* selected)
|
140 |
|
|
* +ve: "goodness" value (the larger, the better)
|
141 |
|
|
* +1000: realtime process, select this.
|
142 |
|
|
*/
|
143 |
|
|
|
144 |
|
|
static inline int goodness(struct task_struct * p, int this_cpu, struct mm_struct *this_mm)
|
145 |
|
|
{
|
146 |
|
|
int weight;
|
147 |
|
|
|
148 |
|
|
/*
|
149 |
|
|
* select the current process after every other
|
150 |
|
|
* runnable process, but before the idle thread.
|
151 |
|
|
* Also, dont trigger a counter recalculation.
|
152 |
|
|
*/
|
153 |
|
|
weight = -1;
|
154 |
|
|
if (p->policy & SCHED_YIELD)
|
155 |
|
|
goto out;
|
156 |
|
|
|
157 |
|
|
/*
|
158 |
|
|
* Non-RT process - normal case first.
|
159 |
|
|
*/
|
160 |
|
|
if (p->policy == SCHED_OTHER) {
|
161 |
|
|
/*
|
162 |
|
|
* Give the process a first-approximation goodness value
|
163 |
|
|
* according to the number of clock-ticks it has left.
|
164 |
|
|
*
|
165 |
|
|
* Don't do any other calculations if the time slice is
|
166 |
|
|
* over..
|
167 |
|
|
*/
|
168 |
|
|
weight = p->counter;
|
169 |
|
|
if (!weight)
|
170 |
|
|
goto out;
|
171 |
|
|
|
172 |
|
|
#ifdef CONFIG_SMP
|
173 |
|
|
/* Give a largish advantage to the same processor... */
|
174 |
|
|
/* (this is equivalent to penalizing other processors) */
|
175 |
|
|
if (p->processor == this_cpu)
|
176 |
|
|
weight += PROC_CHANGE_PENALTY;
|
177 |
|
|
#endif
|
178 |
|
|
|
179 |
|
|
/* .. and a slight advantage to the current MM */
|
180 |
|
|
if (p->mm == this_mm || !p->mm)
|
181 |
|
|
weight += 1;
|
182 |
|
|
weight += 20 - p->nice;
|
183 |
|
|
goto out;
|
184 |
|
|
}
|
185 |
|
|
|
186 |
|
|
/*
|
187 |
|
|
* Realtime process, select the first one on the
|
188 |
|
|
* runqueue (taking priorities within processes
|
189 |
|
|
* into account).
|
190 |
|
|
*/
|
191 |
|
|
weight = 1000 + p->rt_priority;
|
192 |
|
|
out:
|
193 |
|
|
return weight;
|
194 |
|
|
}
|
195 |
|
|
|
196 |
|
|
/*
|
197 |
|
|
* the 'goodness value' of replacing a process on a given CPU.
|
198 |
|
|
* positive value means 'replace', zero or negative means 'dont'.
|
199 |
|
|
*/
|
200 |
|
|
static inline int preemption_goodness(struct task_struct * prev, struct task_struct * p, int cpu)
|
201 |
|
|
{
|
202 |
|
|
return goodness(p, cpu, prev->active_mm) - goodness(prev, cpu, prev->active_mm);
|
203 |
|
|
}
|
204 |
|
|
|
205 |
|
|
/*
|
206 |
|
|
* This is ugly, but reschedule_idle() is very timing-critical.
|
207 |
|
|
* We are called with the runqueue spinlock held and we must
|
208 |
|
|
* not claim the tasklist_lock.
|
209 |
|
|
*/
|
210 |
|
|
static FASTCALL(void reschedule_idle(struct task_struct * p));
|
211 |
|
|
|
212 |
|
|
static void reschedule_idle(struct task_struct * p)
|
213 |
|
|
{
|
214 |
|
|
#ifdef CONFIG_SMP
|
215 |
|
|
int this_cpu = smp_processor_id();
|
216 |
|
|
struct task_struct *tsk, *target_tsk;
|
217 |
|
|
int cpu, best_cpu, i, max_prio;
|
218 |
|
|
cycles_t oldest_idle;
|
219 |
|
|
|
220 |
|
|
/*
|
221 |
|
|
* shortcut if the woken up task's last CPU is
|
222 |
|
|
* idle now.
|
223 |
|
|
*/
|
224 |
|
|
best_cpu = p->processor;
|
225 |
|
|
if (can_schedule(p, best_cpu)) {
|
226 |
|
|
tsk = idle_task(best_cpu);
|
227 |
|
|
if (cpu_curr(best_cpu) == tsk) {
|
228 |
|
|
int need_resched;
|
229 |
|
|
send_now_idle:
|
230 |
|
|
/*
|
231 |
|
|
* If need_resched == -1 then we can skip sending
|
232 |
|
|
* the IPI altogether, tsk->need_resched is
|
233 |
|
|
* actively watched by the idle thread.
|
234 |
|
|
*/
|
235 |
|
|
need_resched = tsk->need_resched;
|
236 |
|
|
tsk->need_resched = 1;
|
237 |
|
|
if ((best_cpu != this_cpu) && !need_resched)
|
238 |
|
|
smp_send_reschedule(best_cpu);
|
239 |
|
|
return;
|
240 |
|
|
}
|
241 |
|
|
}
|
242 |
|
|
|
243 |
|
|
/*
|
244 |
|
|
* We know that the preferred CPU has a cache-affine current
|
245 |
|
|
* process, lets try to find a new idle CPU for the woken-up
|
246 |
|
|
* process. Select the least recently active idle CPU. (that
|
247 |
|
|
* one will have the least active cache context.) Also find
|
248 |
|
|
* the executing process which has the least priority.
|
249 |
|
|
*/
|
250 |
|
|
oldest_idle = (cycles_t) -1;
|
251 |
|
|
target_tsk = NULL;
|
252 |
|
|
max_prio = 0;
|
253 |
|
|
|
254 |
|
|
for (i = 0; i < smp_num_cpus; i++) {
|
255 |
|
|
cpu = cpu_logical_map(i);
|
256 |
|
|
if (!can_schedule(p, cpu))
|
257 |
|
|
continue;
|
258 |
|
|
tsk = cpu_curr(cpu);
|
259 |
|
|
/*
|
260 |
|
|
* We use the first available idle CPU. This creates
|
261 |
|
|
* a priority list between idle CPUs, but this is not
|
262 |
|
|
* a problem.
|
263 |
|
|
*/
|
264 |
|
|
if (tsk == idle_task(cpu)) {
|
265 |
|
|
#if defined(__i386__) && defined(CONFIG_SMP)
|
266 |
|
|
/*
|
267 |
|
|
* Check if two siblings are idle in the same
|
268 |
|
|
* physical package. Use them if found.
|
269 |
|
|
*/
|
270 |
|
|
if (smp_num_siblings == 2) {
|
271 |
|
|
if (cpu_curr(cpu_sibling_map[cpu]) ==
|
272 |
|
|
idle_task(cpu_sibling_map[cpu])) {
|
273 |
|
|
oldest_idle = last_schedule(cpu);
|
274 |
|
|
target_tsk = tsk;
|
275 |
|
|
break;
|
276 |
|
|
}
|
277 |
|
|
|
278 |
|
|
}
|
279 |
|
|
#endif
|
280 |
|
|
if (last_schedule(cpu) < oldest_idle) {
|
281 |
|
|
oldest_idle = last_schedule(cpu);
|
282 |
|
|
target_tsk = tsk;
|
283 |
|
|
}
|
284 |
|
|
} else {
|
285 |
|
|
if (oldest_idle == (cycles_t)-1) {
|
286 |
|
|
int prio = preemption_goodness(tsk, p, cpu);
|
287 |
|
|
|
288 |
|
|
if (prio > max_prio) {
|
289 |
|
|
max_prio = prio;
|
290 |
|
|
target_tsk = tsk;
|
291 |
|
|
}
|
292 |
|
|
}
|
293 |
|
|
}
|
294 |
|
|
}
|
295 |
|
|
tsk = target_tsk;
|
296 |
|
|
if (tsk) {
|
297 |
|
|
if (oldest_idle != (cycles_t)-1) {
|
298 |
|
|
best_cpu = tsk->processor;
|
299 |
|
|
goto send_now_idle;
|
300 |
|
|
}
|
301 |
|
|
tsk->need_resched = 1;
|
302 |
|
|
if (tsk->processor != this_cpu)
|
303 |
|
|
smp_send_reschedule(tsk->processor);
|
304 |
|
|
}
|
305 |
|
|
return;
|
306 |
|
|
|
307 |
|
|
|
308 |
|
|
#else /* UP */
|
309 |
|
|
int this_cpu = smp_processor_id();
|
310 |
|
|
struct task_struct *tsk;
|
311 |
|
|
|
312 |
|
|
tsk = cpu_curr(this_cpu);
|
313 |
|
|
if (preemption_goodness(tsk, p, this_cpu) > 0)
|
314 |
|
|
tsk->need_resched = 1;
|
315 |
|
|
#endif
|
316 |
|
|
}
|
317 |
|
|
|
318 |
|
|
/*
|
319 |
|
|
* Careful!
