1 |
1275 |
phoenix |
#define DEBG(x)
|
2 |
|
|
#define DEBG1(x)
|
3 |
|
|
/* inflate.c -- Not copyrighted 1992 by Mark Adler
|
4 |
|
|
version c10p1, 10 January 1993 */
|
5 |
|
|
|
6 |
|
|
/*
|
7 |
|
|
* Adapted for booting Linux by Hannu Savolainen 1993
|
8 |
|
|
* based on gzip-1.0.3
|
9 |
|
|
*
|
10 |
|
|
* Nicolas Pitre <nico@cam.org>, 1999/04/14 :
|
11 |
|
|
* Little mods for all variable to reside either into rodata or bss segments
|
12 |
|
|
* by marking constant variables with 'const' and initializing all the others
|
13 |
|
|
* at run-time only. This allows for the kernel uncompressor to run
|
14 |
|
|
* directly from Flash or ROM memory on embedded systems.
|
15 |
|
|
*/
|
16 |
|
|
|
17 |
|
|
/*
|
18 |
|
|
Inflate deflated (PKZIP's method 8 compressed) data. The compression
|
19 |
|
|
method searches for as much of the current string of bytes (up to a
|
20 |
|
|
length of 258) in the previous 32 K bytes. If it doesn't find any
|
21 |
|
|
matches (of at least length 3), it codes the next byte. Otherwise, it
|
22 |
|
|
codes the length of the matched string and its distance backwards from
|
23 |
|
|
the current position. There is a single Huffman code that codes both
|
24 |
|
|
single bytes (called "literals") and match lengths. A second Huffman
|
25 |
|
|
code codes the distance information, which follows a length code. Each
|
26 |
|
|
length or distance code actually represents a base value and a number
|
27 |
|
|
of "extra" (sometimes zero) bits to get to add to the base value. At
|
28 |
|
|
the end of each deflated block is a special end-of-block (EOB) literal/
|
29 |
|
|
length code. The decoding process is basically: get a literal/length
|
30 |
|
|
code; if EOB then done; if a literal, emit the decoded byte; if a
|
31 |
|
|
length then get the distance and emit the referred-to bytes from the
|
32 |
|
|
sliding window of previously emitted data.
|
33 |
|
|
|
34 |
|
|
There are (currently) three kinds of inflate blocks: stored, fixed, and
|
35 |
|
|
dynamic. The compressor deals with some chunk of data at a time, and
|
36 |
|
|
decides which method to use on a chunk-by-chunk basis. A chunk might
|
37 |
|
|
typically be 32 K or 64 K. If the chunk is incompressible, then the
|
38 |
|
|
"stored" method is used. In this case, the bytes are simply stored as
|
39 |
|
|
is, eight bits per byte, with none of the above coding. The bytes are
|
40 |
|
|
preceded by a count, since there is no longer an EOB code.
|
41 |
|
|
|
42 |
|
|
If the data is compressible, then either the fixed or dynamic methods
|
43 |
|
|
are used. In the dynamic method, the compressed data is preceded by
|
44 |
|
|
an encoding of the literal/length and distance Huffman codes that are
|
45 |
|
|
to be used to decode this block. The representation is itself Huffman
|
46 |
|
|
coded, and so is preceded by a description of that code. These code
|
47 |
|
|
descriptions take up a little space, and so for small blocks, there is
|
48 |
|
|
a predefined set of codes, called the fixed codes. The fixed method is
|
49 |
|
|
used if the block codes up smaller that way (usually for quite small
|
50 |
|
|
chunks), otherwise the dynamic method is used. In the latter case, the
|
51 |
|
|
codes are customized to the probabilities in the current block, and so
|
52 |
|
|
can code it much better than the pre-determined fixed codes.
|
53 |
|
|
|
54 |
|
|
The Huffman codes themselves are decoded using a multi-level table
|
55 |
|
|
lookup, in order to maximize the speed of decoding plus the speed of
|
56 |
|
|
building the decoding tables. See the comments below that precede the
|
57 |
|
|
lbits and dbits tuning parameters.
|
58 |
|
|
*/
|
59 |
|
|
|
60 |
|
|
|
61 |
|
|
/*
|
62 |
|
|
Notes beyond the 1.93a appnote.txt:
|
63 |
|
|
|
64 |
|
|
1. Distance pointers never point before the beginning of the output
|
65 |
|
|
stream.
|
66 |
|
|
2. Distance pointers can point back across blocks, up to 32k away.
|
67 |
|
|
3. There is an implied maximum of 7 bits for the bit length table and
|
68 |
|
|
15 bits for the actual data.
|
69 |
|
|
4. If only one code exists, then it is encoded using one bit. (Zero
|
70 |
|
|
would be more efficient, but perhaps a little confusing.) If two
|
71 |
|
|
codes exist, they are coded using one bit each (0 and 1).
|
72 |
|
|
5. There is no way of sending zero distance codes--a dummy must be
|
73 |
|
|
sent if there are none. (History: a pre 2.0 version of PKZIP would
|
74 |
|
|
store blocks with no distance codes, but this was discovered to be
|
75 |
|
|
too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
|
76 |
|
|
zero distance codes, which is sent as one code of zero bits in
|
77 |
|
|
length.
|
78 |
|
|
6. There are up to 286 literal/length codes. Code 256 represents the
|
79 |
|
|
end-of-block. Note however that the static length tree defines
|
80 |
|
|
288 codes just to fill out the Huffman codes. Codes 286 and 287
|
81 |
|
|
cannot be used though, since there is no length base or extra bits
|
82 |
|
|
defined for them. Similarly, there are up to 30 distance codes.
|
83 |
|
|
However, static trees define 32 codes (all 5 bits) to fill out the
|
84 |
|
|
Huffman codes, but the last two had better not show up in the data.
|
85 |
|
|
7. Unzip can check dynamic Huffman blocks for complete code sets.
|
86 |
|
|
The exception is that a single code would not be complete (see #4).
|
87 |
|
|
8. The five bits following the block type is really the number of
|
88 |
|
|
literal codes sent minus 257.
|
89 |
|
|
9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
|
90 |
|
|
(1+6+6). Therefore, to output three times the length, you output
|
91 |
|
|
three codes (1+1+1), whereas to output four times the same length,
|
92 |
|
|
you only need two codes (1+3). Hmm.
|
93 |
|
|
10. In the tree reconstruction algorithm, Code = Code + Increment
|
94 |
|
|
only if BitLength(i) is not zero. (Pretty obvious.)
|
95 |
|
|
11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
|
96 |
|
|
12. Note: length code 284 can represent 227-258, but length code 285
|
97 |
|
|
really is 258. The last length deserves its own, short code
|
98 |
|
|
since it gets used a lot in very redundant files. The length
|
99 |
|
|
258 is special since 258 - 3 (the min match length) is 255.
|
100 |
|
|
13. The literal/length and distance code bit lengths are read as a
|
101 |
|
|
single stream of lengths. It is possible (and advantageous) for
|
102 |
|
|
a repeat code (16, 17, or 18) to go across the boundary between
|
103 |
|
|
the two sets of lengths.
|
104 |
|
|
*/
|
105 |
|
|
|
106 |
|
|
#ifdef RCSID
|
107 |
|
|
static char rcsid[] = "#Id: inflate.c,v 0.14 1993/06/10 13:27:04 jloup Exp #";
|
108 |
|
|
#endif
|
109 |
|
|
|
110 |
|
|
#ifndef STATIC
|
111 |
|
|
|
112 |
|
|
#if defined(STDC_HEADERS) || defined(HAVE_STDLIB_H)
|
113 |
|
|
# include <sys/types.h>
|
114 |
|
|
# include <stdlib.h>
|
115 |
|
|
#endif
|
116 |
|
|
|
117 |
|
|
#include "gzip.h"
|
118 |
|
|
#define STATIC
|
119 |
|
|
#endif /* !STATIC */
|
120 |
|
|
|
121 |
|
|
#define slide window
|
122 |
|
|
|
123 |
|
|
/* Huffman code lookup table entry--this entry is four bytes for machines
|
124 |
|
|
that have 16-bit pointers (e.g. PC's in the small or medium model).
