1 |
1275 |
phoenix |
/*
|
2 |
|
|
* Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
|
3 |
|
|
* Nicer crc32 functions/docs submitted by linux@horizon.com. Thanks!
|
4 |
|
|
* Code was from the public domain, copyright abandoned. Code was
|
5 |
|
|
* subsequently included in the kernel, thus was re-licensed under the
|
6 |
|
|
* GNU GPL v2.
|
7 |
|
|
*
|
8 |
|
|
* Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
|
9 |
|
|
* Same crc32 function was used in 5 other places in the kernel.
|
10 |
|
|
* I made one version, and deleted the others.
|
11 |
|
|
* There are various incantations of crc32(). Some use a seed of 0 or ~0.
|
12 |
|
|
* Some xor at the end with ~0. The generic crc32() function takes
|
13 |
|
|
* seed as an argument, and doesn't xor at the end. Then individual
|
14 |
|
|
* users can do whatever they need.
|
15 |
|
|
* drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
|
16 |
|
|
* fs/jffs2 uses seed 0, doesn't xor with ~0.
|
17 |
|
|
* fs/partitions/efi.c uses seed ~0, xor's with ~0.
|
18 |
|
|
*
|
19 |
|
|
* This source code is licensed under the GNU General Public License,
|
20 |
|
|
* Version 2. See the file COPYING for more details.
|
21 |
|
|
*/
|
22 |
|
|
|
23 |
|
|
#include <linux/crc32.h>
|
24 |
|
|
#include <linux/kernel.h>
|
25 |
|
|
#include <linux/module.h>
|
26 |
|
|
#include <linux/config.h>
|
27 |
|
|
#include <linux/types.h>
|
28 |
|
|
#include <linux/slab.h>
|
29 |
|
|
#include <linux/init.h>
|
30 |
|
|
#include <asm/atomic.h>
|
31 |
|
|
#include "crc32defs.h"
|
32 |
|
|
#if CRC_LE_BITS == 8
|
33 |
|
|
#define tole(x) __constant_cpu_to_le32(x)
|
34 |
|
|
#define tobe(x) __constant_cpu_to_be32(x)
|
35 |
|
|
#else
|
36 |
|
|
#define tole(x) (x)
|
37 |
|
|
#define tobe(x) (x)
|
38 |
|
|
#endif
|
39 |
|
|
#include "crc32table.h"
|
40 |
|
|
|
41 |
|
|
#if __GNUC__ >= 3 /* 2.x has "attribute", but only 3.0 has "pure */
|
42 |
|
|
#define attribute(x) __attribute__(x)
|
43 |
|
|
#else
|
44 |
|
|
#define attribute(x)
|
45 |
|
|
#endif
|
46 |
|
|
|
47 |
|
|
|
48 |
|
|
MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
|
49 |
|
|
MODULE_DESCRIPTION("Ethernet CRC32 calculations");
|
50 |
|
|
MODULE_LICENSE("GPL");
|
51 |
|
|
|
52 |
|
|
#if CRC_LE_BITS == 1
|
53 |
|
|
/*
|
54 |
|
|
* In fact, the table-based code will work in this case, but it can be
|
55 |
|
|
* simplified by inlining the table in ?: form.
|
56 |
|
|
*/
|
57 |
|
|
|
58 |
|
|
/**
|
59 |
|
|
* crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32
|
60 |
|
|
* @crc - seed value for computation. ~0 for Ethernet, sometimes 0 for
|
61 |
|
|
* other uses, or the previous crc32 value if computing incrementally.