|
320 |
|
|
*
|
321 |
|
|
* This has to add the process to the _end_ of the
|
322 |
|
|
* run-queue, not the beginning. The goodness value will
|
323 |
|
|
* determine whether this process will run next. This is
|
324 |
|
|
* important to get SCHED_FIFO and SCHED_RR right, where
|
325 |
|
|
* a process that is either pre-empted or its time slice
|
326 |
|
|
* has expired, should be moved to the tail of the run
|
327 |
|
|
* queue for its priority - Bhavesh Davda
|
328 |
|
|
*/
|
329 |
|
|
static inline void add_to_runqueue(struct task_struct * p)
|
330 |
|
|
{
|
331 |
|
|
list_add_tail(&p->run_list, &runqueue_head);
|
332 |
|
|
nr_running++;
|
333 |
|
|
}
|
334 |
|
|
|
335 |
|
|
static inline void move_last_runqueue(struct task_struct * p)
|
336 |
|
|
{
|
337 |
|
|
list_del(&p->run_list);
|
338 |
|
|
list_add_tail(&p->run_list, &runqueue_head);
|
339 |
|
|
}
|
340 |
|
|
|
341 |
|
|
/*
|
342 |
|
|
* Wake up a process. Put it on the run-queue if it's not
|
343 |
|
|
* already there. The "current" process is always on the
|
344 |
|
|
* run-queue (except when the actual re-schedule is in
|
345 |
|
|
* progress), and as such you're allowed to do the simpler
|
346 |
|
|
* "current->state = TASK_RUNNING" to mark yourself runnable
|
347 |
|
|
* without the overhead of this.
|
348 |
|
|
*/
|
349 |
|
|
static inline int try_to_wake_up(struct task_struct * p, int synchronous)
|
350 |
|
|
{
|
351 |
|
|
unsigned long flags;
|
352 |
|
|
int success = 0;
|
353 |
|
|
|
354 |
|
|
/*
|
355 |
|
|
* We want the common case fall through straight, thus the goto.
|
356 |
|
|
*/
|
357 |
|
|
spin_lock_irqsave(&runqueue_lock, flags);
|
358 |
|
|
p->state = TASK_RUNNING;
|
359 |
|
|
if (task_on_runqueue(p))
|
360 |
|
|
goto out;
|
361 |
|
|
add_to_runqueue(p);
|
362 |
|
|
if (!synchronous || !(p->cpus_allowed & (1UL << smp_processor_id())))
|
363 |
|
|
reschedule_idle(p);
|
364 |
|
|
success = 1;
|
365 |
|
|
out:
|
366 |
|
|
spin_unlock_irqrestore(&runqueue_lock, flags);
|
367 |
|
|
return success;
|
368 |
|
|
}
|
369 |
|
|
|
370 |
|
|
inline int wake_up_process(struct task_struct * p)
|
371 |
|
|
{
|
372 |
|
|
return try_to_wake_up(p, 0);
|
373 |
|
|
}
|
374 |
|
|
|
375 |
|
|
static void process_timeout(unsigned long __data)
|
376 |
|
|
{
|
377 |
|
|
struct task_struct * p = (struct task_struct *) __data;
|
378 |
|
|
|
379 |
|
|
wake_up_process(p);
|
380 |
|
|
}
|
381 |
|
|
|
382 |
|
|
/**
|
383 |
|
|
* schedule_timeout - sleep until timeout
|
384 |
|
|
* @timeout: timeout value in jiffies
|
385 |
|
|
*
|
386 |
|
|
* Make the current task sleep until @timeout jiffies have
|
387 |
|
|
* elapsed. The routine will return immediately unless
|
388 |
|
|
* the current task state has been set (see set_current_state()).
|
389 |
|
|
*
|
390 |
|
|
* You can set the task state as follows -
|
391 |
|
|
*
|
392 |
|
|
* %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
|
393 |
|
|
* pass before the routine returns. The routine will return 0
|
394 |
|
|
*
|
395 |
|
|
* %TASK_INTERRUPTIBLE - the routine may return early if a signal is
|
396 |
|
|
* delivered to the current task. In this case the remaining time
|
397 |
|
|
* in jiffies will be returned, or 0 if the timer expired in time
|
398 |
|
|
*
|
399 |
|
|
* The current task state is guaranteed to be TASK_RUNNING when this
|
400 |
|
|
* routine returns.
|
401 |
|
|
*
|
402 |
|
|
* Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
|
403 |
|
|
* the CPU away without a bound on the timeout. In this case the return
|
404 |
|
|
* value will be %MAX_SCHEDULE_TIMEOUT.
|
405 |
|
|
*
|
406 |
|
|
* In all cases the return value is guaranteed to be non-negative.
|
407 |
|
|
*/
|
408 |
|
|
signed long schedule_timeout(signed long timeout)
|
409 |
|
|
{
|
410 |
|
|
struct timer_list timer;
|
411 |
|
|
unsigned long expire;
|
412 |
|
|
|
413 |
|
|
switch (timeout)
|
414 |
|
|
{
|
415 |
|
|
case MAX_SCHEDULE_TIMEOUT:
|
416 |
|
|
/*
|
417 |
|
|
* These two special cases are useful to be comfortable
|
418 |
|
|
* in the caller. Nothing more. We could take
|
419 |
|
|
* MAX_SCHEDULE_TIMEOUT from one of the negative value
|
420 |
|
|
* but I' d like to return a valid offset (>=0) to allow
|
421 |
|
|
* the caller to do everything it want with the retval.
|
422 |
|
|
*/
|
423 |
|
|
schedule();
|
424 |
|
|
goto out;
|
425 |
|
|
default:
|
426 |
|
|
/*
|
427 |
|
|
* Another bit of PARANOID. Note that the retval will be
|
428 |
|
|
* 0 since no piece of kernel is supposed to do a check
|
429 |
|
|
* for a negative retval of schedule_timeout() (since it
|
430 |
|
|
* should never happens anyway). You just have the printk()
|
431 |
|
|
* that will tell you if something is gone wrong and where.
|
432 |
|
|
*/
|
433 |
|
|
if (timeout < 0)
|
434 |
|
|
{
|
435 |
|
|
printk(KERN_ERR "schedule_timeout: wrong timeout "
|
436 |
|
|
"value %lx from %p\n", timeout,
|
437 |
|
|
__builtin_return_address(0));
|
438 |
|
|
current->state = TASK_RUNNING;
|
439 |
|
|
goto out;
|
440 |
|
|
}
|
441 |
|
|
}
|
442 |
|
|
|
443 |
|
|
expire = timeout + jiffies;
|
444 |
|
|
|
445 |
|
|
init_timer(&timer);
|
446 |
|
|
timer.expires = expire;
|
447 |
|
|
timer.data = (unsigned long) current;
|
448 |
|
|
timer.function = process_timeout;
|
449 |
|
|
|
450 |
|
|
add_timer(&timer);
|
451 |
|
|
schedule();
|
452 |
|
|
del_timer_sync(&timer);
|
453 |
|
|
|
454 |
|
|
timeout = expire - jiffies;
|
455 |
|
|
|
456 |
|
|
out:
|
457 |
|
|
return timeout < 0 ? 0 : timeout;
|
458 |
|
|
}
|
459 |
|
|
|
460 |
|
|
/*
|
461 |
|
|
* schedule_tail() is getting called from the fork return path. This
|
462 |
|
|
* cleans up all remaining scheduler things, without impacting the
|
463 |
|
|
* common case.