|
125 |
|
|
Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16
|
126 |
|
|
means that v is a literal, 16 < e < 32 means that v is a pointer to
|
127 |
|
|
the next table, which codes e - 16 bits, and lastly e == 99 indicates
|
128 |
|
|
an unused code. If a code with e == 99 is looked up, this implies an
|
129 |
|
|
error in the data. */
|
130 |
|
|
struct huft {
|
131 |
|
|
uch e; /* number of extra bits or operation */
|
132 |
|
|
uch b; /* number of bits in this code or subcode */
|
133 |
|
|
union {
|
134 |
|
|
ush n; /* literal, length base, or distance base */
|
135 |
|
|
struct huft *t; /* pointer to next level of table */
|
136 |
|
|
} v;
|
137 |
|
|
};
|
138 |
|
|
|
139 |
|
|
|
140 |
|
|
/* Function prototypes */
|
141 |
|
|
STATIC int huft_build OF((unsigned *, unsigned, unsigned,
|
142 |
|
|
const ush *, const ush *, struct huft **, int *));
|
143 |
|
|
STATIC int huft_free OF((struct huft *));
|
144 |
|
|
STATIC int inflate_codes OF((struct huft *, struct huft *, int, int));
|
145 |
|
|
STATIC int inflate_stored OF((void));
|
146 |
|
|
STATIC int inflate_fixed OF((void));
|
147 |
|
|
STATIC int inflate_dynamic OF((void));
|
148 |
|
|
STATIC int inflate_block OF((int *));
|
149 |
|
|
STATIC int inflate OF((void));
|
150 |
|
|
|
151 |
|
|
|
152 |
|
|
/* The inflate algorithm uses a sliding 32 K byte window on the uncompressed
|
153 |
|
|
stream to find repeated byte strings. This is implemented here as a
|
154 |
|
|
circular buffer. The index is updated simply by incrementing and then
|
155 |
|
|
ANDing with 0x7fff (32K-1). */
|
156 |
|
|
/* It is left to other modules to supply the 32 K area. It is assumed
|
157 |
|
|
to be usable as if it were declared "uch slide[32768];" or as just
|
158 |
|
|
"uch *slide;" and then malloc'ed in the latter case. The definition
|
159 |
|
|
must be in unzip.h, included above. */
|
160 |
|
|
/* unsigned wp; current position in slide */
|
161 |
|
|
#define wp outcnt
|
162 |
|
|
#define flush_output(w) (wp=(w),flush_window())
|
163 |
|
|
|
164 |
|
|
/* Tables for deflate from PKZIP's appnote.txt. */
|
165 |
|
|
static const unsigned border[] = { /* Order of the bit length code lengths */
|
166 |
|
|
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
|
167 |
|
|
static const ush cplens[] = { /* Copy lengths for literal codes 257..285 */
|
168 |
|
|
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
|
169 |
|
|
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
|
170 |
|
|
/* note: see note #13 above about the 258 in this list. */
|
171 |
|
|
static const ush cplext[] = { /* Extra bits for literal codes 257..285 */
|
172 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
|
173 |
|
|
3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
|
174 |
|
|
static const ush cpdist[] = { /* Copy offsets for distance codes 0..29 */
|
175 |
|
|
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
|
176 |
|
|
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
|
177 |
|
|
8193, 12289, 16385, 24577};
|
178 |
|
|
static const ush cpdext[] = { /* Extra bits for distance codes */
|
179 |
|
|
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
|
180 |
|
|
7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
|
181 |
|
|
12, 12, 13, 13};
|
182 |
|
|
|
183 |
|
|
|
184 |
|
|
|
185 |
|
|
/* Macros for inflate() bit peeking and grabbing.
|
186 |
|
|
The usage is:
|
187 |
|
|
|
188 |
|
|
NEEDBITS(j)
|
189 |
|
|
x = b & mask_bits[j];
|
190 |
|
|
DUMPBITS(j)
|
191 |
|
|
|
192 |
|
|
where NEEDBITS makes sure that b has at least j bits in it, and
|
193 |
|
|
DUMPBITS removes the bits from b. The macros use the variable k
|
194 |
|
|
for the number of bits in b. Normally, b and k are register
|
195 |
|
|
variables for speed, and are initialized at the beginning of a
|
196 |
|
|
routine that uses these macros from a global bit buffer and count.
|
197 |
|
|
|
198 |
|
|
If we assume that EOB will be the longest code, then we will never
|
199 |
|
|
ask for bits with NEEDBITS that are beyond the end of the stream.
|
200 |
|
|
So, NEEDBITS should not read any more bytes than are needed to
|
201 |
|
|
meet the request. Then no bytes need to be "returned" to the buffer
|
202 |
|
|
at the end of the last block.
|
203 |
|
|
|
204 |
|
|
However, this assumption is not true for fixed blocks--the EOB code
|
205 |
|
|
is 7 bits, but the other literal/length codes can be 8 or 9 bits.
|
206 |
|
|
(The EOB code is shorter than other codes because fixed blocks are
|
207 |
|
|
generally short. So, while a block always has an EOB, many other
|
208 |
|
|
literal/length codes have a significantly lower probability of
|
209 |
|
|
showing up at all.) However, by making the first table have a
|
210 |
|
|
lookup of seven bits, the EOB code will be found in that first
|
211 |
|
|
lookup, and so will not require that too many bits be pulled from
|
212 |
|
|
the stream.
|
213 |
|
|
*/
|
214 |
|
|
|
215 |
|
|
STATIC ulg bb; /* bit buffer */
|
216 |
|
|
STATIC unsigned bk; /* bits in bit buffer */
|
217 |
|
|
|
218 |
|
|
STATIC const ush mask_bits[] = {
|
219 |
|
|
0x0000,
|
220 |
|
|
0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
|
221 |
|
|
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
|
222 |
|
|
};
|
223 |
|
|
|
224 |
|
|
#define NEXTBYTE() (uch)get_byte()
|
225 |
|
|
#define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}}
|
226 |
|
|
#define DUMPBITS(n) {b>>=(n);k-=(n);}
|
227 |
|
|
|
228 |
|
|
|
229 |
|
|
/*
|
230 |
|
|
Huffman code decoding is performed using a multi-level table lookup.
|
231 |
|
|
The fastest way to decode is to simply build a lookup table whose
|
232 |
|
|
size is determined by the longest code. However, the time it takes
|
233 |
|
|
to build this table can also be a factor if the data being decoded
|
234 |
|
|
is not very long. The most common codes are necessarily the
|
235 |
|
|
shortest codes, so those codes dominate the decoding time, and hence
|
236 |
|
|
the speed. The idea is you can have a shorter table that decodes the
|
237 |
|
|
shorter, more probable codes, and then point to subsidiary tables for
|
238 |
|
|
the longer codes. The time it costs to decode the longer codes is
|
239 |
|
|
then traded against the time it takes to make longer tables.
|
240 |
|
|
|
241 |
|
|
This results of this trade are in the variables lbits and dbits
|
242 |
|
|
below. lbits is the number of bits the first level table for literal/
|
243 |
|
|
length codes can decode in one step, and dbits is the same thing for
|
244 |
|
|
the distance codes. Subsequent tables are also less than or equal to
|
245 |
|
|
those sizes. These values may be adjusted either when all of the
|
246 |
|
|
codes are shorter than that, in which case the longest code length in
|
247 |
|
|
bits is used, or when the shortest code is *longer* than the requested
|
248 |
|
|
table size, in which case the length of the shortest code in bits is
|
249 |
|
|
used.