|
62 |
|
|
* @p - pointer to buffer over which CRC is run
|
63 |
|
|
* @len - length of buffer @p
|
64 |
|
|
*
|
65 |
|
|
*/
|
66 |
|
|
u32 attribute((pure)) crc32_le(u32 crc, unsigned char const *p, size_t len)
|
67 |
|
|
{
|
68 |
|
|
int i;
|
69 |
|
|
while (len--) {
|
70 |
|
|
crc ^= *p++;
|
71 |
|
|
for (i = 0; i < 8; i++)
|
72 |
|
|
crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
|
73 |
|
|
}
|
74 |
|
|
return crc;
|
75 |
|
|
}
|
76 |
|
|
#else /* Table-based approach */
|
77 |
|
|
|
78 |
|
|
/**
|
79 |
|
|
* crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32
|
80 |
|
|
* @crc - seed value for computation. ~0 for Ethernet, sometimes 0 for
|
81 |
|
|
* other uses, or the previous crc32 value if computing incrementally.
|
82 |
|
|
* @p - pointer to buffer over which CRC is run
|
83 |
|
|
* @len - length of buffer @p
|
84 |
|
|
*
|
85 |
|
|
*/
|
86 |
|
|
u32 attribute((pure)) crc32_le(u32 crc, unsigned char const *p, size_t len)
|
87 |
|
|
{
|
88 |
|
|
# if CRC_LE_BITS == 8
|
89 |
|
|
const u32 *b =(u32 *)p;
|
90 |
|
|
const u32 *tab = crc32table_le;
|
91 |
|
|
|
92 |
|
|
# ifdef __LITTLE_ENDIAN
|
93 |
|
|
# define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
|
94 |
|
|
# else
|
95 |
|
|
# define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
|
96 |
|
|
# endif
|
97 |
|
|
|
98 |
|
|
crc = __cpu_to_le32(crc);
|
99 |
|
|
/* Align it */
|
100 |
|
|
if(unlikely(((long)b)&3 && len)){
|
101 |
|
|
do {
|
102 |
|
|
DO_CRC(*((u8 *)b)++);
|
103 |
|
|
} while ((--len) && ((long)b)&3 );
|
104 |
|
|
}
|
105 |
|
|
if(likely(len >= 4)){
|
106 |
|
|
/* load data 32 bits wide, xor data 32 bits wide. */
|
107 |
|
|
size_t save_len = len & 3;
|
108 |
|
|
len = len >> 2;
|
109 |
|
|
--b; /* use pre increment below(*++b) for speed */
|
110 |
|
|
do {
|
111 |
|
|
crc ^= *++b;
|
112 |
|
|
DO_CRC(0);
|
113 |
|
|
DO_CRC(0);
|
114 |
|
|
DO_CRC(0);
|
115 |
|
|
DO_CRC(0);
|
116 |
|
|
} while (--len);
|
117 |
|
|
b++; /* point to next byte(s) */
|
118 |
|
|
len = save_len;
|
119 |
|
|
}
|
120 |
|
|
/* And the last few bytes */
|
121 |
|
|
if(len){
|
122 |
|
|
do {
|
123 |
|
|
DO_CRC(*((u8 *)b)++);
|
124 |
|
|
} while (--len);
|
125 |
|
|
}
|
126 |
|
|
|
127 |
|
|
return __le32_to_cpu(crc);
|
128 |
|
|
#undef ENDIAN_SHIFT
|
129 |
|
|
#undef DO_CRC
|
130 |
|
|
|
131 |
|
|
# elif CRC_LE_BITS == 4
|
132 |
|
|
while (len--) {
|
133 |
|
|
crc ^= *p++;
|
134 |
|
|
crc = (crc >> 4) ^ crc32table_le[crc & 15];
|
135 |
|
|
crc = (crc >> 4) ^ crc32table_le[crc & 15];
|
136 |
|
|
}
|
137 |
|
|
return crc;
|
138 |
|
|
# elif CRC_LE_BITS == 2
|
139 |
|
|
while (len--) {
|
140 |
|
|
crc ^= *p++;
|
141 |
|
|
crc = (crc >> 2) ^ crc32table_le[crc & 3];
|
142 |
|
|
crc = (crc >> 2) ^ crc32table_le[crc & 3];
|
143 |
|
|
crc = (crc >> 2) ^ crc32table_le[crc & 3];
|
144 |
|
|
crc = (crc >> 2) ^ crc32table_le[crc & 3];
|
145 |
|
|
}
|
146 |
|
|
return crc;
|
147 |
|
|
# endif
|
148 |
|
|
}
|
149 |
|
|
#endif
|
150 |
|
|
|
151 |
|
|
#if CRC_BE_BITS == 1
|
152 |
|
|
/*
|
153 |
|
|
* In fact, the table-based code will work in this case, but it can be
|
154 |
|
|
* simplified by inlining the table in ?: form.