|
464 |
|
|
*/
|
465 |
|
|
static inline void __schedule_tail(struct task_struct *prev)
|
466 |
|
|
{
|
467 |
|
|
#ifdef CONFIG_SMP
|
468 |
|
|
int policy;
|
469 |
|
|
|
470 |
|
|
/*
|
471 |
|
|
* prev->policy can be written from here only before `prev'
|
472 |
|
|
* can be scheduled (before setting prev->cpus_runnable to ~0UL).
|
473 |
|
|
* Of course it must also be read before allowing prev
|
474 |
|
|
* to be rescheduled, but since the write depends on the read
|
475 |
|
|
* to complete, wmb() is enough. (the spin_lock() acquired
|
476 |
|
|
* before setting cpus_runnable is not enough because the spin_lock()
|
477 |
|
|
* common code semantics allows code outside the critical section
|
478 |
|
|
* to enter inside the critical section)
|
479 |
|
|
*/
|
480 |
|
|
policy = prev->policy;
|
481 |
|
|
prev->policy = policy & ~SCHED_YIELD;
|
482 |
|
|
wmb();
|
483 |
|
|
|
484 |
|
|
/*
|
485 |
|
|
* fast path falls through. We have to clear cpus_runnable before
|
486 |
|
|
* checking prev->state to avoid a wakeup race. Protect against
|
487 |
|
|
* the task exiting early.
|
488 |
|
|
*/
|
489 |
|
|
task_lock(prev);
|
490 |
|
|
task_release_cpu(prev);
|
491 |
|
|
mb();
|
492 |
|
|
if (prev->state == TASK_RUNNING)
|
493 |
|
|
goto needs_resched;
|
494 |
|
|
|
495 |
|
|
out_unlock:
|
496 |
|
|
task_unlock(prev); /* Synchronise here with release_task() if prev is TASK_ZOMBIE */
|
497 |
|
|
return;
|
498 |
|
|
|
499 |
|
|
/*
|
500 |
|
|
* Slow path - we 'push' the previous process and
|
501 |
|
|
* reschedule_idle() will attempt to find a new
|
502 |
|
|
* processor for it. (but it might preempt the
|
503 |
|
|
* current process as well.) We must take the runqueue
|
504 |
|
|
* lock and re-check prev->state to be correct. It might
|
505 |
|
|
* still happen that this process has a preemption
|
506 |
|
|
* 'in progress' already - but this is not a problem and
|
507 |
|
|
* might happen in other circumstances as well.
|
508 |
|
|
*/
|
509 |
|
|
needs_resched:
|
510 |
|
|
{
|
511 |
|
|
unsigned long flags;
|
512 |
|
|
|
513 |
|
|
/*
|
514 |
|
|
* Avoid taking the runqueue lock in cases where
|
515 |
|
|
* no preemption-check is necessery:
|
516 |
|
|
*/
|
517 |
|
|
if ((prev == idle_task(smp_processor_id())) ||
|
518 |
|
|
(policy & SCHED_YIELD))
|
519 |
|
|
goto out_unlock;
|
520 |
|
|
|
521 |
|
|
spin_lock_irqsave(&runqueue_lock, flags);
|
522 |
|
|
if ((prev->state == TASK_RUNNING) && !task_has_cpu(prev))
|
523 |
|
|
reschedule_idle(prev);
|
524 |
|
|
spin_unlock_irqrestore(&runqueue_lock, flags);
|
525 |
|
|
goto out_unlock;
|
526 |
|
|
}
|
527 |
|
|
#else
|
528 |
|
|
prev->policy &= ~SCHED_YIELD;
|
529 |
|
|
#endif /* CONFIG_SMP */
|
530 |
|
|
}
|
531 |
|
|
|
532 |
|
|
asmlinkage void schedule_tail(struct task_struct *prev)
|
533 |
|
|
{
|
534 |
|
|
__schedule_tail(prev);
|
535 |
|
|
}
|
536 |
|
|
|
537 |
|
|
/*
|
538 |
|
|
* 'schedule()' is the scheduler function. It's a very simple and nice
|
539 |
|
|
* scheduler: it's not perfect, but certainly works for most things.
|
540 |
|
|
*
|
541 |
|
|
* The goto is "interesting".
|
542 |
|
|
*
|
543 |
|
|
* NOTE!! Task 0 is the 'idle' task, which gets called when no other
|
544 |
|
|
* tasks can run. It can not be killed, and it cannot sleep. The 'state'
|
545 |
|
|
* information in task[0] is never used.
|
546 |
|
|
*/
|
547 |
|
|
asmlinkage void schedule(void)
|
548 |
|
|
{
|
549 |
|
|
struct schedule_data * sched_data;
|
550 |
|
|
struct task_struct *prev, *next, *p;
|
551 |
|
|
struct list_head *tmp;
|
552 |
|
|
int this_cpu, c;
|
553 |
|
|
|
554 |
|
|
|
555 |
|
|
spin_lock_prefetch(&runqueue_lock);
|
556 |
|
|
|
557 |
|
|
BUG_ON(!current->active_mm);
|
558 |
|
|
need_resched_back:
|
559 |
|
|
prev = current;
|
560 |
|
|
this_cpu = prev->processor;
|
561 |
|
|
|
562 |
|
|
if (unlikely(in_interrupt())) {
|
563 |
|
|
printk("Scheduling in interrupt\n");
|
564 |
|
|
BUG();
|
565 |
|
|
}
|
566 |
|
|
|
567 |
|
|
release_kernel_lock(prev, this_cpu);
|
568 |
|
|
|
569 |
|
|
/*
|
570 |
|
|
* 'sched_data' is protected by the fact that we can run
|
571 |
|
|
* only one process per CPU.
|
572 |
|
|
*/
|
573 |
|
|
sched_data = & aligned_data[this_cpu].schedule_data;
|
574 |
|
|
|
575 |
|
|
spin_lock_irq(&runqueue_lock);
|
576 |
|
|
|
577 |
|
|
/* move an exhausted RR process to be last.. */
|
578 |
|
|
if (unlikely(prev->policy == SCHED_RR))
|
579 |
|
|
if (!prev->counter) {
|
580 |
|
|
prev->counter = NICE_TO_TICKS(prev->nice);
|
581 |
|
|
move_last_runqueue(prev);
|
582 |
|
|
}
|
583 |
|
|
|
584 |
|
|
switch (prev->state) {
|
585 |
|
|
case TASK_INTERRUPTIBLE:
|
586 |
|
|
if (signal_pending(prev)) {
|
587 |
|
|
prev->state = TASK_RUNNING;
|
588 |
|
|
break;
|
589 |
|
|
}
|
590 |
|
|
default:
|
591 |
|
|
del_from_runqueue(prev);
|
592 |
|
|
case TASK_RUNNING:;
|
593 |
|
|
}
|
594 |
|
|
prev->need_resched = 0;
|
595 |
|
|
|
596 |
|
|
/*
|
597 |
|
|
* this is the scheduler proper:
|
598 |
|
|
*/
|
599 |
|
|
|
600 |
|
|
repeat_schedule:
|
601 |
|
|
/*
|
602 |
|
|
* Default process to select..