|
250 |
|
|
|
251 |
|
|
There are two different values for the two tables, since they code a
|
252 |
|
|
different number of possibilities each. The literal/length table
|
253 |
|
|
codes 286 possible values, or in a flat code, a little over eight
|
254 |
|
|
bits. The distance table codes 30 possible values, or a little less
|
255 |
|
|
than five bits, flat. The optimum values for speed end up being
|
256 |
|
|
about one bit more than those, so lbits is 8+1 and dbits is 5+1.
|
257 |
|
|
The optimum values may differ though from machine to machine, and
|
258 |
|
|
possibly even between compilers. Your mileage may vary.
|
259 |
|
|
*/
|
260 |
|
|
|
261 |
|
|
|
262 |
|
|
STATIC const int lbits = 9; /* bits in base literal/length lookup table */
|
263 |
|
|
STATIC const int dbits = 6; /* bits in base distance lookup table */
|
264 |
|
|
|
265 |
|
|
|
266 |
|
|
/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
|
267 |
|
|
#define BMAX 16 /* maximum bit length of any code (16 for explode) */
|
268 |
|
|
#define N_MAX 288 /* maximum number of codes in any set */
|
269 |
|
|
|
270 |
|
|
|
271 |
|
|
STATIC unsigned hufts; /* track memory usage */
|
272 |
|
|
|
273 |
|
|
|
274 |
|
|
STATIC int huft_build(b, n, s, d, e, t, m)
|
275 |
|
|
unsigned *b; /* code lengths in bits (all assumed <= BMAX) */
|
276 |
|
|
unsigned n; /* number of codes (assumed <= N_MAX) */
|
277 |
|
|
unsigned s; /* number of simple-valued codes (0..s-1) */
|
278 |
|
|
const ush *d; /* list of base values for non-simple codes */
|
279 |
|
|
const ush *e; /* list of extra bits for non-simple codes */
|
280 |
|
|
struct huft **t; /* result: starting table */
|
281 |
|
|
int *m; /* maximum lookup bits, returns actual */
|
282 |
|
|
/* Given a list of code lengths and a maximum table size, make a set of
|
283 |
|
|
tables to decode that set of codes. Return zero on success, one if
|
284 |
|
|
the given code set is incomplete (the tables are still built in this
|
285 |
|
|
case), two if the input is invalid (all zero length codes or an
|
286 |
|
|
oversubscribed set of lengths), and three if not enough memory. */
|
287 |
|
|
{
|
288 |
|
|
unsigned a; /* counter for codes of length k */
|
289 |
|
|
unsigned c[BMAX+1]; /* bit length count table */
|
290 |
|
|
unsigned f; /* i repeats in table every f entries */
|
291 |
|
|
int g; /* maximum code length */
|
292 |
|
|
int h; /* table level */
|
293 |
|
|
register unsigned i; /* counter, current code */
|
294 |
|
|
register unsigned j; /* counter */
|
295 |
|
|
register int k; /* number of bits in current code */
|
296 |
|
|
int l; /* bits per table (returned in m) */
|
297 |
|
|
register unsigned *p; /* pointer into c[], b[], or v[] */
|
298 |
|
|
register struct huft *q; /* points to current table */
|
299 |
|
|
struct huft r; /* table entry for structure assignment */
|
300 |
|
|
struct huft *u[BMAX]; /* table stack */
|
301 |
|
|
unsigned v[N_MAX]; /* values in order of bit length */
|
302 |
|
|
register int w; /* bits before this table == (l * h) */
|
303 |
|
|
unsigned x[BMAX+1]; /* bit offsets, then code stack */
|
304 |
|
|
unsigned *xp; /* pointer into x */
|
305 |
|
|
int y; /* number of dummy codes added */
|
306 |
|
|
unsigned z; /* number of entries in current table */
|
307 |
|
|
|
308 |
|
|
DEBG("huft1 ");
|
309 |
|
|
|
310 |
|
|
/* Generate counts for each bit length */
|
311 |
|
|
memzero(c, sizeof(c));
|
312 |
|
|
p = b; i = n;
|
313 |
|
|
do {
|
314 |
|
|
Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"),
|
315 |
|
|
n-i, *p));
|
316 |
|
|
c[*p]++; /* assume all entries <= BMAX */
|
317 |
|
|
p++; /* Can't combine with above line (Solaris bug) */
|
318 |
|
|
} while (--i);
|
319 |
|
|
if (c[0] == n) /* null input--all zero length codes */
|
320 |
|
|
{
|
321 |
|
|
*t = (struct huft *)NULL;
|
322 |
|
|
*m = 0;
|
323 |
|
|
return 0;
|
324 |
|
|
}
|
325 |
|
|
|
326 |
|
|
DEBG("huft2 ");
|
327 |
|
|
|
328 |
|
|
/* Find minimum and maximum length, bound *m by those */
|
329 |
|
|
l = *m;
|
330 |
|
|
for (j = 1; j <= BMAX; j++)
|
331 |
|
|
if (c[j])
|
332 |
|
|
break;
|
333 |
|
|
k = j; /* minimum code length */
|
334 |
|
|
if ((unsigned)l < j)
|
335 |
|
|
l = j;
|
336 |
|
|
for (i = BMAX; i; i--)
|
337 |
|
|
if (c[i])
|
338 |
|
|
break;
|
339 |
|
|
g = i; /* maximum code length */
|
340 |
|
|
if ((unsigned)l > i)
|
341 |
|
|
l = i;
|
342 |
|
|
*m = l;
|
343 |
|
|
|
344 |
|
|
DEBG("huft3 ");
|
345 |
|
|
|
346 |
|
|
/* Adjust last length count to fill out codes, if needed */
|
347 |
|
|
for (y = 1 << j; j < i; j++, y <<= 1)
|
348 |
|
|
if ((y -= c[j]) < 0)
|
349 |
|
|
return 2; /* bad input: more codes than bits */
|
350 |
|
|
if ((y -= c[i]) < 0)
|
351 |
|
|
return 2;
|
352 |
|
|
c[i] += y;
|
353 |
|
|
|
354 |
|
|
DEBG("huft4 ");
|
355 |
|
|
|
356 |
|
|
/* Generate starting offsets into the value table for each length */
|
357 |
|
|
x[1] = j = 0;
|
358 |
|
|
p = c + 1; xp = x + 2;
|
359 |
|
|
while (--i) { /* note that i == g from above */
|
360 |
|
|
*xp++ = (j += *p++);
|
361 |
|
|
}
|
362 |
|
|
|
363 |
|
|
DEBG("huft5 ");
|
364 |
|
|
|
365 |
|
|
/* Make a table of values in order of bit lengths */
|
366 |
|
|
p = b; i = 0;
|
367 |
|
|
do {
|
368 |
|
|
if ((j = *p++) != 0)
|
369 |
|
|
v[x[j]++] = i;
|
370 |
