OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [lib/] [zlib_deflate/] [deftree.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1275 phoenix
/* +++ trees.c */
2
/* trees.c -- output deflated data using Huffman coding
3
 * Copyright (C) 1995-1996 Jean-loup Gailly
4
 * For conditions of distribution and use, see copyright notice in zlib.h
5
 */
6
 
7
/*
8
 *  ALGORITHM
9
 *
10
 *      The "deflation" process uses several Huffman trees. The more
11
 *      common source values are represented by shorter bit sequences.
12
 *
13
 *      Each code tree is stored in a compressed form which is itself
14
 * a Huffman encoding of the lengths of all the code strings (in
15
 * ascending order by source values).  The actual code strings are
16
 * reconstructed from the lengths in the inflate process, as described
17
 * in the deflate specification.
18
 *
19
 *  REFERENCES
20
 *
21
 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22
 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23
 *
24
 *      Storer, James A.
25
 *          Data Compression:  Methods and Theory, pp. 49-50.
26
 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
27
 *
28
 *      Sedgewick, R.
29
 *          Algorithms, p290.
30
 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
31
 */
32
 
33
/* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
34
 
35
/* #include "deflate.h" */
36
 
37
#include <linux/zutil.h>
38
#include "defutil.h"
39
 
40
#ifdef DEBUG_ZLIB
41
#  include <ctype.h>
42
#endif
43
 
44
/* ===========================================================================
45
 * Constants
46
 */
47
 
48
#define MAX_BL_BITS 7
49
/* Bit length codes must not exceed MAX_BL_BITS bits */
50
 
51
#define END_BLOCK 256
52
/* end of block literal code */
53
 
54
#define REP_3_6      16
55
/* repeat previous bit length 3-6 times (2 bits of repeat count) */
56
 
57
#define REPZ_3_10    17
58
/* repeat a zero length 3-10 times  (3 bits of repeat count) */
59
 
60
#define REPZ_11_138  18
61
/* repeat a zero length 11-138 times  (7 bits of repeat count) */
62
 
63
local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
64
   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
65
 
66
local const int extra_dbits[D_CODES] /* extra bits for each distance code */
67
   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
68
 
69
local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
70
   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
71
 
72
local const uch bl_order[BL_CODES]
73
   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
74
/* The lengths of the bit length codes are sent in order of decreasing
75
 * probability, to avoid transmitting the lengths for unused bit length codes.
76
 */
77
 
78
#define Buf_size (8 * 2*sizeof(char))
79
/* Number of bits used within bi_buf. (bi_buf might be implemented on
80
 * more than 16 bits on some systems.)
81
 */
82
 
83
/* ===========================================================================
84
 * Local data. These are initialized only once.
85
 */
86
 
87
local ct_data static_ltree[L_CODES+2];
88
/* The static literal tree. Since the bit lengths are imposed, there is no
89
 * need for the L_CODES extra codes used during heap construction. However
90
 * The codes 286 and 287 are needed to build a canonical tree (see zlib_tr_init
91
 * below).
92
 */
93
 
94
local ct_data static_dtree[D_CODES];
95
/* The static distance tree. (Actually a trivial tree since all codes use
96
 * 5 bits.)
97
 */
98
 
99
local uch dist_code[512];
100
/* distance codes. The first 256 values correspond to the distances
101
 * 3 .. 258, the last 256 values correspond to the top 8 bits of
102
 * the 15 bit distances.
103
 */
104
 
105
local uch length_code[MAX_MATCH-MIN_MATCH+1];
106
/* length code for each normalized match length (0 == MIN_MATCH) */
107
 
108
local int base_length[LENGTH_CODES];
109
/* First normalized length for each code (0 = MIN_MATCH) */
110
 
111
local int base_dist[D_CODES];
112
/* First normalized distance for each code (0 = distance of 1) */
113
 
114
struct static_tree_desc_s {
115
    const ct_data *static_tree;  /* static tree or NULL */
116
    const intf *extra_bits;      /* extra bits for each code or NULL */
117
    int     extra_base;          /* base index for extra_bits */
118
    int     elems;               /* max number of elements in the tree */
119
    int     max_length;          /* max bit length for the codes */
120
};
121
 
122
local static_tree_desc  static_l_desc =
123
{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
124
 
125
local static_tree_desc  static_d_desc =
126
{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
127
 
128
local static_tree_desc  static_bl_desc =
129
{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
130
 
131
/* ===========================================================================
132
 * Local (static) routines in this file.
133
 */
134
 
135
local void tr_static_init OF((void));
136
local void init_block     OF((deflate_state *s));
137
local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
138
local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
139
local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
140
local void build_tree     OF((deflate_state *s, tree_desc *desc));
141
local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
142
local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
143
local int  build_bl_tree  OF((deflate_state *s));
144
local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
145
                              int blcodes));
146
local void compress_block OF((deflate_state *s, ct_data *ltree,
147
                              ct_data *dtree));
148
local void set_data_type  OF((deflate_state *s));
149
local unsigned bi_reverse OF((unsigned value, int length));
150
local void bi_windup      OF((deflate_state *s));
151
local void bi_flush       OF((deflate_state *s));
152
local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
153
                              int header));
154
 