|
155 |
|
|
*/
|
156 |
|
|
|
157 |
|
|
/**
|
158 |
|
|
* crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
|
159 |
|
|
* @crc - seed value for computation. ~0 for Ethernet, sometimes 0 for
|
160 |
|
|
* other uses, or the previous crc32 value if computing incrementally.
|
161 |
|
|
* @p - pointer to buffer over which CRC is run
|
162 |
|
|
* @len - length of buffer @p
|
163 |
|
|
*
|
164 |
|
|
*/
|
165 |
|
|
u32 attribute((pure)) crc32_be(u32 crc, unsigned char const *p, size_t len)
|
166 |
|
|
{
|
167 |
|
|
int i;
|
168 |
|
|
while (len--) {
|
169 |
|
|
crc ^= *p++ << 24;
|
170 |
|
|
for (i = 0; i < 8; i++)
|
171 |
|
|
crc =
|
172 |
|
|
(crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE :
|
173 |
|
|
0);
|
174 |
|
|
}
|
175 |
|
|
return crc;
|
176 |
|
|
}
|
177 |
|
|
|
178 |
|
|
#else /* Table-based approach */
|
179 |
|
|
/**
|
180 |
|
|
* crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
|
181 |
|
|
* @crc - seed value for computation. ~0 for Ethernet, sometimes 0 for
|
182 |
|
|
* other uses, or the previous crc32 value if computing incrementally.
|
183 |
|
|
* @p - pointer to buffer over which CRC is run
|
184 |
|
|
* @len - length of buffer @p
|
185 |
|
|
*
|
186 |
|
|
*/
|
187 |
|
|
u32 attribute((pure)) crc32_be(u32 crc, unsigned char const *p, size_t len)
|
188 |
|
|
{
|
189 |
|
|
# if CRC_BE_BITS == 8
|
190 |
|
|
const u32 *b =(u32 *)p;
|
191 |
|
|
const u32 *tab = crc32table_be;
|
192 |
|
|
|
193 |
|
|
# ifdef __LITTLE_ENDIAN
|
194 |
|
|
# define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
|
195 |
|
|
# else
|
196 |
|
|
# define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
|
197 |
|
|
# endif
|
198 |
|
|
|
199 |
|
|
crc = __cpu_to_be32(crc);
|
200 |
|
|
/* Align it */
|
201 |
|
|
if(unlikely(((long)b)&3 && len)){
|
202 |
|
|
do {
|
203 |
|
|
DO_CRC(*((u8 *)b)++);
|
204 |
|
|
} while ((--len) && ((long)b)&3 );
|
205 |
|
|
}
|
206 |
|
|
if(likely(len >= 4)){
|
207 |
|
|
/* load data 32 bits wide, xor data 32 bits wide. */
|
208 |
|
|
size_t save_len = len & 3;
|
209 |
|
|
len = len >> 2;
|
210 |
|
|
--b; /* use pre increment below(*++b) for speed */
|
211 |
|
|
do {
|
212 |
|
|
crc ^= *++b;
|
213 |
|
|
DO_CRC(0);
|
214 |
|
|
DO_CRC(0);
|
215 |
|
|
DO_CRC(0);
|
216 |
|
|
DO_CRC(0);
|
217 |
|
|
} while (--len);
|
218 |
|
|
b++; /* point to next byte(s) */
|
219 |
|
|
len = save_len;
|
220 |
|
|
}
|
221 |
|
|