|
|
} while (++i < n);
|
371 |
|
|
|
372 |
|
|
DEBG("h6 ");
|
373 |
|
|
|
374 |
|
|
/* Generate the Huffman codes and for each, make the table entries */
|
375 |
|
|
x[0] = i = 0; /* first Huffman code is zero */
|
376 |
|
|
p = v; /* grab values in bit order */
|
377 |
|
|
h = -1; /* no tables yet--level -1 */
|
378 |
|
|
w = -l; /* bits decoded == (l * h) */
|
379 |
|
|
u[0] = (struct huft *)NULL; /* just to keep compilers happy */
|
380 |
|
|
q = (struct huft *)NULL; /* ditto */
|
381 |
|
|
z = 0; /* ditto */
|
382 |
|
|
DEBG("h6a ");
|
383 |
|
|
|
384 |
|
|
/* go through the bit lengths (k already is bits in shortest code) */
|
385 |
|
|
for (; k <= g; k++)
|
386 |
|
|
{
|
387 |
|
|
DEBG("h6b ");
|
388 |
|
|
a = c[k];
|
389 |
|
|
while (a--)
|
390 |
|
|
{
|
391 |
|
|
DEBG("h6b1 ");
|
392 |
|
|
/* here i is the Huffman code of length k bits for value *p */
|
393 |
|
|
/* make tables up to required level */
|
394 |
|
|
while (k > w + l)
|
395 |
|
|
{
|
396 |
|
|
DEBG1("1 ");
|
397 |
|
|
h++;
|
398 |
|
|
w += l; /* previous table always l bits */
|
399 |
|
|
|
400 |
|
|
/* compute minimum size table less than or equal to l bits */
|
401 |
|
|
z = (z = g - w) > (unsigned)l ? l : z; /* upper limit on table size */
|
402 |
|
|
if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
|
403 |
|
|
{ /* too few codes for k-w bit table */
|
404 |
|
|
DEBG1("2 ");
|
405 |
|
|
f -= a + 1; /* deduct codes from patterns left */
|
406 |
|
|
xp = c + k;
|
407 |
|
|
while (++j < z) /* try smaller tables up to z bits */
|
408 |
|
|
{
|
409 |
|
|
if ((f <<= 1) <= *++xp)
|
410 |
|
|
break; /* enough codes to use up j bits */
|
411 |
|
|
f -= *xp; /* else deduct codes from patterns */
|
412 |
|
|
}
|
413 |
|
|
}
|
414 |
|
|
DEBG1("3 ");
|
415 |
|
|
z = 1 << j; /* table entries for j-bit table */
|
416 |
|
|
|
417 |
|
|
/* allocate and link in new table */
|
418 |
|
|
if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
|
419 |
|
|
(struct huft *)NULL)
|
420 |
|
|
{
|
421 |
|
|
if (h)
|
422 |
|
|
huft_free(u[0]);
|
423 |
|
|
return 3; /* not enough memory */
|
424 |
|
|
}
|
425 |
|
|
DEBG1("4 ");
|
426 |
|
|
hufts += z + 1; /* track memory usage */
|
427 |
|
|
*t = q + 1; /* link to list for huft_free() */
|
428 |
|
|
*(t = &(q->v.t)) = (struct huft *)NULL;
|
429 |
|
|
u[h] = ++q; /* table starts after link */
|
430 |
|
|
|
431 |
|
|
DEBG1("5 ");
|
432 |
|
|
/* connect to last table, if there is one */
|
433 |
|
|
if (h)
|
434 |
|
|
{
|
435 |
|
|
x[h] = i; /* save pattern for backing up */
|
436 |
|
|
r.b = (uch)l; /* bits to dump before this table */
|
437 |
|
|
r.e = (uch)(16 + j); /* bits in this table */
|
438 |
|
|
r.v.t = q; /* pointer to this table */
|
439 |
|
|
j = i >> (w - l); /* (get around Turbo C bug) */
|
440 |
|
|
u[h-1][j] = r; /* connect to last table */
|
441 |
|
|
}
|
442 |
|
|
DEBG1("6 ");
|
443 |
|
|
}
|
444 |
|
|
DEBG("h6c ");
|
445 |
|
|
|
446 |
|
|
/* set up table entry in r */
|
447 |
|
|
r.b = (uch)(k - w);
|
448 |
|
|
if (p >= v + n)
|
449 |
|
|
r.e = 99; /* out of values--invalid code */
|
450 |
|
|
else if (*p < s)
|
451 |
|
|
{
|
452 |
|
|
r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */
|
453 |
|
|
r.v.n = (ush)(*p); /* simple code is just the value */
|
454 |
|
|
p++; /* one compiler does not like *p++ */
|
455 |
|
|
}
|
456 |
|
|
else
|
457 |
|
|
{
|
458 |
|
|
r.e = (uch)e[*p - s]; /* non-simple--look up in lists */
|
459 |
|
|
r.v.n = d[*p++ - s];
|
460 |
|
|
}
|
461 |
|
|
DEBG("h6d ");
|
462 |
|
|
|
463 |
|
|
/* fill code-like entries with r */
|
464 |
|
|
f = 1 << (k - w);
|
465 |
|
|
for (j = i >> w; j < z; j += f)
|
466 |
|
|
q[j] = r;
|
467 |
|
|
|
468 |
|
|
/* backwards increment the k-bit code i */
|
469 |
|
|
for (j = 1 << (k - 1); i & j; j >>= 1)
|
470 |
|
|
i ^= j;
|
471 |
|
|
i ^= j;
|
472 |
|
|
|
473 |
|
|
/* backup over finished tables */
|
474 |
|
|
while ((i & ((1 << w) - 1)) != x[h])
|
475 |
|
|
{
|
476 |
|
|
h--; /* don't need to update q */
|
477 |
|
|
w -= l;
|
478 |
|
|
}
|
479 |
|
|
DEBG("h6e ");
|
480 |
|
|
}
|
481 |
|
|
DEBG("h6f ");
|
482 |
|
|
}
|
483 |
|
|
|
484 |
|
|
DEBG("huft7 ");
|
485 |
|
|
|
486 |
|
|
/* Return true (1) if we were given an incomplete table */
|
487 |
|
|
return y != 0 && g != 1;
|
488 |
|
|
}
|
489 |
|
|
|
490 |
|
|
|
491 |
|
|
|
492 |
|
|
STATIC int huft_free(t)
|
493 |
|
|
struct huft *t; /* table to free */
|
494 |
|
|
/* Free the malloc'ed tables built by huft_build(), which makes a linked
|
495 |
|
|
list of the tables it made, with the links in a dummy first entry of
|
496 |
|
|
each table. */
|
497 |
|
|
{
|
498 |
|
|
register struct huft *p, *q;
|
499 |
|
|
|
500 |
|
|
|
501 |
|
|
/* Go through linked list, freeing from the malloced (t[-1]) address. */
|
502 |
|
|
p = t;
|
503 |
|
|
while (p != (struct huft *)NULL)
|
504 |
|
|
{
|
505 |
|
|
q = (--p)->v.t;
|
506 |
|
|
free((char*)p);
|
507 |
|
|
p = q;
|
508 |
|
|
}
|
509 |
|
|
return 0;
|
510 |
|
|
}
|
511 |
|
|
|
512 |
|
|
|
513 |
|
|
STATIC int inflate_codes(tl, td, bl, bd)
|
514 |
|
|
struct huft *tl, *td; /* literal/length and distance decoder tables */
|
515 |
|
|
int bl, bd; /* number of bits decoded by tl[] and td[] */
|
516 |
|
|
/* inflate (decompress) the codes in a deflated (compressed) block.