155
#ifndef DEBUG_ZLIB
156
#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
157
   /* Send a code of the given tree. c and tree must not have side effects */
158
 
159
#else /* DEBUG_ZLIB */
160
#  define send_code(s, c, tree) \
161
     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
162
       send_bits(s, tree[c].Code, tree[c].Len); }
163
#endif
164
 
165
#define d_code(dist) \
166
   ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
167
/* Mapping from a distance to a distance code. dist is the distance - 1 and
168
 * must not have side effects. dist_code[256] and dist_code[257] are never
169
 * used.
170
 */
171
 
172
/* ===========================================================================
173
 * Send a value on a given number of bits.
174
 * IN assertion: length <= 16 and value fits in length bits.
175
 */
176
#ifdef DEBUG_ZLIB
177
local void send_bits      OF((deflate_state *s, int value, int length));
178
 
179
local void send_bits(s, value, length)
180
    deflate_state *s;
181
    int value;  /* value to send */
182
    int length; /* number of bits */
183
{
184
    Tracevv((stderr," l %2d v %4x ", length, value));
185
    Assert(length > 0 && length <= 15, "invalid length");
186
    s->bits_sent += (ulg)length;
187
 
188
    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
189
     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
190
     * unused bits in value.
191
     */
192
    if (s->bi_valid > (int)Buf_size - length) {
193
        s->bi_buf |= (value << s->bi_valid);
194
        put_short(s, s->bi_buf);
195
        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
196
        s->bi_valid += length - Buf_size;
197
    } else {
198
        s->bi_buf |= value << s->bi_valid;
199
        s->bi_valid += length;
200
    }
201
}
202
#else /* !DEBUG_ZLIB */
203
 
204
#define send_bits(s, value, length) \
205
{ int len = length;\
206
  if (s->bi_valid > (int)Buf_size - len) {\
207
    int val = value;\
208
    s->bi_buf |= (val << s->bi_valid);\
209
    put_short(s, s->bi_buf);\
210
    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
211
    s->bi_valid += len - Buf_size;\
212
  } else {\
213
    s->bi_buf |= (value) << s->bi_valid;\
214
    s->bi_valid += len;\
215
  }\
216
}
217
#endif /* DEBUG_ZLIB */
218
 
219
 
220
#define MAX(a,b) (a >= b ? a : b)
221
/* the arguments must not have side effects */
222
 
223
/* ===========================================================================
224
 * Initialize the various 'constant' tables. In a multi-threaded environment,
225
 * this function may be called by two threads concurrently, but this is
226
 * harmless since both invocations do exactly the same thing.
227
 */
228
local void tr_static_init()
229
{
230
    static int static_init_done = 0;
231
    int n;        /* iterates over tree elements */
232
    int bits;     /* bit counter */
233
    int length;   /* length value */
234
    int code;     /* code value */
235
    int dist;     /* distance index */
236
    ush bl_count[MAX_BITS+1];
237
    /* number of codes at each bit length for an optimal tree */
238
 
239
    if (static_init_done) return;
240
 
241
    /* Initialize the mapping length (0..255) -> length code (0..28) */
242
    length = 0;
243
    for (code = 0; code < LENGTH_CODES-1; code++) {
244
        base_length[code] = length;
245
        for (n = 0; n < (1<<extra_lbits[code]); n++) {
246
            length_code[length++] = (uch)code;
247
        }
248
    }
249
    Assert (length == 256, "tr_static_init: length != 256");
250
    /* Note that the length 255 (match length 258) can be represented
251
     * in two different ways: code 284 + 5 bits or code 285, so we
252
     * overwrite length_code[255] to use the best encoding:
253
     */
254
    length_code[length-1] = (uch)code;
255
 
256
    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
257
    dist = 0;
258
    for (code = 0 ; code < 16; code++) {
259
        base_dist[code] = dist;
260
        for (n = 0; n < (1<<extra_dbits[code]); n++) {
261
            dist_code[dist++] = (uch)code;
262
        }
263
    }
264
    Assert (dist == 256, "tr_static_init: dist != 256");
265
    dist >>= 7; /* from now on, all distances are divided by 128 */
266
    for ( ; code < D_CODES; code++) {
267
        base_dist[code] = dist << 7;
268
        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
269
            dist_code[256 + dist++] = (uch)code;
270
        }
271
    }
272
    Assert (dist == 256, "tr_static_init: 256+dist != 512");
273
 
274
    /* Construct the codes of the static literal tree */
275
    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
276
    n = 0;
277
    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
278
    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
279
    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
280
    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
281
    /* Codes 286 and 287 do not exist, but we must include them in the
282
     * tree construction to get a canonical Huffman tree (longest code
283
     * all ones)
284
     */
285
    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
286
 