/* And the last few bytes */
|
222 |
|
|
if(len){
|
223 |
|
|
do {
|
224 |
|
|
DO_CRC(*((u8 *)b)++);
|
225 |
|
|
} while (--len);
|
226 |
|
|
}
|
227 |
|
|
return __be32_to_cpu(crc);
|
228 |
|
|
#undef ENDIAN_SHIFT
|
229 |
|
|
#undef DO_CRC
|
230 |
|
|
|
231 |
|
|
# elif CRC_BE_BITS == 4
|
232 |
|
|
while (len--) {
|
233 |
|
|
crc ^= *p++ << 24;
|
234 |
|
|
crc = (crc << 4) ^ crc32table_be[crc >> 28];
|
235 |
|
|
crc = (crc << 4) ^ crc32table_be[crc >> 28];
|
236 |
|
|
}
|
237 |
|
|
return crc;
|
238 |
|
|
# elif CRC_BE_BITS == 2
|
239 |
|
|
while (len--) {
|
240 |
|
|
crc ^= *p++ << 24;
|
241 |
|
|
crc = (crc << 2) ^ crc32table_be[crc >> 30];
|
242 |
|
|
crc = (crc << 2) ^ crc32table_be[crc >> 30];
|
243 |
|
|
crc = (crc << 2) ^ crc32table_be[crc >> 30];
|
244 |
|
|
crc = (crc << 2) ^ crc32table_be[crc >> 30];
|
245 |
|
|
}
|
246 |
|
|
return crc;
|
247 |
|
|
# endif
|
248 |
|
|
}
|
249 |
|
|
#endif
|
250 |
|
|
|
251 |
|
|
u32 bitreverse(u32 x)
|
252 |
|
|
{
|
253 |
|
|
x = (x >> 16) | (x << 16);
|
254 |
|
|
x = (x >> 8 & 0x00ff00ff) | (x << 8 & 0xff00ff00);
|
255 |
|
|
x = (x >> 4 & 0x0f0f0f0f) | (x << 4 & 0xf0f0f0f0);
|
256 |
|
|
x = (x >> 2 & 0x33333333) | (x << 2 & 0xcccccccc);
|
257 |
|
|
x = (x >> 1 & 0x55555555) | (x << 1 & 0xaaaaaaaa);
|
258 |
|
|
return x;
|
259 |
|
|
}
|
260 |
|
|
|
261 |
|
|
#ifndef CONFIG_CRC32
|
262 |
|
|
/* To ensure that this file is pulled in from lib/lib.a if it's
|
263 |
|
|
configured in but nothing in-kernel uses it, we export its
|
264 |
|
|
symbols from kernel/ksyms.c in the CONFIG_CRC32=y case.
|
265 |
|
|
Otherwise (either modular or pulled in by the makefile magic)
|
266 |
|
|
we export them from here. */
|
267 |
|
|
EXPORT_SYMBOL(crc32_le);
|
268 |
|
|
EXPORT_SYMBOL(crc32_be);
|
269 |
|
|
EXPORT_SYMBOL(bitreverse);
|
270 |
|
|
#endif
|
271 |
|
|
|
272 |
|
|
/*
|
273 |
|
|
* A brief CRC tutorial.
|
274 |
|
|
*
|
275 |
|
|
* A CRC is a long-division remainder. You add the CRC to the message,
|
276 |
|
|
* and the whole thing (message+CRC) is a multiple of the given
|
277 |
|
|
* CRC polynomial. To check the CRC, you can either check that the
|
278 |
|
|
* CRC matches the recomputed value, *or* you can check that the
|
279 |
|
|
* remainder computed on the message+CRC is 0. This latter approach
|
280 |
|
|
* is used by a lot of hardware implementations, and is why so many
|
281 |
|
|
* protocols put the end-of-frame flag after the CRC.