|
517 |
|
|
Return an error code or zero if it all goes ok. */
|
518 |
|
|
{
|
519 |
|
|
register unsigned e; /* table entry flag/number of extra bits */
|
520 |
|
|
unsigned n, d; /* length and index for copy */
|
521 |
|
|
unsigned w; /* current window position */
|
522 |
|
|
struct huft *t; /* pointer to table entry */
|
523 |
|
|
unsigned ml, md; /* masks for bl and bd bits */
|
524 |
|
|
register ulg b; /* bit buffer */
|
525 |
|
|
register unsigned k; /* number of bits in bit buffer */
|
526 |
|
|
|
527 |
|
|
|
528 |
|
|
/* make local copies of globals */
|
529 |
|
|
b = bb; /* initialize bit buffer */
|
530 |
|
|
k = bk;
|
531 |
|
|
w = wp; /* initialize window position */
|
532 |
|
|
|
533 |
|
|
/* inflate the coded data */
|
534 |
|
|
ml = mask_bits[bl]; /* precompute masks for speed */
|
535 |
|
|
md = mask_bits[bd];
|
536 |
|
|
for (;;) /* do until end of block */
|
537 |
|
|
{
|
538 |
|
|
NEEDBITS((unsigned)bl)
|
539 |
|
|
if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
|
540 |
|
|
do {
|
541 |
|
|
if (e == 99)
|
542 |
|
|
return 1;
|
543 |
|
|
DUMPBITS(t->b)
|
544 |
|
|
e -= 16;
|
545 |
|
|
NEEDBITS(e)
|
546 |
|
|
} while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
|
547 |
|
|
DUMPBITS(t->b)
|
548 |
|
|
if (e == 16) /* then it's a literal */
|
549 |
|
|
{
|
550 |
|
|
slide[w++] = (uch)t->v.n;
|
551 |
|
|
Tracevv((stderr, "%c", slide[w-1]));
|
552 |
|
|
if (w == WSIZE)
|
553 |
|
|
{
|
554 |
|
|
flush_output(w);
|
555 |
|
|
w = 0;
|
556 |
|
|
}
|
557 |
|
|
}
|
558 |
|
|
else /* it's an EOB or a length */
|
559 |
|
|
{
|
560 |
|
|
/* exit if end of block */
|
561 |
|
|
if (e == 15)
|
562 |
|
|
break;
|
563 |
|
|
|
564 |
|
|
/* get length of block to copy */
|
565 |
|
|
NEEDBITS(e)
|
566 |
|
|
n = t->v.n + ((unsigned)b & mask_bits[e]);
|
567 |
|
|
DUMPBITS(e);
|
568 |
|
|
|
569 |
|
|
/* decode distance of block to copy */
|
570 |
|
|
NEEDBITS((unsigned)bd)
|
571 |
|
|
if ((e = (t = td + ((unsigned)b & md))->e) > 16)
|
572 |
|
|
do {
|
573 |
|
|
if (e == 99)
|
574 |
|
|
return 1;
|
575 |
|
|
DUMPBITS(t->b)
|
576 |
|
|
e -= 16;
|
577 |
|
|
NEEDBITS(e)
|
578 |
|
|
} while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
|
579 |
|
|
DUMPBITS(t->b)
|
580 |
|
|
NEEDBITS(e)
|
581 |
|
|
d = w - t->v.n - ((unsigned)b & mask_bits[e]);
|
582 |
|
|
DUMPBITS(e)
|
583 |
|
|
Tracevv((stderr,"\\[%d,%d]", w-d, n));
|
584 |
|
|
|
585 |
|
|
/* do the copy */
|
586 |
|
|
do {
|
587 |
|
|
n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
|
588 |
|
|
#if !defined(NOMEMCPY) && !defined(DEBUG)
|
589 |
|
|
if (w - d >= e) /* (this test assumes unsigned comparison) */
|
590 |
|
|
{
|
591 |
|
|
memcpy(slide + w, slide + d, e);
|
592 |
|
|
w += e;
|
593 |
|
|
d += e;
|
594 |
|
|
}
|
595 |
|
|
else /* do it slow to avoid memcpy() overlap */
|
596 |
|
|
#endif /* !NOMEMCPY */
|
597 |
|
|
do {
|
598 |
|
|
slide[w++] = slide[d++];
|
599 |
|
|
Tracevv((stderr, "%c", slide[w-1]));
|
600 |
|
|
} while (--e);
|
601 |
|
|
if (w == WSIZE)
|
602 |
|
|
{
|
603 |
|
|
flush_output(w);
|
604 |
|
|
w = 0;
|
605 |
|
|
}
|
606 |
|
|
} while (n);
|
607 |
|
|
}
|
608 |
|
|
}
|
609 |
|
|
|
610 |
|
|
|
611 |
|
|
/* restore the globals from the locals */
|
612 |
|
|
wp = w; /* restore global window pointer */
|
613 |
|
|
bb = b; /* restore global bit buffer */
|
614 |
|
|
bk = k;
|
615 |
|
|
|
616 |
|
|
/* done */
|
617 |
|
|
return 0;
|
618 |
|
|
}
|
619 |
|
|
|
620 |
|
|
|
621 |
|
|
|
622 |
|
|
STATIC int inflate_stored()
|
623 |
|
|
/* "decompress" an inflated type 0 (stored) block. */
|
624 |
|
|
{
|
625 |
|
|
unsigned n; /* number of bytes in block */
|
626 |
|
|
unsigned w; /* current window position */
|
627 |
|
|
register ulg b; /* bit buffer */
|
628 |
|
|
register unsigned k; /* number of bits in bit buffer */
|
629 |
|
|
|
630 |
|
|
DEBG("<stor");
|
631 |
|
|
|
632 |
|
|
/* make local copies of globals */
|
633 |
|
|
b = bb; /* initialize bit buffer */
|
634 |
|
|
k = bk;
|
635 |
|
|
w = wp; /* initialize window position */
|
636 |
|
|
|
637 |
|
|
|
638 |
|
|
/* go to byte boundary */
|
639 |
|
|
n = k & 7;
|
640 |
|
|
DUMPBITS(n);
|
641 |
|
|
|
642 |
|
|
|
643 |
|
|
/* get the length and its complement */
|
644 |
|
|
NEEDBITS(16)
|
645 |
|
|
n = ((unsigned)b & 0xffff);
|
646 |
|
|
DUMPBITS(16)
|
647 |
|
|
NEEDBITS(16)
|
648 |
|
|
if (n != (unsigned)((~b) & 0xffff))
|
649 |
|
|
return 1; /* error in compressed data */
|
650 |
|
|
DUMPBITS(16)
|
651 |
|
|
|
652 |
|
|
|
653 |
|
|
/* read and output the compressed data */
|
654 |
|
|
while (n--)
|
655 |
|
|
{
|
656 |
|
|
NEEDBITS(8)
|
657 |
|
|
slide[w++] = (uch)b;
|
658 |
|
|
if (w == WSIZE)
|
659 |
|
|
{
|
660 |
|
|
flush_output(w);
|
661 |
|
|
w = 0;
|
662 |
|
|
}
|
663 |
|
|
DUMPBITS(8)
|
664 |
|
|
}
|
665 |
|
|
|
666 |
|
|
|
667 |
|
|
/* restore the globals from the locals */
|
668 |
|
|
wp = w; /* restore global window pointer */
|
669 |
|
|
bb = b; /* restore global bit buffer */
|
670 |
|
|
bk = k;
|
671 |
|
|
|
672 |
|
|
DEBG(">");
|
673 |
|
|
return 0;
|
674 |
|
|
}
|
675 |
|
|
|
676 |
|
|
|
677 |
|
|
|
678 |
|
|
STATIC int inflate_fixed()
|
679 |
|
|
/* decompress an inflated type 1 (fixed Huffman codes) block. We should