287
    /* The static distance tree is trivial: */
288
    for (n = 0; n < D_CODES; n++) {
289
        static_dtree[n].Len = 5;
290
        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
291
    }
292
    static_init_done = 1;
293
}
294
 
295
/* ===========================================================================
296
 * Initialize the tree data structures for a new zlib stream.
297
 */
298
void zlib_tr_init(s)
299
    deflate_state *s;
300
{
301
    tr_static_init();
302
 
303
    s->compressed_len = 0L;
304
 
305
    s->l_desc.dyn_tree = s->dyn_ltree;
306
    s->l_desc.stat_desc = &static_l_desc;
307
 
308
    s->d_desc.dyn_tree = s->dyn_dtree;
309
    s->d_desc.stat_desc = &static_d_desc;
310
 
311
    s->bl_desc.dyn_tree = s->bl_tree;
312
    s->bl_desc.stat_desc = &static_bl_desc;
313
 
314
    s->bi_buf = 0;
315
    s->bi_valid = 0;
316
    s->last_eob_len = 8; /* enough lookahead for inflate */
317
#ifdef DEBUG_ZLIB
318
    s->bits_sent = 0L;
319
#endif
320
 
321
    /* Initialize the first block of the first file: */
322
    init_block(s);
323
}
324
 
325
/* ===========================================================================
326
 * Initialize a new block.
327
 */
328
local void init_block(s)
329
    deflate_state *s;
330
{
331
    int n; /* iterates over tree elements */
332
 
333
    /* Initialize the trees. */
334
    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
335
    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
336
    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
337
 
338
    s->dyn_ltree[END_BLOCK].Freq = 1;
339
    s->opt_len = s->static_len = 0L;
340
    s->last_lit = s->matches = 0;
341
}
342
 
343
#define SMALLEST 1
344
/* Index within the heap array of least frequent node in the Huffman tree */
345
 
346
 
347
/* ===========================================================================
348
 * Remove the smallest element from the heap and recreate the heap with
349
 * one less element. Updates heap and heap_len.
350
 */
351
#define pqremove(s, tree, top) \
352
{\
353
    top = s->heap[SMALLEST]; \
354
    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
355
    pqdownheap(s, tree, SMALLEST); \
356
}
357
 
358
/* ===========================================================================
359
 * Compares to subtrees, using the tree depth as tie breaker when
360
 * the subtrees have equal frequency. This minimizes the worst case length.
361
 */
362
#define smaller(tree, n, m, depth) \
363
   (tree[n].Freq < tree[m].Freq || \
364
   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
365
 
366
/* ===========================================================================
367
 * Restore the heap property by moving down the tree starting at node k,
368
 * exchanging a node with the smallest of its two sons if necessary, stopping
369
 * when the heap property is re-established (each father smaller than its
370
 * two sons).
371
 */
372
local void pqdownheap(s, tree, k)
373
    deflate_state *s;
374
    ct_data *tree;  /* the tree to restore */
375
    int k;               /* node to move down */
376
{
377
    int v = s->heap[k];
378
    int j = k << 1;  /* left son of k */
379
    while (j <= s->heap_len) {
380
        /* Set j to the smallest of the two sons: */
381
        if (j < s->heap_len &&
382
            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
383
            j++;
384
        }
385
        /* Exit if v is smaller than both sons */
386
        if (smaller(tree, v, s->heap[j], s->depth)) break;
387
 
388
        /* Exchange v with the smallest son */
389
        s->heap[k] = s->heap[j];  k = j;
390
 
391
        /* And continue down the tree, setting j to the left son of k */
392
        j <<= 1;
393
    }
394
    s->heap[k] = v;
395
}
396
 
397
/* ===========================================================================
398
 * Compute the optimal bit lengths for a tree and update the total bit length
399
 * for the current block.
400
 * IN assertion: the fields freq and dad are set, heap[heap_max] and
401
 *    above are the tree nodes sorted by increasing frequency.
402
 * OUT assertions: the field len is set to the optimal bit length, the
403
 *     array bl_count contains the frequencies for each bit length.
404
 *     The length opt_len is updated; static_len is also updated if stree is
405
 *     not null.
406
 */
407
local void gen_bitlen(s, desc)
408
    deflate_state *s;
409
    tree_desc *desc;    /* the tree descriptor */
410
{
411
    ct_data *tree        = desc->dyn_tree;
412
    int max_code         = desc->max_code;
413
    const ct_data *stree = desc->stat_desc->static_tree;
414
    const intf *extra    = desc->stat_desc->extra_bits;
415
    int base             = desc->stat_desc->extra_base;
416
    int max_length       = desc->stat_desc->max_length;
417
    int h;              /* heap index */
418
    int n, m;           /* iterate over the tree elements */
419
    int bits;           /* bit length */
420
    int xbits;          /* extra bits */
421
    ush f;              /* frequency */
422
    int overflow = 0;   /* number of elements with bit length too large */
423
 