|
603 |
|
|
*/
|
604 |
|
|
next = idle_task(this_cpu);
|
605 |
|
|
c = -1000;
|
606 |
|
|
list_for_each(tmp, &runqueue_head) {
|
607 |
|
|
p = list_entry(tmp, struct task_struct, run_list);
|
608 |
|
|
if (can_schedule(p, this_cpu)) {
|
609 |
|
|
int weight = goodness(p, this_cpu, prev->active_mm);
|
610 |
|
|
if (weight > c)
|
611 |
|
|
c = weight, next = p;
|
612 |
|
|
}
|
613 |
|
|
}
|
614 |
|
|
|
615 |
|
|
/* Do we need to re-calculate counters? */
|
616 |
|
|
if (unlikely(!c)) {
|
617 |
|
|
struct task_struct *p;
|
618 |
|
|
|
619 |
|
|
spin_unlock_irq(&runqueue_lock);
|
620 |
|
|
read_lock(&tasklist_lock);
|
621 |
|
|
for_each_task(p)
|
622 |
|
|
p->counter = (p->counter >> 1) + NICE_TO_TICKS(p->nice);
|
623 |
|
|
read_unlock(&tasklist_lock);
|
624 |
|
|
spin_lock_irq(&runqueue_lock);
|
625 |
|
|
goto repeat_schedule;
|
626 |
|
|
}
|
627 |
|
|
|
628 |
|
|
/*
|
629 |
|
|
* from this point on nothing can prevent us from
|
630 |
|
|
* switching to the next task, save this fact in
|
631 |
|
|
* sched_data.
|
632 |
|
|
*/
|
633 |
|
|
sched_data->curr = next;
|
634 |
|
|
task_set_cpu(next, this_cpu);
|
635 |
|
|
spin_unlock_irq(&runqueue_lock);
|
636 |
|
|
|
637 |
|
|
if (unlikely(prev == next)) {
|
638 |
|
|
/* We won't go through the normal tail, so do this by hand */
|
639 |
|
|
prev->policy &= ~SCHED_YIELD;
|
640 |
|
|
goto same_process;
|
641 |
|
|
}
|
642 |
|
|
|
643 |
|
|
#ifdef CONFIG_SMP
|
644 |
|
|
/*
|
645 |
|
|
* maintain the per-process 'last schedule' value.
|
646 |
|
|
* (this has to be recalculated even if we reschedule to
|
647 |
|
|
* the same process) Currently this is only used on SMP,
|
648 |
|
|
* and it's approximate, so we do not have to maintain
|
649 |
|
|
* it while holding the runqueue spinlock.
|
650 |
|
|
*/
|
651 |
|
|
sched_data->last_schedule = get_cycles();
|
652 |
|
|
|
653 |
|
|
/*
|
654 |
|
|
* We drop the scheduler lock early (it's a global spinlock),
|
655 |
|
|
* thus we have to lock the previous process from getting
|
656 |
|
|
* rescheduled during switch_to().
|
657 |
|
|
*/
|
658 |
|
|
|
659 |
|
|
#endif /* CONFIG_SMP */
|
660 |
|
|
|
661 |
|
|
kstat.context_swtch++;
|
662 |
|
|
/*
|
663 |
|
|
* there are 3 processes which are affected by a context switch:
|
664 |
|
|
*
|
665 |
|
|
* prev == .... ==> (last => next)
|
666 |
|
|
*
|
667 |
|
|
* It's the 'much more previous' 'prev' that is on next's stack,
|
668 |
|
|
* but prev is set to (the just run) 'last' process by switch_to().
|
669 |
|
|
* This might sound slightly confusing but makes tons of sense.
|
670 |
|
|
*/
|
671 |
|
|
prepare_to_switch();
|
672 |
|
|
{
|
673 |
|
|
struct mm_struct *mm = next->mm;
|
674 |
|
|
struct mm_struct *oldmm = prev->active_mm;
|
675 |
|
|
if (!mm) {
|
676 |
|
|
BUG_ON(next->active_mm);
|
677 |
|
|
next->active_mm = oldmm;
|
678 |
|
|
atomic_inc(&oldmm->mm_count);
|
679 |
|
|
enter_lazy_tlb(oldmm, next, this_cpu);
|
680 |
|
|
} else {
|
681 |
|
|
BUG_ON(next->active_mm != mm);
|
682 |
|
|
switch_mm(oldmm, mm, next, this_cpu);
|
683 |
|
|
}
|
684 |
|
|
|
685 |
|
|
if (!prev->mm) {
|
686 |
|
|
prev->active_mm = NULL;
|
687 |
|
|
mmdrop(oldmm);
|
688 |
|
|
}
|
689 |
|
|
}
|
690 |
|
|
|
691 |
|
|
/*
|
692 |
|
|
* This just switches the register state and the
|
693 |
|
|
* stack.
|
694 |
|
|
*/
|
695 |
|
|
switch_to(prev, next, prev);
|
696 |
|
|
__schedule_tail(prev);
|
697 |
|
|
|
698 |
|
|
same_process:
|
699 |
|
|
reacquire_kernel_lock(current);
|
700 |
|
|
if (current->need_resched)
|
701 |
|
|
goto need_resched_back;
|
702 |
|
|
return;
|
703 |
|
|
}
|
704 |
|
|
|
705 |
|
|
/*
|
706 |
|
|
* The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just wake everything
|
707 |
|
|
* up. If it's an exclusive wakeup (nr_exclusive == small +ve number) then we wake all the
|
708 |
|
|
* non-exclusive tasks and one exclusive task.
|
709 |
|
|
*
|
710 |
|
|
* There are circumstances in which we can try to wake a task which has already
|
711 |
|
|
* started to run but is not in state TASK_RUNNING. try_to_wake_up() returns zero
|
712 |
|
|
* in this (rare) case, and we handle it by contonuing to scan the queue.
|
713 |
|
|
*/
|
714 |
|
|
static inline void __wake_up_common (wait_queue_head_t *q, unsigned int mode,
|
715 |
|
|
int nr_exclusive, const int sync)
|
716 |
|
|
{
|
717 |
|
|
struct list_head *tmp;
|
718 |
|
|
struct task_struct *p;
|
719 |
|
|
|
720 |
|
|
CHECK_MAGIC_WQHEAD(q);
|
721 |
|
|
WQ_CHECK_LIST_HEAD(&q->task_list);
|
722 |
|
|
|
723 |
|
|
list_for_each(tmp,&q->task_list) {
|
724 |
|
|
unsigned int state;
|
725 |
|
|
wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
|
726 |
|
|
|
727 |
|
|
CHECK_MAGIC(curr->__magic);
|
728 |
|
|
p = curr->task;
|
729 |
|
|
state = p->state;
|
730 |
|
|
if (state & mode) {
|
731 |
|
|
WQ_NOTE_WAKER(curr);
|
732 |
|
|
if (try_to_wake_up(p, sync) && (curr->flags&WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
|
733 |
|
|
break;
|
734 |
|
|
}
|
735 |
|
|
}
|
736 |
|
|
}
|
737 |
|
|
|
738 |
|
|
void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr)
|
739 |
|
|
{
|
740 |
|
|
if (q) {
|
741 |
|
|
unsigned long flags;
|
742 |
|
|
wq_read_lock_irqsave(&q->lock, flags);
|
743 |
|
|
__wake_up_common(q, mode, nr, 0);
|
744 |
|
|
wq_read_unlock_irqrestore(&q->lock, flags);
|
745 |
|
|
}
|
746 |
|
|
}
|
747 |
|
|
|
748 |
|