|
680 |
|
|
either replace this with a custom decoder, or at least precompute the
|
681 |
|
|
Huffman tables. */
|
682 |
|
|
{
|
683 |
|
|
int i; /* temporary variable */
|
684 |
|
|
struct huft *tl; /* literal/length code table */
|
685 |
|
|
struct huft *td; /* distance code table */
|
686 |
|
|
int bl; /* lookup bits for tl */
|
687 |
|
|
int bd; /* lookup bits for td */
|
688 |
|
|
unsigned l[288]; /* length list for huft_build */
|
689 |
|
|
|
690 |
|
|
DEBG("<fix");
|
691 |
|
|
|
692 |
|
|
/* set up literal table */
|
693 |
|
|
for (i = 0; i < 144; i++)
|
694 |
|
|
l[i] = 8;
|
695 |
|
|
for (; i < 256; i++)
|
696 |
|
|
l[i] = 9;
|
697 |
|
|
for (; i < 280; i++)
|
698 |
|
|
l[i] = 7;
|
699 |
|
|
for (; i < 288; i++) /* make a complete, but wrong code set */
|
700 |
|
|
l[i] = 8;
|
701 |
|
|
bl = 7;
|
702 |
|
|
if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0)
|
703 |
|
|
return i;
|
704 |
|
|
|
705 |
|
|
|
706 |
|
|
/* set up distance table */
|
707 |
|
|
for (i = 0; i < 30; i++) /* make an incomplete code set */
|
708 |
|
|
l[i] = 5;
|
709 |
|
|
bd = 5;
|
710 |
|
|
if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
|
711 |
|
|
{
|
712 |
|
|
huft_free(tl);
|
713 |
|
|
|
714 |
|
|
DEBG(">");
|
715 |
|
|
return i;
|
716 |
|
|
}
|
717 |
|
|
|
718 |
|
|
|
719 |
|
|
/* decompress until an end-of-block code */
|
720 |
|
|
if (inflate_codes(tl, td, bl, bd))
|
721 |
|
|
return 1;
|
722 |
|
|
|
723 |
|
|
|
724 |
|
|
/* free the decoding tables, return */
|
725 |
|
|
huft_free(tl);
|
726 |
|
|
huft_free(td);
|
727 |
|
|
return 0;
|
728 |
|
|
}
|
729 |
|
|
|
730 |
|
|
|
731 |
|
|
|
732 |
|
|
STATIC int inflate_dynamic()
|
733 |
|
|
/* decompress an inflated type 2 (dynamic Huffman codes) block. */
|
734 |
|
|
{
|
735 |
|
|
int i; /* temporary variables */
|
736 |
|
|
unsigned j;
|
737 |
|
|
unsigned l; /* last length */
|
738 |
|
|
unsigned m; /* mask for bit lengths table */
|
739 |
|
|
unsigned n; /* number of lengths to get */
|
740 |
|
|
struct huft *tl; /* literal/length code table */
|
741 |
|
|
struct huft *td; /* distance code table */
|
742 |
|
|
int bl; /* lookup bits for tl */
|
743 |
|
|
int bd; /* lookup bits for td */
|
744 |
|
|
unsigned nb; /* number of bit length codes */
|
745 |
|
|
unsigned nl; /* number of literal/length codes */
|
746 |
|
|
unsigned nd; /* number of distance codes */
|
747 |
|
|
#ifdef PKZIP_BUG_WORKAROUND
|
748 |
|
|
unsigned ll[288+32]; /* literal/length and distance code lengths */
|
749 |
|
|
#else
|
750 |
|
|
unsigned ll[286+30]; /* literal/length and distance code lengths */
|
751 |
|
|
#endif
|
752 |
|
|
register ulg b; /* bit buffer */
|
753 |
|
|
register unsigned k; /* number of bits in bit buffer */
|
754 |
|
|
|
755 |
|
|
DEBG("<dyn");
|
756 |
|
|
|
757 |
|
|
/* make local bit buffer */
|
758 |
|
|
b = bb;
|
759 |
|
|
k = bk;
|
760 |
|
|
|
761 |
|
|
|
762 |
|
|
/* read in table lengths */
|
763 |
|
|
NEEDBITS(5)
|
764 |
|
|
nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */
|
765 |
|
|
DUMPBITS(5)
|
766 |
|
|
NEEDBITS(5)
|
767 |
|
|
nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */
|
768 |
|
|
DUMPBITS(5)
|
769 |
|
|
NEEDBITS(4)
|
770 |
|
|
nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */
|
771 |
|
|
DUMPBITS(4)
|
772 |
|
|
#ifdef PKZIP_BUG_WORKAROUND
|
773 |
|
|
if (nl > 288 || nd > 32)
|
774 |
|
|
#else
|
775 |
|
|
if (nl > 286 || nd > 30)
|
776 |
|
|
#endif
|
777 |
|
|
return 1; /* bad lengths */
|
778 |
|
|
|
779 |
|
|
DEBG("dyn1 ");
|
780 |
|
|
|
781 |
|
|
/* read in bit-length-code lengths */
|
782 |
|
|
for (j = 0; j < nb; j++)
|
783 |
|
|
{
|
784 |
|
|
NEEDBITS(3)
|
785 |
|
|
ll[border[j]] = (unsigned)b & 7;
|
786 |
|
|
DUMPBITS(3)
|
787 |
|
|
}
|
788 |
|
|
for (; j < 19; j++)
|
789 |
|
|
ll[border[j]] = 0;
|
790 |
|
|
|
791 |
|
|
DEBG("dyn2 ");
|
792 |
|
|
|
793 |
|
|
/* build decoding table for trees--single level, 7 bit lookup */
|
794 |
|
|
bl = 7;
|
795 |
|
|
if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
|
796 |
|
|
{
|
797 |
|
|
if (i == 1)
|
798 |
|
|
huft_free(tl);
|
799 |
|
|
return i; /* incomplete code set */
|
800 |
|
|
}
|
801 |
|
|
|
802 |
|
|
DEBG("dyn3 ");
|
803 |
|
|
|
804 |
|
|
/* read in literal and distance code lengths */
|
805 |
|
|
n = nl + nd;
|
806 |
|
|
m = mask_bits[bl];
|
807 |
|
|
i = l = 0;
|
808 |
|
|
while ((unsigned)i < n)
|
809 |
|
|
{
|
810 |
|
|
NEEDBITS((unsigned)bl)
|
811 |
|
|
j = (td = tl + ((unsigned)b & m))->b;
|
812 |
|
|
DUMPBITS(j)
|
813 |
|
|
j = td->v.n;
|
814 |
|
|
if (j < 16) /* length of code in bits (0..15) */
|
815 |
|
|
ll[i++] = l = j; /* save last length in l */
|
816 |
|
|
else if (j == 16) /* repeat last length 3 to 6 times */
|
817 |
|
|
{
|
818 |
|
|
NEEDBITS(2)
|
819 |
|
|
j = 3 + ((unsigned)b & 3);
|
820 |
|
|
DUMPBITS(2)
|
821 |
|
|
if ((unsigned)i + j > n)
|
822 |
|
|
return 1;
|
823 |
|
|
while (j--)
|
824 |
|
|
ll[i++] = l;
|
825 |
|
|
}
|
826 |
|
|
else if (j == 17) /* 3 to 10 zero length codes */
|
827 |
|
|
{
|
828 |
|
|
NEEDBITS(3)
|
829 |
|
|
j = 3 + ((unsigned)b & 7);
|
830 |
|
|
DUMPBITS(3)
|
831 |
|
|
if ((unsigned)i + j > n)
|
832 |
|
|