424
    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
425
 
426
    /* In a first pass, compute the optimal bit lengths (which may
427
     * overflow in the case of the bit length tree).
428
     */
429
    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
430
 
431
    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
432
        n = s->heap[h];
433
        bits = tree[tree[n].Dad].Len + 1;
434
        if (bits > max_length) bits = max_length, overflow++;
435
        tree[n].Len = (ush)bits;
436
        /* We overwrite tree[n].Dad which is no longer needed */
437
 
438
        if (n > max_code) continue; /* not a leaf node */
439
 
440
        s->bl_count[bits]++;
441
        xbits = 0;
442
        if (n >= base) xbits = extra[n-base];
443
        f = tree[n].Freq;
444
        s->opt_len += (ulg)f * (bits + xbits);
445
        if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
446
    }
447
    if (overflow == 0) return;
448
 
449
    Trace((stderr,"\nbit length overflow\n"));
450
    /* This happens for example on obj2 and pic of the Calgary corpus */
451
 
452
    /* Find the first bit length which could increase: */
453
    do {
454
        bits = max_length-1;
455
        while (s->bl_count[bits] == 0) bits--;
456
        s->bl_count[bits]--;      /* move one leaf down the tree */
457
        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
458
        s->bl_count[max_length]--;
459
        /* The brother of the overflow item also moves one step up,
460
         * but this does not affect bl_count[max_length]
461
         */
462
        overflow -= 2;
463
    } while (overflow > 0);
464
 
465
    /* Now recompute all bit lengths, scanning in increasing frequency.
466
     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
467
     * lengths instead of fixing only the wrong ones. This idea is taken
468
     * from 'ar' written by Haruhiko Okumura.)
469
     */
470
    for (bits = max_length; bits != 0; bits--) {
471
        n = s->bl_count[bits];
472
        while (n != 0) {
473
            m = s->heap[--h];
474
            if (m > max_code) continue;
475
            if (tree[m].Len != (unsigned) bits) {
476
                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
477
                s->opt_len += ((long)bits - (long)tree[m].Len)
478
                              *(long)tree[m].Freq;
479
                tree[m].Len = (ush)bits;
480
            }
481
            n--;
482
        }
483
    }
484
}
485
 
486
/* ===========================================================================
487
 * Generate the codes for a given tree and bit counts (which need not be
488
 * optimal).
489
 * IN assertion: the array bl_count contains the bit length statistics for
490
 * the given tree and the field len is set for all tree elements.
491
 * OUT assertion: the field code is set for all tree elements of non
492
 *     zero code length.
493
 */
494
local void gen_codes (tree, max_code, bl_count)
495
    ct_data *tree;             /* the tree to decorate */
496
    int max_code;              /* largest code with non zero frequency */
497
    ushf *bl_count;            /* number of codes at each bit length */
498
{
499
    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
500
    ush code = 0;              /* running code value */
501
    int bits;                  /* bit index */
502
    int n;                     /* code index */
503
 
504
    /* The distribution counts are first used to generate the code values
505
     * without bit reversal.
506
     */
507
    for (bits = 1; bits <= MAX_BITS; bits++) {
508
        next_code[bits] = code = (code + bl_count[bits-1]) << 1;
509
    }
510
    /* Check that the bit counts in bl_count are consistent. The last code
511
     * must be all ones.
512
     */
513
    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
514
            "inconsistent bit counts");
515
    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
516
 
517
    for (n = 0;  n <= max_code; n++) {
518
        int len = tree[n].Len;
519
        if (len == 0) continue;
520
        /* Now reverse the bits */
521
        tree[n].Code = bi_reverse(next_code[len]++, len);
522
 
523
        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
524
             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
525
    }
526
}
527
 
528
/* ===========================================================================
529
 * Construct one Huffman tree and assigns the code bit strings and lengths.
530
 * Update the total bit length for the current block.
531
 * IN assertion: the field freq is set for all tree elements.
532
 * OUT assertions: the fields len and code are set to the optimal bit length
533
 *     and corresponding code. The length opt_len is updated; static_len is
534
 *     also updated if stree is not null. The field max_code is set.
535
 */
536
local void build_tree(s, desc)
537
    deflate_state *s;
538
    tree_desc *desc; /* the tree descriptor */
539
{
540
    ct_data *tree         = desc->dyn_tree;
541
    const ct_data *stree  = desc->stat_desc->static_tree;
542
    int elems             = desc->stat_desc->elems;
543
    int n, m;          /* iterate over heap elements */
544
    int max_code = -1; /* largest code with non zero frequency */
545
    int node;          /* new node being created */
546
 
547
    /* Construct the initial heap, with least frequent element in
548
     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
549
     * heap[0] is not used.
550
     */
551
    s->heap_len = 0, s->heap_max = HEAP_SIZE;
552
 