|
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr)
|
749 |
|
|
{
|
750 |
|
|
if (q) {
|
751 |
|
|
unsigned long flags;
|
752 |
|
|
wq_read_lock_irqsave(&q->lock, flags);
|
753 |
|
|
__wake_up_common(q, mode, nr, 1);
|
754 |
|
|
wq_read_unlock_irqrestore(&q->lock, flags);
|
755 |
|
|
}
|
756 |
|
|
}
|
757 |
|
|
|
758 |
|
|
void complete(struct completion *x)
|
759 |
|
|
{
|
760 |
|
|
unsigned long flags;
|
761 |
|
|
|
762 |
|
|
spin_lock_irqsave(&x->wait.lock, flags);
|
763 |
|
|
x->done++;
|
764 |
|
|
__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 1, 0);
|
765 |
|
|
spin_unlock_irqrestore(&x->wait.lock, flags);
|
766 |
|
|
}
|
767 |
|
|
|
768 |
|
|
void wait_for_completion(struct completion *x)
|
769 |
|
|
{
|
770 |
|
|
spin_lock_irq(&x->wait.lock);
|
771 |
|
|
if (!x->done) {
|
772 |
|
|
DECLARE_WAITQUEUE(wait, current);
|
773 |
|
|
|
774 |
|
|
wait.flags |= WQ_FLAG_EXCLUSIVE;
|
775 |
|
|
__add_wait_queue_tail(&x->wait, &wait);
|
776 |
|
|
do {
|
777 |
|
|
__set_current_state(TASK_UNINTERRUPTIBLE);
|
778 |
|
|
spin_unlock_irq(&x->wait.lock);
|
779 |
|
|
schedule();
|
780 |
|
|
spin_lock_irq(&x->wait.lock);
|
781 |
|
|
} while (!x->done);
|
782 |
|
|
__remove_wait_queue(&x->wait, &wait);
|
783 |
|
|
}
|
784 |
|
|
x->done--;
|
785 |
|
|
spin_unlock_irq(&x->wait.lock);
|
786 |
|
|
}
|
787 |
|
|
|
788 |
|
|
#define SLEEP_ON_VAR \
|
789 |
|
|
unsigned long flags; \
|
790 |
|
|
wait_queue_t wait; \
|
791 |
|
|
init_waitqueue_entry(&wait, current);
|
792 |
|
|
|
793 |
|
|
#define SLEEP_ON_HEAD \
|
794 |
|
|
wq_write_lock_irqsave(&q->lock,flags); \
|
795 |
|
|
__add_wait_queue(q, &wait); \
|
796 |
|
|
wq_write_unlock(&q->lock);
|
797 |
|
|
|
798 |
|
|
#define SLEEP_ON_TAIL \
|
799 |
|
|
wq_write_lock_irq(&q->lock); \
|
800 |
|
|
__remove_wait_queue(q, &wait); \
|
801 |
|
|
wq_write_unlock_irqrestore(&q->lock,flags);
|
802 |
|
|
|
803 |
|
|
void interruptible_sleep_on(wait_queue_head_t *q)
|
804 |
|
|
{
|
805 |
|
|
SLEEP_ON_VAR
|
806 |
|
|
|
807 |
|
|
current->state = TASK_INTERRUPTIBLE;
|
808 |
|
|
|
809 |
|
|
SLEEP_ON_HEAD
|
810 |
|
|
schedule();
|
811 |
|
|
SLEEP_ON_TAIL
|
812 |
|
|
}
|
813 |
|
|
|
814 |
|
|
long interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
|
815 |
|
|
{
|
816 |
|
|
SLEEP_ON_VAR
|
817 |
|
|
|
818 |
|
|
current->state = TASK_INTERRUPTIBLE;
|
819 |
|
|
|
820 |
|
|
SLEEP_ON_HEAD
|
821 |
|
|
timeout = schedule_timeout(timeout);
|
822 |
|
|
SLEEP_ON_TAIL
|
823 |
|
|
|
824 |
|
|
return timeout;
|
825 |
|
|
}
|
826 |
|
|
|
827 |
|
|
void sleep_on(wait_queue_head_t *q)
|
828 |
|
|
{
|
829 |
|
|
SLEEP_ON_VAR
|
830 |
|
|
|
831 |
|
|
current->state = TASK_UNINTERRUPTIBLE;
|
832 |
|
|
|
833 |
|
|
SLEEP_ON_HEAD
|
834 |
|
|
schedule();
|
835 |
|
|
SLEEP_ON_TAIL
|
836 |
|
|
}
|
837 |
|
|
|
838 |
|
|
long sleep_on_timeout(wait_queue_head_t *q, long timeout)
|
839 |
|
|
{
|
840 |
|
|
SLEEP_ON_VAR
|
841 |
|
|
|
842 |
|
|
current->state = TASK_UNINTERRUPTIBLE;
|
843 |
|
|
|
844 |
|
|
SLEEP_ON_HEAD
|
845 |
|
|
timeout = schedule_timeout(timeout);
|
846 |
|
|
SLEEP_ON_TAIL
|
847 |
|
|
|
848 |
|
|
return timeout;
|
849 |
|
|
}
|
850 |
|
|
|
851 |
|
|
void scheduling_functions_end_here(void) { }
|
852 |
|
|
|
853 |
|
|
#if CONFIG_SMP
|
854 |
|
|
/**
|
855 |
|
|
* set_cpus_allowed() - change a given task's processor affinity
|
856 |
|
|
* @p: task to bind
|
857 |
|
|
* @new_mask: bitmask of allowed processors
|
858 |
|
|
*
|
859 |
|
|
* Upon return, the task is running on a legal processor. Note the caller
|
860 |
|
|
* must have a valid reference to the task: it must not exit() prematurely.
|
861 |
|
|
* This call can sleep; do not hold locks on call.
|
862 |
|
|
*/
|
863 |
|
|
void set_cpus_allowed(struct task_struct *p, unsigned long new_mask)
|
864 |
|
|
{
|
865 |
|
|
new_mask &= cpu_online_map;
|
866 |
|
|
BUG_ON(!new_mask);
|
867 |
|
|
|
868 |
|
|
p->cpus_allowed = new_mask;
|
869 |
|
|
|
870 |
|
|
/*
|
871 |
|
|
* If the task is on a no-longer-allowed processor, we need to move
|
872 |
|
|
* it. If the task is not current, then set need_resched and send
|
873 |
|
|
* its processor an IPI to reschedule.
|
874 |
|
|
*/
|
875 |
|
|
if (!(p->cpus_runnable & p->cpus_allowed)) {
|
876 |
|
|
if (p != current) {
|
877 |
|
|
p->need_resched = 1;
|
878 |
|
|
smp_send_reschedule(p->processor);
|
879 |
|
|
}
|
880 |
|
|
/*
|
881 |
|
|
* Wait until we are on a legal processor. If the task is
|
882 |
|
|
* current, then we should be on a legal processor the next
|
883 |
|
|
* time we reschedule. Otherwise, we need to wait for the IPI.
|
884 |
|
|
*/
|
885 |
|
|
while (!(p->cpus_runnable & p->cpus_allowed))
|
886 |
|
|
schedule();
|
887 |
|
|
}
|
888 |
|
|
}
|
889 |
|
|
#endif /* CONFIG_SMP */
|
890 |
|
|
|
891 |
|
|
#ifndef __alpha__
|
892 |
|
|
|
893 |
|
|
/*
|
894 |
|
|
* This has been replaced by sys_setpriority. Maybe it should be
|
895 |
|
|
* moved into the arch dependent tree for those ports that require
|
896 |
|
|
* it for backward compatibility?
|
897 |
|
|
*/
|
898 |
|
|
|
899 |
|
|
asmlinkage long sys_nice(int increment)
|
900 |
|
|
{
|
901 |
|
|
long newprio;
|
902 |
|
|
|
903 |
|
|
/*
|
904 |
|
|
* Setpriority might change our priority at the same moment.
|
905 |
|
|
* We don't have to worry. Conceptually one call occurs first
|
906 |
|
|
* and we have a single winner.