|
282 |
|
|
*
|
283 |
|
|
* It's actually the same long division you learned in school, except that
|
284 |
|
|
* - We're working in binary, so the digits are only 0 and 1, and
|
285 |
|
|
* - When dividing polynomials, there are no carries. Rather than add and
|
286 |
|
|
* subtract, we just xor. Thus, we tend to get a bit sloppy about
|
287 |
|
|
* the difference between adding and subtracting.
|
288 |
|
|
*
|
289 |
|
|
* A 32-bit CRC polynomial is actually 33 bits long. But since it's
|
290 |
|
|
* 33 bits long, bit 32 is always going to be set, so usually the CRC
|
291 |
|
|
* is written in hex with the most significant bit omitted. (If you're
|
292 |
|
|
* familiar with the IEEE 754 floating-point format, it's the same idea.)
|
293 |
|
|
*
|
294 |
|
|
* Note that a CRC is computed over a string of *bits*, so you have
|
295 |
|
|
* to decide on the endianness of the bits within each byte. To get
|
296 |
|
|
* the best error-detecting properties, this should correspond to the
|
297 |
|
|
* order they're actually sent. For example, standard RS-232 serial is
|
298 |
|
|
* little-endian; the most significant bit (sometimes used for parity)
|
299 |
|
|
* is sent last. And when appending a CRC word to a message, you should
|
300 |
|
|
* do it in the right order, matching the endianness.
|
301 |
|
|
*
|
302 |
|
|
* Just like with ordinary division, the remainder is always smaller than
|
303 |
|
|
* the divisor (the CRC polynomial) you're dividing by. Each step of the
|
304 |
|
|
* division, you take one more digit (bit) of the dividend and append it
|
305 |
|
|
* to the current remainder. Then you figure out the appropriate multiple
|
306 |
|
|
* of the divisor to subtract to being the remainder back into range.
|
307 |
|
|
* In binary, it's easy - it has to be either 0 or 1, and to make the
|
308 |
|
|
* XOR cancel, it's just a copy of bit 32 of the remainder.
|
309 |
|
|
*
|
310 |
|
|
* When computing a CRC, we don't care about the quotient, so we can
|
311 |
|
|
* throw the quotient bit away, but subtract the appropriate multiple of
|
312 |
|
|
* the polynomial from the remainder and we're back to where we started,
|
313 |
|
|
* ready to process the next bit.
|
314 |
|
|
*
|
315 |
|
|
* A big-endian CRC written this way would be coded like:
|
316 |
|
|
* for (i = 0; i < input_bits; i++) {
|
317 |
|
|
* multiple = remainder & 0x80000000 ? CRCPOLY : 0;
|
318 |
|
|
* remainder = (remainder << 1 | next_input_bit()) ^ multiple;
|
319 |
|
|
* }
|
320 |
|
|
* Notice how, to get at bit 32 of the shifted remainder, we look
|
321 |
|
|
* at bit 31 of the remainder *before* shifting it.
|
322 |
|
|
*
|
323 |
|
|
* But also notice how the next_input_bit() bits we're shifting into
|
324 |
|
|
* the remainder don't actually affect any decision-making until
|
325 |
|
|
* 32 bits later. Thus, the first 32 cycles of this are pretty boring.
|
326 |
|
|
* Also, to add the CRC to a message, we need a 32-bit-long hole for it at
|
327 |
|
|
* the end, so we have to add 32 extra cycles shifting in zeros at the
|
328 |
|
|
* end of every message,
|
329 |
|
|
*
|
330 |
|
|
* So the standard trick is to rearrage merging in the next_input_bit()
|
331 |
|
|
* until the moment it's needed. Then the first 32 cycles can be precomputed,
|
332 |
|
|
* and merging in the final 32 zero bits to make room for the CRC can be
|
333 |
|
|
* skipped entirely.