553
    for (n = 0; n < elems; n++) {
554
        if (tree[n].Freq != 0) {
555
            s->heap[++(s->heap_len)] = max_code = n;
556
            s->depth[n] = 0;
557
        } else {
558
            tree[n].Len = 0;
559
        }
560
    }
561
 
562
    /* The pkzip format requires that at least one distance code exists,
563
     * and that at least one bit should be sent even if there is only one
564
     * possible code. So to avoid special checks later on we force at least
565
     * two codes of non zero frequency.
566
     */
567
    while (s->heap_len < 2) {
568
        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
569
        tree[node].Freq = 1;
570
        s->depth[node] = 0;
571
        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
572
        /* node is 0 or 1 so it does not have extra bits */
573
    }
574
    desc->max_code = max_code;
575
 
576
    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
577
     * establish sub-heaps of increasing lengths:
578
     */
579
    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
580
 
581
    /* Construct the Huffman tree by repeatedly combining the least two
582
     * frequent nodes.
583
     */
584
    node = elems;              /* next internal node of the tree */
585
    do {
586
        pqremove(s, tree, n);  /* n = node of least frequency */
587
        m = s->heap[SMALLEST]; /* m = node of next least frequency */
588
 
589
        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
590
        s->heap[--(s->heap_max)] = m;
591
 
592
        /* Create a new node father of n and m */
593
        tree[node].Freq = tree[n].Freq + tree[m].Freq;
594
        s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
595
        tree[n].Dad = tree[m].Dad = (ush)node;
596
#ifdef DUMP_BL_TREE
597
        if (tree == s->bl_tree) {
598
            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
599
                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
600
        }
601
#endif
602
        /* and insert the new node in the heap */
603
        s->heap[SMALLEST] = node++;
604
        pqdownheap(s, tree, SMALLEST);
605
 
606
    } while (s->heap_len >= 2);
607
 
608
    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
609
 
610
    /* At this point, the fields freq and dad are set. We can now
611
     * generate the bit lengths.
612
     */
613
    gen_bitlen(s, (tree_desc *)desc);
614
 
615
    /* The field len is now set, we can generate the bit codes */
616
    gen_codes ((ct_data *)tree, max_code, s->bl_count);
617
}
618
 
619
/* ===========================================================================
620
 * Scan a literal or distance tree to determine the frequencies of the codes
621
 * in the bit length tree.
622
 */
623
local void scan_tree (s, tree, max_code)
624
    deflate_state *s;
625
    ct_data *tree;   /* the tree to be scanned */
626
    int max_code;    /* and its largest code of non zero frequency */
627
{
628
    int n;                     /* iterates over all tree elements */
629
    int prevlen = -1;          /* last emitted length */
630
    int curlen;                /* length of current code */
631
    int nextlen = tree[0].Len; /* length of next code */
632
    int count = 0;             /* repeat count of the current code */
633
    int max_count = 7;         /* max repeat count */
634
    int min_count = 4;         /* min repeat count */
635
 
636
    if (nextlen == 0) max_count = 138, min_count = 3;
637
    tree[max_code+1].Len = (ush)0xffff; /* guard */
638
 
639
    for (n = 0; n <= max_code; n++) {
640
        curlen = nextlen; nextlen = tree[n+1].Len;
641
        if (++count < max_count && curlen == nextlen) {
642
            continue;
643
        } else if (count < min_count) {
644
            s->bl_tree[curlen].Freq += count;
645
        } else if (curlen != 0) {
646
            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
647
            s->bl_tree[REP_3_6].Freq++;
648
        } else if (count <= 10) {
649
            s->bl_tree[REPZ_3_10].Freq++;
650
        } else {
651
            s->bl_tree[REPZ_11_138].Freq++;
652
        }
653
        count = 0; prevlen = curlen;
654
        if (nextlen == 0) {
655
            max_count = 138, min_count = 3;
656
        } else if (curlen == nextlen) {
657
            max_count = 6, min_count = 3;
658
        } else {
659
            max_count = 7, min_count = 4;
660
        }
661
    }
662
}
663
 
664
/* ===========================================================================
665
 * Send a literal or distance tree in compressed form, using the codes in
666
 * bl_tree.
667
 */
668
local void send_tree (s, tree, max_code)
669
    deflate_state *s;
670
    ct_data *tree; /* the tree to be scanned */
671
    int max_code;       /* and its largest code of non zero frequency */
672
{
673
    int n;                     /* iterates over all tree elements */
674
    int prevlen = -1;          /* last emitted length */
675
    int curlen;                /* length of current code */
676
    int nextlen = tree[0].Len; /* length of next code */
677
    int count = 0;             /* repeat count of the current code */
678
    int max_count = 7;         /* max repeat count */
679
    int min_count = 4;         /* min repeat count */
680
 
681
    /* tree[max_code+1].Len = -1; */  /* guard already set */
682
    if (nextlen == 0) max_count = 138, min_count = 3;
683
 