|
907 |
|
|
*/
|
908 |
|
|
if (increment < 0) {
|
909 |
|
|
if (!capable(CAP_SYS_NICE))
|
910 |
|
|
return -EPERM;
|
911 |
|
|
if (increment < -40)
|
912 |
|
|
increment = -40;
|
913 |
|
|
}
|
914 |
|
|
if (increment > 40)
|
915 |
|
|
increment = 40;
|
916 |
|
|
|
917 |
|
|
newprio = current->nice + increment;
|
918 |
|
|
if (newprio < -20)
|
919 |
|
|
newprio = -20;
|
920 |
|
|
if (newprio > 19)
|
921 |
|
|
newprio = 19;
|
922 |
|
|
current->nice = newprio;
|
923 |
|
|
return 0;
|
924 |
|
|
}
|
925 |
|
|
|
926 |
|
|
#endif
|
927 |
|
|
|
928 |
|
|
static inline struct task_struct *find_process_by_pid(pid_t pid)
|
929 |
|
|
{
|
930 |
|
|
struct task_struct *tsk = current;
|
931 |
|
|
|
932 |
|
|
if (pid)
|
933 |
|
|
tsk = find_task_by_pid(pid);
|
934 |
|
|
return tsk;
|
935 |
|
|
}
|
936 |
|
|
|
937 |
|
|
static int setscheduler(pid_t pid, int policy,
|
938 |
|
|
struct sched_param *param)
|
939 |
|
|
{
|
940 |
|
|
struct sched_param lp;
|
941 |
|
|
struct task_struct *p;
|
942 |
|
|
int retval;
|
943 |
|
|
|
944 |
|
|
retval = -EINVAL;
|
945 |
|
|
if (!param || pid < 0)
|
946 |
|
|
goto out_nounlock;
|
947 |
|
|
|
948 |
|
|
retval = -EFAULT;
|
949 |
|
|
if (copy_from_user(&lp, param, sizeof(struct sched_param)))
|
950 |
|
|
goto out_nounlock;
|
951 |
|
|
|
952 |
|
|
/*
|
953 |
|
|
* We play safe to avoid deadlocks.
|
954 |
|
|
*/
|
955 |
|
|
read_lock_irq(&tasklist_lock);
|
956 |
|
|
spin_lock(&runqueue_lock);
|
957 |
|
|
|
958 |
|
|
p = find_process_by_pid(pid);
|
959 |
|
|
|
960 |
|
|
retval = -ESRCH;
|
961 |
|
|
if (!p)
|
962 |
|
|
goto out_unlock;
|
963 |
|
|
|
964 |
|
|
if (policy < 0)
|
965 |
|
|
policy = p->policy;
|
966 |
|
|
else {
|
967 |
|
|
retval = -EINVAL;
|
968 |
|
|
if (policy != SCHED_FIFO && policy != SCHED_RR &&
|
969 |
|
|
policy != SCHED_OTHER)
|
970 |
|
|
goto out_unlock;
|
971 |
|
|
}
|
972 |
|
|
|
973 |
|
|
/*
|
974 |
|
|
* Valid priorities for SCHED_FIFO and SCHED_RR are 1..99, valid
|
975 |
|
|
* priority for SCHED_OTHER is 0.
|
976 |
|
|
*/
|
977 |
|
|
retval = -EINVAL;
|
978 |
|
|
if (lp.sched_priority < 0 || lp.sched_priority > 99)
|
979 |
|
|
goto out_unlock;
|
980 |
|
|
if ((policy == SCHED_OTHER) != (lp.sched_priority == 0))
|
981 |
|
|
goto out_unlock;
|
982 |
|
|
|
983 |
|
|
retval = -EPERM;
|
984 |
|
|
if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
|
985 |
|
|
!capable(CAP_SYS_NICE))
|
986 |
|
|
goto out_unlock;
|
987 |
|
|
if ((current->euid != p->euid) && (current->euid != p->uid) &&
|
988 |
|
|
!capable(CAP_SYS_NICE))
|
989 |
|
|
goto out_unlock;
|
990 |
|
|
|
991 |
|
|
retval = 0;
|
992 |
|
|
p->policy = policy;
|
993 |
|
|
p->rt_priority = lp.sched_priority;
|
994 |
|
|
|
995 |
|
|
current->need_resched = 1;
|
996 |
|
|
|
997 |
|
|
out_unlock:
|
998 |
|
|
spin_unlock(&runqueue_lock);
|
999 |
|
|
read_unlock_irq(&tasklist_lock);
|
1000 |
|
|
|
1001 |
|
|
out_nounlock:
|
1002 |
|
|
return retval;
|
1003 |
|
|
}
|
1004 |
|
|
|
1005 |
|
|
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
|
1006 |
|
|
struct sched_param *param)
|
1007 |
|
|
{
|
1008 |
|
|
return setscheduler(pid, policy, param);
|
1009 |
|
|
}
|
1010 |
|
|
|
1011 |
|
|
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param *param)
|
1012 |
|
|
{
|
1013 |
|
|
return setscheduler(pid, -1, param);
|
1014 |
|
|
}
|
1015 |
|
|
|
1016 |
|
|
asmlinkage long sys_sched_getscheduler(pid_t pid)
|
1017 |
|
|
{
|
1018 |
|
|
struct task_struct *p;
|
1019 |
|
|
int retval;
|
1020 |
|
|
|
1021 |
|
|
retval = -EINVAL;
|
1022 |
|
|
if (pid < 0)
|
1023 |
|
|
goto out_nounlock;
|
1024 |
|
|
|
1025 |
|
|
retval = -ESRCH;
|
1026 |
|
|
read_lock(&tasklist_lock);
|
1027 |
|
|
p = find_process_by_pid(pid);
|
1028 |
|
|
if (p)
|
1029 |
|
|
retval = p->policy & ~SCHED_YIELD;
|
1030 |
|
|
read_unlock(&tasklist_lock);
|
1031 |
|
|
|
1032 |
|
|
out_nounlock:
|
1033 |
|
|
return retval;
|
1034 |
|
|
}
|
1035 |
|
|
|
1036 |
|
|
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param *param)
|
1037 |
|
|
{
|
1038 |
|
|
struct task_struct *p;
|
1039 |
|
|
struct sched_param lp;
|
1040 |
|
|
int retval;
|
1041 |
|
|
|
1042 |
|
|
retval = -EINVAL;
|
1043 |
|
|
if (!param || pid < 0)
|
1044 |
|
|
goto out_nounlock;
|
1045 |
|
|
|
1046 |
|
|
read_lock(&tasklist_lock);
|
1047 |
|
|
p = find_process_by_pid(pid);
|
1048 |
|
|
retval = -ESRCH;
|
1049 |
|
|
if (!p)
|
1050 |
|
|
goto out_unlock;
|
1051 |
|
|
lp.sched_priority = p->rt_priority;
|
1052 |
|
|
read_unlock(&tasklist_lock);
|
1053 |
|
|
|
1054 |
|
|
/*
|
1055 |
|
|
* This one might sleep, we cannot do it with a spinlock held ...
|
1056 |
|
|
*/
|
1057 |
|
|
retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
|
1058 |
|
|
|
1059 |
|
|
out_nounlock:
|
1060 |
|
|
return retval;
|
1061 |
|
|
|
1062 |
|
|
out_unlock:
|
1063 |
|
|
read_unlock(&tasklist_lock);
|
1064 |
|
|
return retval;
|
1065 |
|
|
}
|
1066 |
|
|
|
1067 |
|
|
asmlinkage long sys_sched_yield(void)
|
1068 |
|
|
{
|
1069 |
|
|
/*
|
1070 |
|
|
* Trick. sched_yield() first counts the number of truly
|
1071 |
|
|
* 'pending' runnable processes, then returns if it's
|
1072 |
|
|
* only the current processes. (This test does not have
|
1073 |
|
|
* to be atomic.) In threaded applications this optimization
|
1074 |
|
|
* gets triggered quite often.
|
1075 |
|
|
*/
|
1076 |
|
|
|
1077 |
|
|
int nr_pending = nr_running;
|
1078 |
|
|
|
1079 |
|
|
#if CONFIG_SMP
|
1080 |
|
|
int i;
|
1081 |
|
|
|
1082 |
|
|
// Subtract non-idle processes running on other CPUs.
|
1083 |
|
|
for (i = 0; i < smp_num_cpus; i++) {
|
1084 |
|
|
int cpu = cpu_logical_map(i);
|
1085 |
|
|
if (aligned_data[cpu].schedule_data.curr != idle_task(cpu))
|
1086 |
|
|
nr_pending--;
|
1087 |
|
|
}
|
1088 |
|
|
#else
|
1089 |
|
|
// on UP this process is on the runqueue as well
|
1090 |
|
|
nr_pending--;
|
1091 |
|
|
#endif
|
1092 |
|
|
if (nr_pending) {
|
1093 |
|
|
/*
|
1094 |
|
|
* This process can only be rescheduled by us,
|
1095 |
|
|
* so this is safe without any locking.