|
334 |
|
|
* This changes the code to:
|
335 |
|
|
* for (i = 0; i < input_bits; i++) {
|
336 |
|
|
* remainder ^= next_input_bit() << 31;
|
337 |
|
|
* multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
|
338 |
|
|
* remainder = (remainder << 1) ^ multiple;
|
339 |
|
|
* }
|
340 |
|
|
* With this optimization, the little-endian code is simpler:
|
341 |
|
|
* for (i = 0; i < input_bits; i++) {
|
342 |
|
|
* remainder ^= next_input_bit();
|
343 |
|
|
* multiple = (remainder & 1) ? CRCPOLY : 0;
|
344 |
|
|
* remainder = (remainder >> 1) ^ multiple;
|
345 |
|
|
* }
|
346 |
|
|
*
|
347 |
|
|
* Note that the other details of endianness have been hidden in CRCPOLY
|
348 |
|
|
* (which must be bit-reversed) and next_input_bit().
|
349 |
|
|
*
|
350 |
|
|
* However, as long as next_input_bit is returning the bits in a sensible
|
351 |
|
|
* order, we can actually do the merging 8 or more bits at a time rather
|
352 |
|
|
* than one bit at a time:
|
353 |
|
|
* for (i = 0; i < input_bytes; i++) {
|
354 |
|
|
* remainder ^= next_input_byte() << 24;
|
355 |
|
|
* for (j = 0; j < 8; j++) {
|
356 |
|
|
* multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
|
357 |
|
|
* remainder = (remainder << 1) ^ multiple;
|
358 |
|
|
* }
|
359 |
|
|
* }
|
360 |
|
|
* Or in little-endian:
|
361 |
|
|
* for (i = 0; i < input_bytes; i++) {
|
362 |
|
|
* remainder ^= next_input_byte();
|
363 |
|
|
* for (j = 0; j < 8; j++) {
|
364 |
|
|
* multiple = (remainder & 1) ? CRCPOLY : 0;
|
365 |
|
|
* remainder = (remainder << 1) ^ multiple;
|
366 |
|
|
* }
|
367 |
|
|
* }
|
368 |
|
|
* If the input is a multiple of 32 bits, you can even XOR in a 32-bit
|
369 |
|
|
* word at a time and increase the inner loop count to 32.
|
370 |
|
|
*
|
371 |
|
|
* You can also mix and match the two loop styles, for example doing the
|
372 |
|
|
* bulk of a message byte-at-a-time and adding bit-at-a-time processing
|
373 |
|
|
* for any fractional bytes at the end.
|
374 |
|
|
*
|
375 |
|
|
* The only remaining optimization is to the byte-at-a-time table method.
|
376 |
|
|
* Here, rather than just shifting one bit of the remainder to decide
|
377 |
|
|
* in the correct multiple to subtract, we can shift a byte at a time.
|
378 |
|
|
* This produces a 40-bit (rather than a 33-bit) intermediate remainder,
|
379 |
|
|
* but again the multiple of the polynomial to subtract depends only on
|
380 |
|
|
* the high bits, the high 8 bits in this case.
|
381 |
|
|
*
|
382 |
|
|
* The multile we need in that case is the low 32 bits of a 40-bit
|
383 |
|
|
* value whose high 8 bits are given, and which is a multiple of the
|
384 |
|
|
* generator polynomial. This is simply the CRC-32 of the given
|
385 |
|
|
* one-byte message.
|
386 |
|
|
*
|
387 |
|
|
* Two more details: normally, appending zero bits to a message which
|
388 |
|
|
* is already a multiple of a polynomial produces a larger multiple of that
|
389 |
|
|
* polynomial. To enable a CRC to detect this condition, it's common to
|
390 |
|
|
* invert the CRC before appending it. This makes the remainder of the
|
391 |
|
|
* message+crc come out not as zero, but some fixed non-zero value.