684
    for (n = 0; n <= max_code; n++) {
685
        curlen = nextlen; nextlen = tree[n+1].Len;
686
        if (++count < max_count && curlen == nextlen) {
687
            continue;
688
        } else if (count < min_count) {
689
            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
690
 
691
        } else if (curlen != 0) {
692
            if (curlen != prevlen) {
693
                send_code(s, curlen, s->bl_tree); count--;
694
            }
695
            Assert(count >= 3 && count <= 6, " 3_6?");
696
            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
697
 
698
        } else if (count <= 10) {
699
            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
700
 
701
        } else {
702
            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
703
        }
704
        count = 0; prevlen = curlen;
705
        if (nextlen == 0) {
706
            max_count = 138, min_count = 3;
707
        } else if (curlen == nextlen) {
708
            max_count = 6, min_count = 3;
709
        } else {
710
            max_count = 7, min_count = 4;
711
        }
712
    }
713
}
714
 
715
/* ===========================================================================
716
 * Construct the Huffman tree for the bit lengths and return the index in
717
 * bl_order of the last bit length code to send.
718
 */
719
local int build_bl_tree(s)
720
    deflate_state *s;
721
{
722
    int max_blindex;  /* index of last bit length code of non zero freq */
723
 
724
    /* Determine the bit length frequencies for literal and distance trees */
725
    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
726
    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
727
 
728
    /* Build the bit length tree: */
729
    build_tree(s, (tree_desc *)(&(s->bl_desc)));
730
    /* opt_len now includes the length of the tree representations, except
731
     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
732
     */
733
 
734
    /* Determine the number of bit length codes to send. The pkzip format
735
     * requires that at least 4 bit length codes be sent. (appnote.txt says
736
     * 3 but the actual value used is 4.)
737
     */
738
    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
739
        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
740
    }
741
    /* Update opt_len to include the bit length tree and counts */
742
    s->opt_len += 3*(max_blindex+1) + 5+5+4;
743
    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
744
            s->opt_len, s->static_len));
745
 
746
    return max_blindex;
747
}
748
 
749
/* ===========================================================================
750
 * Send the header for a block using dynamic Huffman trees: the counts, the
751
 * lengths of the bit length codes, the literal tree and the distance tree.
752
 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
753
 */
754
local void send_all_trees(s, lcodes, dcodes, blcodes)
755
    deflate_state *s;
756
    int lcodes, dcodes, blcodes; /* number of codes for each tree */
757
{
758
    int rank;                    /* index in bl_order */
759
 
760
    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
761
    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
762
            "too many codes");
763
    Tracev((stderr, "\nbl counts: "));
764
    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
765
    send_bits(s, dcodes-1,   5);
766
    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
767
    for (rank = 0; rank < blcodes; rank++) {
768
        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
769
        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
770
    }
771
    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
772
 
773
    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
774
    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
775
 
776
    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
777
    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
778
}
779
 
780
/* ===========================================================================
781
 * Send a stored block
782
 */
783
void zlib_tr_stored_block(s, buf, stored_len, eof)
784
    deflate_state *s;
785
    charf *buf;       /* input block */
786
    ulg stored_len;   /* length of input block */
787
    int eof;          /* true if this is the last block for a file */
788
{
789
    send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
790
    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
791
    s->compressed_len += (stored_len + 4) << 3;
792
 
793
    copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
794
}
795
 
796
/* Send just the `stored block' type code without any length bytes or data.
797
 */
798
void zlib_tr_stored_type_only(s)
799
    deflate_state *s;
800
{
801
    send_bits(s, (STORED_BLOCK << 1), 3);
802
    bi_windup(s);
803
    s->compressed_len = (s->compressed_len + 3) & ~7L;
804
}
805
 
806
 
807
/* ===========================================================================
808
 * Send one empty static block to give enough lookahead for inflate.
809
 * This takes 10 bits, of which 7 may remain in the bit buffer.
810
 * The current inflate code requires 9 bits of lookahead. If the
811
 * last two codes for the previous block (real code plus EOB) were coded
812
 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
813
 * the last real code. In this case we send two empty static blocks instead
814
 * of one. (There are no problems if the previous block is stored or fixed.)
815
 * To simplify the code, we assume the worst case of last real code encoded
816
 * on one bit only.
817
 */
818
void zlib_tr_align(s)
819
    deflate_state *s;
820
{
821
    send_bits(s, STATIC_TREES<<1, 3);
822
    send_code(s, END_BLOCK, static_ltree);
823
    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
824
    bi_flush(s);
825
    /* Of the 10 bits for the empty block, we have already sent
826
     * (10 - bi_valid) bits. The lookahead for the last real code (before
827
     * the EOB of the previous block) was thus at least one plus the length
828
     * of the EOB plus what we have just sent of the empty static block.
829
     */
830
    if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
831
        send_bits(s, STATIC_TREES<<1, 3);
832
        send_code(s, END_BLOCK, static_ltree);
833
        s->compressed_len += 10L;
834
        bi_flush(s);
835
    }
836
    s->last_eob_len = 7;
837
}
838
 