return 1;
|
833 |
|
|
while (j--)
|
834 |
|
|
ll[i++] = 0;
|
835 |
|
|
l = 0;
|
836 |
|
|
}
|
837 |
|
|
else /* j == 18: 11 to 138 zero length codes */
|
838 |
|
|
{
|
839 |
|
|
NEEDBITS(7)
|
840 |
|
|
j = 11 + ((unsigned)b & 0x7f);
|
841 |
|
|
DUMPBITS(7)
|
842 |
|
|
if ((unsigned)i + j > n)
|
843 |
|
|
return 1;
|
844 |
|
|
while (j--)
|
845 |
|
|
ll[i++] = 0;
|
846 |
|
|
l = 0;
|
847 |
|
|
}
|
848 |
|
|
}
|
849 |
|
|
|
850 |
|
|
DEBG("dyn4 ");
|
851 |
|
|
|
852 |
|
|
/* free decoding table for trees */
|
853 |
|
|
huft_free(tl);
|
854 |
|
|
|
855 |
|
|
DEBG("dyn5 ");
|
856 |
|
|
|
857 |
|
|
/* restore the global bit buffer */
|
858 |
|
|
bb = b;
|
859 |
|
|
bk = k;
|
860 |
|
|
|
861 |
|
|
DEBG("dyn5a ");
|
862 |
|
|
|
863 |
|
|
/* build the decoding tables for literal/length and distance codes */
|
864 |
|
|
bl = lbits;
|
865 |
|
|
if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
|
866 |
|
|
{
|
867 |
|
|
DEBG("dyn5b ");
|
868 |
|
|
if (i == 1) {
|
869 |
|
|
error(" incomplete literal tree\n");
|
870 |
|
|
huft_free(tl);
|
871 |
|
|
}
|
872 |
|
|
return i; /* incomplete code set */
|
873 |
|
|
}
|
874 |
|
|
DEBG("dyn5c ");
|
875 |
|
|
bd = dbits;
|
876 |
|
|
if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
|
877 |
|
|
{
|
878 |
|
|
DEBG("dyn5d ");
|
879 |
|
|
if (i == 1) {
|
880 |
|
|
error(" incomplete distance tree\n");
|
881 |
|
|
#ifdef PKZIP_BUG_WORKAROUND
|
882 |
|
|
i = 0;
|
883 |
|
|
}
|
884 |
|
|
#else
|
885 |
|
|
huft_free(td);
|
886 |
|
|
}
|
887 |
|
|
huft_free(tl);
|
888 |
|
|
return i; /* incomplete code set */
|
889 |
|
|
#endif
|
890 |
|
|
}
|
891 |
|
|
|
892 |
|
|
DEBG("dyn6 ");
|
893 |
|
|
|
894 |
|
|
/* decompress until an end-of-block code */
|
895 |
|
|
if (inflate_codes(tl, td, bl, bd))
|
896 |
|
|
return 1;
|
897 |
|
|
|
898 |
|
|
DEBG("dyn7 ");
|
899 |
|
|
|
900 |
|
|
/* free the decoding tables, return */
|
901 |
|
|
huft_free(tl);
|
902 |
|
|
huft_free(td);
|
903 |
|
|
|
904 |
|
|
DEBG(">");
|
905 |
|
|
return 0;
|
906 |
|
|
}
|
907 |
|
|
|
908 |
|
|
|
909 |
|
|
|
910 |
|
|
STATIC int inflate_block(e)
|
911 |
|
|
int *e; /* last block flag */
|
912 |
|
|
/* decompress an inflated block */
|
913 |
|
|
{
|
914 |
|
|
unsigned t; /* block type */
|
915 |
|
|
register ulg b; /* bit buffer */
|
916 |
|
|
register unsigned k; /* number of bits in bit buffer */
|
917 |
|
|
|
918 |
|
|
DEBG("<blk");
|
919 |
|
|
|
920 |
|
|
/* make local bit buffer */
|
921 |
|
|
b = bb;
|
922 |
|
|
k = bk;
|
923 |
|
|
|
924 |
|
|
|
925 |
|
|
/* read in last block bit */
|
926 |
|
|
NEEDBITS(1)
|
927 |
|
|
*e = (int)b & 1;
|
928 |
|
|
DUMPBITS(1)
|
929 |
|
|
|
930 |
|
|
|
931 |
|
|
/* read in block type */
|
932 |
|
|
NEEDBITS(2)
|
933 |
|
|
t = (unsigned)b & 3;
|
934 |
|
|
DUMPBITS(2)
|
935 |
|
|
|
936 |
|
|
|
937 |
|
|
/* restore the global bit buffer */
|
938 |
|
|
bb = b;
|
939 |
|
|
bk = k;
|
940 |
|
|
|
941 |
|
|
/* inflate that block type */
|
942 |
|
|
if (t == 2)
|
943 |
|
|
return inflate_dynamic();
|
944 |
|
|
if (t == 0)
|
945 |
|
|
return inflate_stored();
|
946 |
|
|
if (t == 1)
|
947 |
|
|
return inflate_fixed();
|
948 |
|
|
|
949 |
|
|
DEBG(">");
|
950 |
|
|
|
951 |
|
|
/* bad block type */
|
952 |
|
|
return 2;
|
953 |
|
|
}
|
954 |
|
|
|
955 |
|
|
|
956 |
|
|
|
957 |
|
|
STATIC int inflate()
|
958 |
|
|
/* decompress an inflated entry */
|
959 |
|
|
{
|
960 |
|
|
int e; /* last block flag */
|
961 |
|
|
int r; /* result code */
|
962 |
|
|
unsigned h; /* maximum struct huft's malloc'ed */
|
963 |
|
|
void *ptr;
|
964 |
|
|
|
965 |
|
|
/* initialize window, bit buffer */
|
966 |
|
|
wp = 0;
|
967 |
|
|
bk = 0;
|
968 |
|
|
bb = 0;
|
969 |
|
|
|
970 |
|
|
|
971 |
|
|
/* decompress until the last block */
|
972 |
|
|
h = 0;
|
973 |
|
|
do {
|
974 |
|
|
hufts = 0;
|
975 |
|
|
gzip_mark(&ptr);
|
976 |
|
|
if ((r = inflate_block(&e)) != 0) {
|
977 |
|
|
gzip_release(&ptr);
|
978 |
|
|
return r;
|
979 |
|
|
}
|
980 |
|
|
gzip_release(&ptr);
|
981 |
|
|
if (hufts > h)
|
982 |
|
|
h = hufts;
|
983 |
|
|
} while (!e);
|
984 |
|
|
|
985 |
|
|
/* Undo too much lookahead. The next read will be byte aligned so we
|
986 |
|
|
* can discard unused bits in the last meaningful byte.
|
987 |
|
|
*/
|
988 |
|
|
while (bk >= 8) {
|
989 |
|
|
bk -= 8;
|
990 |
|
|
inptr--;
|
991 |
|
|
}
|
992 |
|
|
|
993 |
|
|
/* flush out slide */
|
994 |
|
|
flush_output(wp);
|
995 |
|
|
|
996 |
|
|
|
997 |
|
|
/* return success */
|
998 |
|
|
#ifdef DEBUG
|
999 |
|
|
fprintf(stderr, "<%u> ", h);
|
1000 |
|
|
#endif /* DEBUG */
|
1001 |
|
|
return 0;
|
1002 |
|
|
}
|
1003 |
|
|
|
1004 |
|
|
/**********************************************************************
|
1005 |
|
|
*
|
1006 |
|
|
* The following are support routines for inflate.c
|
1007 |
|
|
*
|
1008 |
|
|
**********************************************************************/
|
1009 |
|
|
|
1010 |
|
|
static ulg crc_32_tab[256];
|
1011 |
|
|
static ulg crc; /* initialized in makecrc() so it'll reside in bss */
|
1012 |
|
|
#define CRC_VALUE (crc ^ 0xffffffffUL)
|
1013 |
|
|
|
1014 |
|
|
/*
|
1015 |
|
|
* Code to compute the CRC-32 table. Borrowed from
|
1016 |
|
|
* gzip-1.0.3/makecrc.c.