|
392 |
|
|
*
|
393 |
|
|
* The same problem applies to zero bits prepended to the message, and
|
394 |
|
|
* a similar solution is used. Instead of starting with a remainder of
|
395 |
|
|
* 0, an initial remainder of all ones is used. As long as you start
|
396 |
|
|
* the same way on decoding, it doesn't make a difference.
|
397 |
|
|
*/
|
398 |
|
|
|
399 |
|
|
#if UNITTEST
|
400 |
|
|
|
401 |
|
|
#include <stdlib.h>
|
402 |
|
|
#include <stdio.h>
|
403 |
|
|
|
404 |
|
|
#if 0 /*Not used at present */
|
405 |
|
|
static void
|
406 |
|
|
buf_dump(char const *prefix, unsigned char const *buf, size_t len)
|
407 |
|
|
{
|
408 |
|
|
fputs(prefix, stdout);
|
409 |
|
|
while (len--)
|
410 |
|
|
printf(" %02x", *buf++);
|
411 |
|
|
putchar('\n');
|
412 |
|
|
|
413 |
|
|
}
|
414 |
|
|
#endif
|
415 |
|
|
|
416 |
|
|
static void bytereverse(unsigned char *buf, size_t len)
|
417 |
|
|
{
|
418 |
|
|
while (len--) {
|
419 |
|
|
unsigned char x = *buf;
|
420 |
|
|
x = (x >> 4) | (x << 4);
|
421 |
|
|
x = (x >> 2 & 0x33) | (x << 2 & 0xcc);
|
422 |
|
|
x = (x >> 1 & 0x55) | (x << 1 & 0xaa);
|
423 |
|
|
*buf++ = x;
|
424 |
|
|
}
|
425 |
|
|
}
|
426 |
|
|
|
427 |
|
|
static void random_garbage(unsigned char *buf, size_t len)
|
428 |
|
|
{
|
429 |
|
|
while (len--)
|
430 |
|
|
*buf++ = (unsigned char) random();
|
431 |
|
|
}
|
432 |
|
|
|
433 |
|
|
#if 0 /* Not used at present */
|
434 |
|
|
static void store_le(u32 x, unsigned char *buf)
|
435 |
|
|
{
|
436 |
|
|
buf[0] = (unsigned char) x;
|
437 |
|
|
buf[1] = (unsigned char) (x >> 8);
|
438 |
|
|
buf[2] = (unsigned char) (x >> 16);
|
439 |
|
|
buf[3] = (unsigned char) (x >> 24);
|
440 |
|
|
}
|
441 |
|
|
#endif
|
442 |
|
|
|
443 |
|
|
static void store_be(u32 x, unsigned char *buf)
|
444 |
|
|
{
|
445 |
|
|
buf[0] = (unsigned char) (x >> 24);
|
446 |
|
|
buf[1] = (unsigned char) (x >> 16);
|
447 |
|
|
buf[2] = (unsigned char) (x >> 8);
|
448 |
|
|
buf[3] = (unsigned char) x;
|
449 |
|
|
}
|
450 |
|
|
|
451 |
|
|
/*
|
452 |
|
|
* This checks that CRC(buf + CRC(buf)) = 0, and that
|
453 |
|
|
* CRC commutes with bit-reversal. This has the side effect
|
454 |
|
|
* of bytewise bit-reversing the input buffer, and returns
|
455 |
|
|
* the CRC of the reversed buffer.