839
/* ===========================================================================
840
 * Determine the best encoding for the current block: dynamic trees, static
841
 * trees or store, and output the encoded block to the zip file. This function
842
 * returns the total compressed length for the file so far.
843
 */
844
ulg zlib_tr_flush_block(s, buf, stored_len, eof)
845
    deflate_state *s;
846
    charf *buf;       /* input block, or NULL if too old */
847
    ulg stored_len;   /* length of input block */
848
    int eof;          /* true if this is the last block for a file */
849
{
850
    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
851
    int max_blindex = 0;  /* index of last bit length code of non zero freq */
852
 
853
    /* Build the Huffman trees unless a stored block is forced */
854
    if (s->level > 0) {
855
 
856
         /* Check if the file is ascii or binary */
857
        if (s->data_type == Z_UNKNOWN) set_data_type(s);
858
 
859
        /* Construct the literal and distance trees */
860
        build_tree(s, (tree_desc *)(&(s->l_desc)));
861
        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
862
                s->static_len));
863
 
864
        build_tree(s, (tree_desc *)(&(s->d_desc)));
865
        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
866
                s->static_len));
867
        /* At this point, opt_len and static_len are the total bit lengths of
868
         * the compressed block data, excluding the tree representations.
869
         */
870
 
871
        /* Build the bit length tree for the above two trees, and get the index
872
         * in bl_order of the last bit length code to send.
873
         */
874
        max_blindex = build_bl_tree(s);
875
 
876
        /* Determine the best encoding. Compute first the block length in bytes*/
877
        opt_lenb = (s->opt_len+3+7)>>3;
878
        static_lenb = (s->static_len+3+7)>>3;
879
 
880
        Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
881
                opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
882
                s->last_lit));
883
 
884
        if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
885
 
886
    } else {
887
        Assert(buf != (char*)0, "lost buf");
888
        opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
889
    }
890
 
891
    /* If compression failed and this is the first and last block,
892
     * and if the .zip file can be seeked (to rewrite the local header),
893
     * the whole file is transformed into a stored file:
894
     */
895
#ifdef STORED_FILE_OK
896
#  ifdef FORCE_STORED_FILE
897
    if (eof && s->compressed_len == 0L) { /* force stored file */
898
#  else
899
    if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
900
#  endif
901
        /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
902
        if (buf == (charf*)0) error ("block vanished");
903
 
904
        copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
905
        s->compressed_len = stored_len << 3;
906
        s->method = STORED;
907
    } else
908
#endif /* STORED_FILE_OK */
909
 
910
#ifdef FORCE_STORED
911
    if (buf != (char*)0) { /* force stored block */
912
#else
913
    if (stored_len+4 <= opt_lenb && buf != (char*)0) {
914
                       /* 4: two words for the lengths */
915
#endif
916
        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
917
         * Otherwise we can't have processed more than WSIZE input bytes since
918
         * the last block flush, because compression would have been
919
         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
920
         * transform a block into a stored block.
921
         */
922
        zlib_tr_stored_block(s, buf, stored_len, eof);
923
 
924
#ifdef FORCE_STATIC
925
    } else if (static_lenb >= 0) { /* force static trees */
926
#else
927
    } else if (static_lenb == opt_lenb) {
928
#endif
929
        send_bits(s, (STATIC_TREES<<1)+eof, 3);
930
        compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
931
        s->compressed_len += 3 + s->static_len;
932
    } else {
933
        send_bits(s, (DYN_TREES<<1)+eof, 3);
934
        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
935
                       max_blindex+1);
936
        compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
937
        s->compressed_len += 3 + s->opt_len;
938
    }
939
    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
940
    init_block(s);
941
 
942
    if (eof) {
943
        bi_windup(s);
944
        s->compressed_len += 7;  /* align on byte boundary */
945
    }
946
    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
947
           s->compressed_len-7*eof));
948
 
949
    return s->compressed_len >> 3;
950
}
951
 
952
/* ===========================================================================
953
 * Save the match info and tally the frequency counts. Return true if
954
 * the current block must be flushed.
955
 */
956
int zlib_tr_tally (s, dist, lc)
957
    deflate_state *s;
958
    unsigned dist;  /* distance of matched string */
959
    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
960
{
961
    s->d_buf[s->last_lit] = (ush)dist;
962
    s->l_buf[s->last_lit++] = (uch)lc;
963
    if (dist == 0) {
964
        /* lc is the unmatched char */
965
        s->dyn_ltree[lc].Freq++;
966
    } else {
967
        s->matches++;
968
        /* Here, lc is the match length - MIN_MATCH */
969
        dist--;             /* dist = match distance - 1 */
970
        Assert((ush)dist < (ush)MAX_DIST(s) &&
971
               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
972
               (ush)d_code(dist) < (ush)D_CODES,  "zlib_tr_tally: bad match");
973
 