|
1017 |
|
|
*/
|
1018 |
|
|
|
1019 |
|
|
static void
|
1020 |
|
|
makecrc(void)
|
1021 |
|
|
{
|
1022 |
|
|
/* Not copyrighted 1990 Mark Adler */
|
1023 |
|
|
|
1024 |
|
|
unsigned long c; /* crc shift register */
|
1025 |
|
|
unsigned long e; /* polynomial exclusive-or pattern */
|
1026 |
|
|
int i; /* counter for all possible eight bit values */
|
1027 |
|
|
int k; /* byte being shifted into crc apparatus */
|
1028 |
|
|
|
1029 |
|
|
/* terms of polynomial defining this crc (except x^32): */
|
1030 |
|
|
static const int p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
|
1031 |
|
|
|
1032 |
|
|
/* Make exclusive-or pattern from polynomial */
|
1033 |
|
|
e = 0;
|
1034 |
|
|
for (i = 0; i < sizeof(p)/sizeof(int); i++)
|
1035 |
|
|
e |= 1L << (31 - p[i]);
|
1036 |
|
|
|
1037 |
|
|
crc_32_tab[0] = 0;
|
1038 |
|
|
|
1039 |
|
|
for (i = 1; i < 256; i++)
|
1040 |
|
|
{
|
1041 |
|
|
c = 0;
|
1042 |
|
|
for (k = i | 256; k != 1; k >>= 1)
|
1043 |
|
|
{
|
1044 |
|
|
c = c & 1 ? (c >> 1) ^ e : c >> 1;
|
1045 |
|
|
if (k & 1)
|
1046 |
|
|
c ^= e;
|
1047 |
|
|
}
|
1048 |
|
|
crc_32_tab[i] = c;
|
1049 |
|
|
}
|
1050 |
|
|
|
1051 |
|
|
/* this is initialized here so this code could reside in ROM */
|
1052 |
|
|
crc = (ulg)0xffffffffUL; /* shift register contents */
|
1053 |
|
|
}
|
1054 |
|
|
|
1055 |
|
|
/* gzip flag byte */
|
1056 |
|
|
#define ASCII_FLAG 0x01 /* bit 0 set: file probably ASCII text */
|
1057 |
|
|
#define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
|
1058 |
|
|
#define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
|
1059 |
|
|
#define ORIG_NAME 0x08 /* bit 3 set: original file name present */
|
1060 |
|
|
#define COMMENT 0x10 /* bit 4 set: file comment present */
|
1061 |
|
|
#define ENCRYPTED 0x20 /* bit 5 set: file is encrypted */
|
1062 |
|
|
#define RESERVED 0xC0 /* bit 6,7: reserved */
|
1063 |
|
|
|
1064 |
|
|
/*
|
1065 |
|
|
* Do the uncompression!
|
1066 |
|
|
*/
|
1067 |
|
|
static int gunzip(void)
|
1068 |
|
|
{
|
1069 |
|
|
uch flags;
|
1070 |
|
|
unsigned char magic[2]; /* magic header */
|
1071 |
|
|
char method;
|
1072 |
|
|
ulg orig_crc = 0; /* original crc */
|
1073 |
|
|
ulg orig_len = 0; /* original uncompressed length */
|
1074 |
|
|
int res;
|
1075 |
|
|
|
1076 |
|
|
magic[0] = (unsigned char)get_byte();
|
1077 |
|
|
magic[1] = (unsigned char)get_byte();
|
1078 |
|
|
method = (unsigned char)get_byte();
|
1079 |
|
|
|
1080 |
|
|
if (magic[0] != 037 ||
|
1081 |
|
|
((magic[1] != 0213) && (magic[1] != 0236))) {
|
1082 |
|
|
error("bad gzip magic numbers");
|
1083 |
|
|
return -1;
|
1084 |
|
|
}
|
1085 |
|
|
|
1086 |
|
|
/* We only support method #8, DEFLATED */
|
1087 |
|
|
if (method != 8) {
|
1088 |
|
|
error("internal error, invalid method");
|
1089 |
|
|
return -1;
|
1090 |
|
|
}
|
1091 |
|
|
|
1092 |
|
|
flags = (uch)get_byte();
|
1093 |
|
|
if ((flags & ENCRYPTED) != 0) {
|
1094 |
|
|
error("Input is encrypted\n");
|
1095 |
|
|
return -1;
|
1096 |
|
|
}
|
1097 |
|
|
if ((flags & CONTINUATION) != 0) {
|
1098 |
|
|
error("Multi part input\n");
|
1099 |
|
|
return -1;
|
1100 |
|
|
}
|
1101 |
|
|
if ((flags & RESERVED) != 0) {
|
1102 |
|
|
error("Input has invalid flags\n");
|
1103 |
|
|
return -1;
|
1104 |
|
|
}
|
1105 |
|
|
(ulg)get_byte(); /* Get timestamp */
|
1106 |
|
|
((ulg)get_byte()) << 8;
|
1107 |
|
|
((ulg)get_byte()) << 16;
|
1108 |
|
|
((ulg)get_byte()) << 24;
|
1109 |
|
|
|
1110 |
|
|
(void)get_byte(); /* Ignore extra flags for the moment */
|
1111 |
|
|
(void)get_byte(); /* Ignore OS type for the moment */
|
1112 |
|
|
|
1113 |
|
|
if ((flags & EXTRA_FIELD) != 0) {
|
1114 |
|
|
unsigned len = (unsigned)get_byte();
|
1115 |
|
|
len |= ((unsigned)get_byte())<<8;
|
1116 |
|
|
while (len--) (void)get_byte();
|
1117 |
|
|
}
|
1118 |
|
|
|
1119 |
|
|
/* Get original file name if it was truncated */
|
1120 |
|
|
if ((flags & ORIG_NAME) != 0) {
|
1121 |
|
|
/* Discard the old name */
|
1122 |
|
|
while (get_byte() != 0) /* null */ ;
|
1123 |
|
|
}
|
1124 |
|
|
|
1125 |
|
|
/* Discard file comment if any */
|
1126 |
|
|
if ((flags & COMMENT) != 0) {
|
1127 |
|
|
while (get_byte() != 0) /* null */ ;
|
1128 |
|
|
}
|
1129 |
|
|
|
1130 |
|
|
/* Decompress */
|
1131 |
|
|
if ((res = inflate())) {
|
1132 |
|
|
switch (res) {
|
1133 |
|
|
case 0:
|
1134 |
|
|
break;
|
1135 |
|
|
case 1:
|
1136 |
|
|
error("invalid compressed format (err=1)");
|
1137 |
|
|
break;
|
1138 |
|
|
case 2:
|
1139 |
|
|
error("invalid compressed format (err=2)");
|
1140 |
|
|
break;
|
1141 |
|
|
case 3:
|
1142 |
|
|
error("out of memory");
|
1143 |
|
|
break;
|
1144 |
|
|
default:
|
1145 |
|
|
error("invalid compressed format (other)");
|
1146 |
|
|
}
|
1147 |
|
|
return -1;
|
1148 |
|
|
}
|
1149 |
|
|
|
1150 |
|
|
/* Get the crc and original length */
|
1151 |
|
|
/* crc32 (see algorithm.doc)
|
1152 |
|
|
* uncompressed input size modulo 2^32
|
1153 |
|
|
*/
|
1154 |
|
|
orig_crc = (ulg) get_byte();
|
1155 |
|
|
orig_crc |= (ulg) get_byte() << 8;
|
1156 |
|
|
orig_crc |= (ulg) get_byte() << 16;
|
1157 |
|
|
orig_crc |= (ulg) get_byte() << 24;
|
1158 |
|
|
|
1159 |
|
|
orig_len = (ulg) get_byte();
|
1160 |
|
|
orig_len |= (ulg) get_byte() << 8;
|
1161 |
|
|
orig_len |= (ulg) get_byte() << 16;
|
1162 |
|
|
orig_len |= (ulg) get_byte() << 24;
|
1163 |
|
|
|
1164 |
|
|
/* Validate decompression */
|
1165 |
|
|
if (orig_crc != CRC_VALUE) {
|
1166 |
|
|
error("crc error");
|
1167 |
|
|
return -1;
|
1168 |
|
|
}
|
1169 |
|
|
if (orig_len != bytes_out) {
|
1170 |
|
|
error("length error");
|
1171 |
|
|
return -1;
|
1172 |
|
|
}
|
1173 |
|
|
return 0;
|
1174 |
|
|
}
|
1175 |
|
|
|
1176 |
|
|
|