|
1096 |
|
|
*/
|
1097 |
|
|
if (current->policy == SCHED_OTHER)
|
1098 |
|
|
current->policy |= SCHED_YIELD;
|
1099 |
|
|
current->need_resched = 1;
|
1100 |
|
|
|
1101 |
|
|
spin_lock_irq(&runqueue_lock);
|
1102 |
|
|
move_last_runqueue(current);
|
1103 |
|
|
spin_unlock_irq(&runqueue_lock);
|
1104 |
|
|
}
|
1105 |
|
|
return 0;
|
1106 |
|
|
}
|
1107 |
|
|
|
1108 |
|
|
/**
|
1109 |
|
|
* yield - yield the current processor to other threads.
|
1110 |
|
|
*
|
1111 |
|
|
* this is a shortcut for kernel-space yielding - it marks the
|
1112 |
|
|
* thread runnable and calls sys_sched_yield().
|
1113 |
|
|
*/
|
1114 |
|
|
void yield(void)
|
1115 |
|
|
{
|
1116 |
|
|
set_current_state(TASK_RUNNING);
|
1117 |
|
|
sys_sched_yield();
|
1118 |
|
|
schedule();
|
1119 |
|
|
}
|
1120 |
|
|
|
1121 |
|
|
void __cond_resched(void)
|
1122 |
|
|
{
|
1123 |
|
|
set_current_state(TASK_RUNNING);
|
1124 |
|
|
schedule();
|
1125 |
|
|
}
|
1126 |
|
|
|
1127 |
|
|
asmlinkage long sys_sched_get_priority_max(int policy)
|
1128 |
|
|
{
|
1129 |
|
|
int ret = -EINVAL;
|
1130 |
|
|
|
1131 |
|
|
switch (policy) {
|
1132 |
|
|
case SCHED_FIFO:
|
1133 |
|
|
case SCHED_RR:
|
1134 |
|
|
ret = 99;
|
1135 |
|
|
break;
|
1136 |
|
|
case SCHED_OTHER:
|
1137 |
|
|
ret = 0;
|
1138 |
|
|
break;
|
1139 |
|
|
}
|
1140 |
|
|
return ret;
|
1141 |
|
|
}
|
1142 |
|
|
|
1143 |
|
|
asmlinkage long sys_sched_get_priority_min(int policy)
|
1144 |
|
|
{
|
1145 |
|
|
int ret = -EINVAL;
|
1146 |
|
|
|
1147 |
|
|
switch (policy) {
|
1148 |
|
|
case SCHED_FIFO:
|
1149 |
|
|
case SCHED_RR:
|
1150 |
|
|
ret = 1;
|
1151 |
|
|
break;
|
1152 |
|
|
case SCHED_OTHER:
|
1153 |
|
|
ret = 0;
|
1154 |
|
|
}
|
1155 |
|
|
return ret;
|
1156 |
|
|
}
|
1157 |
|
|
|
1158 |
|
|
asmlinkage long sys_sched_rr_get_interval(pid_t pid, struct timespec *interval)
|
1159 |
|
|
{
|
1160 |
|
|
struct timespec t;
|
1161 |
|
|
struct task_struct *p;
|
1162 |
|
|
int retval = -EINVAL;
|
1163 |
|
|
|
1164 |
|
|
if (pid < 0)
|
1165 |
|
|
goto out_nounlock;
|
1166 |
|
|
|
1167 |
|
|
retval = -ESRCH;
|
1168 |
|
|
read_lock(&tasklist_lock);
|
1169 |
|
|
p = find_process_by_pid(pid);
|
1170 |
|
|
if (p)
|
1171 |
|
|
jiffies_to_timespec(p->policy & SCHED_FIFO ? 0 : NICE_TO_TICKS(p->nice),
|
1172 |
|
|
&t);
|
1173 |
|
|
read_unlock(&tasklist_lock);
|
1174 |
|
|
if (p)
|
1175 |
|
|
retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
|
1176 |
|
|
out_nounlock:
|
1177 |
|
|
return retval;
|
1178 |
|
|
}
|
1179 |
|
|
|
1180 |
|
|
static void show_task(struct task_struct * p)
|
1181 |
|
|
{
|
1182 |
|
|
unsigned long free = 0;
|
1183 |
|
|
int state;
|
1184 |
|
|
static const char * stat_nam[] = { "R", "S", "D", "Z", "T", "W" };
|
1185 |
|
|
|
1186 |
|
|
printk("%-13.13s ", p->comm);
|
1187 |
|
|
state = p->state ? ffz(~p->state) + 1 : 0;
|
1188 |
|
|
if (((unsigned) state) < sizeof(stat_nam)/sizeof(char *))
|
1189 |
|
|
printk(stat_nam[state]);
|
1190 |
|
|
else
|
1191 |
|
|
printk(" ");
|
1192 |
|
|
#if (BITS_PER_LONG == 32)
|
1193 |
|
|
if (p == current)
|
1194 |
|
|
printk(" current ");
|
1195 |
|
|
else
|
1196 |
|
|
printk(" %08lX ", thread_saved_pc(&p->thread));
|
1197 |
|
|
#else
|
1198 |
|
|
if (p == current)
|
1199 |
|
|
printk(" current task ");
|
1200 |
|
|
else
|
1201 |
|
|
printk(" %016lx ", thread_saved_pc(&p->thread));
|
1202 |
|
|
#endif
|
1203 |
|
|
{
|
1204 |
|
|
unsigned long * n = (unsigned long *) (p+1);
|
1205 |
|
|
while (!*n)
|
1206 |
|
|
n++;
|
1207 |
|
|
free = (unsigned long) n - (unsigned long)(p+1);
|
1208 |
|
|
}
|
1209 |
|
|
printk("%5lu %5d %6d ", free, p->pid, p->p_pptr->pid);
|
1210 |
|
|
if (p->p_cptr)
|
1211 |
|
|
printk("%5d ", p->p_cptr->pid);
|
1212 |
|
|
else
|
1213 |
|
|
printk(" ");
|
1214 |
|
|
if (p->p_ysptr)
|
1215 |
|
|
printk("%7d", p->p_ysptr->pid);
|
1216 |
|
|
else
|
1217 |
|
|
printk(" ");
|
1218 |
|
|
if (p->p_osptr)
|
1219 |
|
|
printk(" %5d", p->p_osptr->pid);
|
1220 |
|
|
else
|
1221 |
|
|
printk(" ");
|
1222 |
|
|
if (!p->mm)
|
1223 |
|
|
printk(" (L-TLB)\n");
|
1224 |
|
|
else
|
1225 |
|
|
printk(" (NOTLB)\n");
|
1226 |
|
|
|
1227 |
|
|
{
|
1228 |
|
|
extern void show_trace_task(struct task_struct *tsk);
|
1229 |
|
|
show_trace_task(p);
|
1230 |
|
|
}
|
1231 |
|
|
}
|
1232 |
|
|
|
1233 |
|
|
char * render_sigset_t(sigset_t *set, char *buffer)
|
1234 |
|
|
{
|
1235 |
|
|
int i = _NSIG, x;
|
1236 |
|
|
do {
|
1237 |
|
|
i -= 4, x = 0;
|
1238 |
|
|
if (sigismember(set, i+1)) x |= 1;
|
1239 |
|
|
if (sigismember(set, i+2)) x |= 2;
|
1240 |
|
|
if (sigismember(set, i+3)) x |= 4;
|
1241 |
|
|
if (sigismember(set, i+4)) x |= 8;
|
1242 |
|
|
*buffer++ = (x < 10 ? '0' : 'a' - 10) + x;
|
1243 |
|
|
} while (i >= 4);
|
1244 |
|
|
*buffer = 0;
|
1245 |
|
|
return buffer;
|
1246 |
|
|
}
|
1247 |
|
|
|
1248 |
|
|
void show_state(void)
|
1249 |
|
|
{
|
1250 |
|
|
struct task_struct *p;
|
1251 |
|
|
|
1252 |
|
|
#if (BITS_PER_LONG == 32)
|
1253 |
|
|
printk("\n"
|
1254 |
|
|
" free sibling\n");
|
1255 |
|
|
printk(" task PC stack pid father child younger older\n");
|
1256 |
|
|
#else
|
1257 |
|
|
printk("\n"
|
1258 |
|
|
" free sibling\n");
|
1259 |
|
|
printk(" task PC stack pid father child younger older\n");
|
1260 |
|
|
#endif
|
1261 |
|
|
read_lock(&tasklist_lock);
|
1262 |
|
|
for_each_task(p) {
|
1263 |
|
|
/*
|
1264 |
|
|
* reset the NMI-timeout, listing all files on a slow
|
1265 |
|
|
* console might take alot of time:
|
1266 |
|
|
*/
|
1267 |
|
|
touch_nmi_watchdog();
|
1268 |
|
|
show_task(p);
|
1269 |
|
|
}
|
1270 |
|
|
read_unlock(&tasklist_lock);
|
1271 |
|
|
}
|
1272 |
|
|
|
1273 |
|
|
/**
|
1274 |
|
|
* reparent_to_init() - Reparent the calling kernel thread to the init task.