974
        s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
975
        s->dyn_dtree[d_code(dist)].Freq++;
976
    }
977
 
978
    /* Try to guess if it is profitable to stop the current block here */
979
    if ((s->last_lit & 0xfff) == 0 && s->level > 2) {
980
        /* Compute an upper bound for the compressed length */
981
        ulg out_length = (ulg)s->last_lit*8L;
982
        ulg in_length = (ulg)((long)s->strstart - s->block_start);
983
        int dcode;
984
        for (dcode = 0; dcode < D_CODES; dcode++) {
985
            out_length += (ulg)s->dyn_dtree[dcode].Freq *
986
                (5L+extra_dbits[dcode]);
987
        }
988
        out_length >>= 3;
989
        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
990
               s->last_lit, in_length, out_length,
991
               100L - out_length*100L/in_length));
992
        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
993
    }
994
    return (s->last_lit == s->lit_bufsize-1);
995
    /* We avoid equality with lit_bufsize because of wraparound at 64K
996
     * on 16 bit machines and because stored blocks are restricted to
997
     * 64K-1 bytes.
998
     */
999
}
1000
 
1001
/* ===========================================================================
1002
 * Send the block data compressed using the given Huffman trees
1003
 */
1004
local void compress_block(s, ltree, dtree)
1005
    deflate_state *s;
1006
    ct_data *ltree; /* literal tree */
1007
    ct_data *dtree; /* distance tree */
1008
{
1009
    unsigned dist;      /* distance of matched string */
1010
    int lc;             /* match length or unmatched char (if dist == 0) */
1011
    unsigned lx = 0;    /* running index in l_buf */
1012
    unsigned code;      /* the code to send */
1013
    int extra;          /* number of extra bits to send */
1014
 
1015
    if (s->last_lit != 0) do {
1016
        dist = s->d_buf[lx];
1017
        lc = s->l_buf[lx++];
1018
        if (dist == 0) {
1019
            send_code(s, lc, ltree); /* send a literal byte */
1020
            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1021
        } else {
1022
            /* Here, lc is the match length - MIN_MATCH */
1023
            code = length_code[lc];
1024
            send_code(s, code+LITERALS+1, ltree); /* send the length code */
1025
            extra = extra_lbits[code];
1026
            if (extra != 0) {
1027
                lc -= base_length[code];
1028
                send_bits(s, lc, extra);       /* send the extra length bits */
1029
            }
1030
            dist--; /* dist is now the match distance - 1 */
1031
            code = d_code(dist);
1032
            Assert (code < D_CODES, "bad d_code");
1033
 
1034
            send_code(s, code, dtree);       /* send the distance code */
1035
            extra = extra_dbits[code];
1036
            if (extra != 0) {
1037
                dist -= base_dist[code];
1038
                send_bits(s, dist, extra);   /* send the extra distance bits */
1039
            }
1040
        } /* literal or match pair ? */
1041
 
1042
        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1043
        Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
1044
 
1045
    } while (lx < s->last_lit);
1046
 
1047
    send_code(s, END_BLOCK, ltree);
1048
    s->last_eob_len = ltree[END_BLOCK].Len;
1049
}
1050
 
1051
/* ===========================================================================
1052
 * Set the data type to ASCII or BINARY, using a crude approximation:
1053
 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1054
 * IN assertion: the fields freq of dyn_ltree are set and the total of all
1055
 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1056
 */
1057
local void set_data_type(s)
1058
    deflate_state *s;
1059
{
1060
    int n = 0;
1061
    unsigned ascii_freq = 0;
1062
    unsigned bin_freq = 0;
1063
    while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
1064
    while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
1065
    while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
1066
    s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
1067
}
1068
 
1069
/* ===========================================================================
1070
 * Copy a stored block, storing first the length and its
1071
 * one's complement if requested.
1072
 */
1073
local void copy_block(s, buf, len, header)
1074
    deflate_state *s;
1075
    charf    *buf;    /* the input data */
1076
    unsigned len;     /* its length */
1077
    int      header;  /* true if block header must be written */
1078
{
1079
    bi_windup(s);        /* align on byte boundary */
1080
    s->last_eob_len = 8; /* enough lookahead for inflate */
1081
 
1082
    if (header) {
1083
        put_short(s, (ush)len);
1084
        put_short(s, (ush)~len);
1085
#ifdef DEBUG_ZLIB
1086
        s->bits_sent += 2*16;
1087
#endif
1088
    }
1089
#ifdef DEBUG_ZLIB
1090
    s->bits_sent += (ulg)len<<3;
1091
#endif
1092
    /* bundle up the put_byte(s, *buf++) calls */
1093
    memcpy(&s->pending_buf[s->pending], buf, len);
1094
    s->pending += len;
1095
}
1096
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.