|
456 |
|
|
*/
|
457 |
|
|
static u32 test_step(u32 init, unsigned char *buf, size_t len)
|
458 |
|
|
{
|
459 |
|
|
u32 crc1, crc2;
|
460 |
|
|
size_t i;
|
461 |
|
|
|
462 |
|
|
crc1 = crc32_be(init, buf, len);
|
463 |
|
|
store_be(crc1, buf + len);
|
464 |
|
|
crc2 = crc32_be(init, buf, len + 4);
|
465 |
|
|
if (crc2)
|
466 |
|
|
printf("\nCRC cancellation fail: 0x%08x should be 0\n",
|
467 |
|
|
crc2);
|
468 |
|
|
|
469 |
|
|
for (i = 0; i <= len + 4; i++) {
|
470 |
|
|
crc2 = crc32_be(init, buf, i);
|
471 |
|
|
crc2 = crc32_be(crc2, buf + i, len + 4 - i);
|
472 |
|
|
if (crc2)
|
473 |
|
|
printf("\nCRC split fail: 0x%08x\n", crc2);
|
474 |
|
|
}
|
475 |
|
|
|
476 |
|
|
/* Now swap it around for the other test */
|
477 |
|
|
|
478 |
|
|
bytereverse(buf, len + 4);
|
479 |
|
|
init = bitreverse(init);
|
480 |
|
|
crc2 = bitreverse(crc1);
|
481 |
|
|
if (crc1 != bitreverse(crc2))
|
482 |
|
|
printf("\nBit reversal fail: 0x%08x -> %0x08x -> 0x%08x\n",
|
483 |
|
|
crc1, crc2, bitreverse(crc2));
|
484 |
|
|
crc1 = crc32_le(init, buf, len);
|
485 |
|
|
if (crc1 != crc2)
|
486 |
|
|
printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1,
|
487 |
|
|
crc2);
|
488 |
|
|
crc2 = crc32_le(init, buf, len + 4);
|
489 |
|
|
if (crc2)
|
490 |
|
|
printf("\nCRC cancellation fail: 0x%08x should be 0\n",
|
491 |
|
|
crc2);
|
492 |
|
|
|
493 |
|
|
for (i = 0; i <= len + 4; i++) {
|
494 |
|
|
crc2 = crc32_le(init, buf, i);
|
495 |
|
|
crc2 = crc32_le(crc2, buf + i, len + 4 - i);
|
496 |
|
|
if (crc2)
|
497 |
|
|
printf("\nCRC split fail: 0x%08x\n", crc2);
|
498 |
|
|
}
|
499 |
|
|
|
500 |
|
|
return crc1;
|
501 |
|
|
}
|
502 |
|
|
|
503 |
|
|
#define SIZE 64
|
504 |
|
|
#define INIT1 0
|
505 |
|
|
#define INIT2 0
|
506 |
|
|
|
507 |
|
|
int main(void)
|
508 |
|
|
{
|
509 |
|
|
unsigned char buf1[SIZE + 4];
|
510 |
|
|
unsigned char buf2[SIZE + 4];
|
511 |
|
|
unsigned char buf3[SIZE + 4];
|
512 |
|
|
int i, j;
|
513 |
|
|
u32 crc1, crc2, crc3;
|
514 |
|
|
|
515 |
|
|
for (i = 0; i <= SIZE; i++) {
|
516 |
|
|
printf("\rTesting length %d...", i);
|
517 |
|
|
fflush(stdout);
|
518 |
|
|
random_garbage(buf1, i);
|
519 |
|
|
random_garbage(buf2, i);
|
520 |
|
|
for (j = 0; j < i; j++)
|
521 |
|
|
buf3[j] = buf1[j] ^ buf2[j];
|
522 |
|
|
|
523 |
|
|
crc1 = test_step(INIT1, buf1, i);
|
524 |
|
|
crc2 = test_step(INIT2, buf2, i);
|
525 |
|
|
/* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */
|
526 |
|
|
crc3 = test_step(INIT1 ^ INIT2, buf3, i);
|
527 |
|
|
if (crc3 != (crc1 ^ crc2))
|
528 |
|
|
printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n",
|
529 |
|
|
crc3, crc1, crc2);
|
530 |
|
|
}
|
531 |
|
|
printf("\nAll test complete. No failures expected.\n");
|
532 |
|
|
return 0;
|
533 |
|
|
}
|
534 |
|
|
|
535 |
|
|
#endif /* UNITTEST */
|