|
1275 |
|
|
*
|
1276 |
|
|
* If a kernel thread is launched as a result of a system call, or if
|
1277 |
|
|
* it ever exits, it should generally reparent itself to init so that
|
1278 |
|
|
* it is correctly cleaned up on exit.
|
1279 |
|
|
*
|
1280 |
|
|
* The various task state such as scheduling policy and priority may have
|
1281 |
|
|
* been inherited fro a user process, so we reset them to sane values here.
|
1282 |
|
|
*
|
1283 |
|
|
* NOTE that reparent_to_init() gives the caller full capabilities.
|
1284 |
|
|
*/
|
1285 |
|
|
void reparent_to_init(void)
|
1286 |
|
|
{
|
1287 |
|
|
struct task_struct *this_task = current;
|
1288 |
|
|
|
1289 |
|
|
write_lock_irq(&tasklist_lock);
|
1290 |
|
|
|
1291 |
|
|
/* Reparent to init */
|
1292 |
|
|
REMOVE_LINKS(this_task);
|
1293 |
|
|
this_task->p_pptr = child_reaper;
|
1294 |
|
|
this_task->p_opptr = child_reaper;
|
1295 |
|
|
SET_LINKS(this_task);
|
1296 |
|
|
|
1297 |
|
|
/* Set the exit signal to SIGCHLD so we signal init on exit */
|
1298 |
|
|
this_task->exit_signal = SIGCHLD;
|
1299 |
|
|
|
1300 |
|
|
/* We also take the runqueue_lock while altering task fields
|
1301 |
|
|
* which affect scheduling decisions */
|
1302 |
|
|
spin_lock(&runqueue_lock);
|
1303 |
|
|
|
1304 |
|
|
this_task->ptrace = 0;
|
1305 |
|
|
this_task->nice = DEF_NICE;
|
1306 |
|
|
this_task->policy = SCHED_OTHER;
|
1307 |
|
|
/* cpus_allowed? */
|
1308 |
|
|
/* rt_priority? */
|
1309 |
|
|
/* signals? */
|
1310 |
|
|
this_task->cap_effective = CAP_INIT_EFF_SET;
|
1311 |
|
|
this_task->cap_inheritable = CAP_INIT_INH_SET;
|
1312 |
|
|
this_task->cap_permitted = CAP_FULL_SET;
|
1313 |
|
|
this_task->keep_capabilities = 0;
|
1314 |
|
|
memcpy(this_task->rlim, init_task.rlim, sizeof(*(this_task->rlim)));
|
1315 |
|
|
switch_uid(INIT_USER);
|
1316 |
|
|
|
1317 |
|
|
spin_unlock(&runqueue_lock);
|
1318 |
|
|
write_unlock_irq(&tasklist_lock);
|
1319 |
|
|
}
|
1320 |
|
|
|
1321 |
|
|
/*
|
1322 |
|
|
* Put all the gunge required to become a kernel thread without
|
1323 |
|
|
* attached user resources in one place where it belongs.
|
1324 |
|
|
*/
|
1325 |
|
|
|
1326 |
|
|
void daemonize(void)
|
1327 |
|
|
{
|
1328 |
|
|
struct fs_struct *fs;
|
1329 |
|
|
|
1330 |
|
|
|
1331 |
|
|
/*
|
1332 |
|
|
* If we were started as result of loading a module, close all of the
|
1333 |
|
|
* user space pages. We don't need them, and if we didn't close them
|
1334 |
|
|
* they would be locked into memory.
|
1335 |
|
|
*/
|
1336 |
|
|
exit_mm(current);
|
1337 |
|
|
|
1338 |
|
|
current->session = 1;
|
1339 |
|
|
current->pgrp = 1;
|
1340 |
|
|
current->tty = NULL;
|
1341 |
|
|
|
1342 |
|
|
/* Become as one with the init task */
|
1343 |
|
|
|
1344 |
|
|
exit_fs(current); /* current->fs->count--; */
|
1345 |
|
|
fs = init_task.fs;
|
1346 |
|
|
current->fs = fs;
|
1347 |
|
|
atomic_inc(&fs->count);
|
1348 |
|
|
exit_files(current);
|
1349 |
|
|
current->files = init_task.files;
|
1350 |
|
|
atomic_inc(¤t->files->count);
|
1351 |
|
|
}
|
1352 |
|
|
|
1353 |
|
|
extern unsigned long wait_init_idle;
|
1354 |
|
|
|
1355 |
|
|
void __init init_idle(void)
|
1356 |
|
|
{
|
1357 |
|
|
struct schedule_data * sched_data;
|
1358 |
|
|
sched_data = &aligned_data[smp_processor_id()].schedule_data;
|
1359 |
|
|
|
1360 |
|
|
if (current != &init_task && task_on_runqueue(current)) {
|
1361 |
|
|
printk("UGH! (%d:%d) was on the runqueue, removing.\n",
|
1362 |
|
|
smp_processor_id(), current->pid);
|
1363 |
|
|
del_from_runqueue(current);
|
1364 |
|
|
}
|
1365 |
|
|
sched_data->curr = current;
|
1366 |
|
|
sched_data->last_schedule = get_cycles();
|
1367 |
|
|
clear_bit(current->processor, &wait_init_idle);
|
1368 |
|
|
}
|
1369 |
|
|
|
1370 |
|
|
extern void init_timervecs (void);
|
1371 |
|
|
|
1372 |
|
|
void __init sched_init(void)
|
1373 |
|
|
{
|
1374 |
|
|
/*
|
1375 |
|
|
* We have to do a little magic to get the first
|
1376 |
|
|
* process right in SMP mode.
|
1377 |
|
|
*/
|
1378 |
|
|
int cpu = smp_processor_id();
|
1379 |
|
|
int nr;
|
1380 |
|
|
|
1381 |
|
|
init_task.processor = cpu;
|
1382 |
|
|
|
1383 |
|
|
for(nr = 0; nr < PIDHASH_SZ; nr++)
|
1384 |
|
|
pidhash[nr] = NULL;
|
1385 |
|
|
|
1386 |
|
|
init_timervecs();
|
1387 |
|
|
|
1388 |
|
|
init_bh(TIMER_BH, timer_bh);
|
1389 |
|
|
init_bh(TQUEUE_BH, tqueue_bh);
|
1390 |
|
|
init_bh(IMMEDIATE_BH, immediate_bh);
|
1391 |
|
|
|
1392 |
|
|
/*
|
1393 |
|
|
* The boot idle thread does lazy MMU switching as well:
|
1394 |
|
|
*/
|
1395 |
|
|
atomic_inc(&init_mm.mm_count);
|
1396 |
|
|
enter_lazy_tlb(&init_mm, current, cpu);
|
1397 |
|
|
}
|