OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [lib/] [zlib_inflate/] [inftrees.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1275 phoenix
/* inftrees.c -- generate Huffman trees for efficient decoding
2
 * Copyright (C) 1995-1998 Mark Adler
3
 * For conditions of distribution and use, see copyright notice in zlib.h
4
 */
5
 
6
#include <linux/zutil.h>
7
#include "inftrees.h"
8
#include "infutil.h"
9
 
10
static const char inflate_copyright[] =
11
   " inflate 1.1.3 Copyright 1995-1998 Mark Adler ";
12
/*
13
  If you use the zlib library in a product, an acknowledgment is welcome
14
  in the documentation of your product. If for some reason you cannot
15
  include such an acknowledgment, I would appreciate that you keep this
16
  copyright string in the executable of your product.
17
 */
18
struct internal_state;
19
 
20
/* simplify the use of the inflate_huft type with some defines */
21
#define exop word.what.Exop
22
#define bits word.what.Bits
23
 
24
 
25
local int huft_build OF((
26
    uIntf *,            /* code lengths in bits */
27
    uInt,               /* number of codes */
28
    uInt,               /* number of "simple" codes */
29
    const uIntf *,      /* list of base values for non-simple codes */
30
    const uIntf *,      /* list of extra bits for non-simple codes */
31
    inflate_huft * FAR*,/* result: starting table */
32
    uIntf *,            /* maximum lookup bits (returns actual) */
33
    inflate_huft *,     /* space for trees */
34
    uInt *,             /* hufts used in space */
35
    uIntf * ));         /* space for values */
36
 
37
/* Tables for deflate from PKZIP's appnote.txt. */
38
local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
39
        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
40
        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
41
        /* see note #13 above about 258 */
42
local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
43
        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
44
        3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
45
local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
46
        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
47
        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
48
        8193, 12289, 16385, 24577};
49
local const uInt cpdext[30] = { /* Extra bits for distance codes */
50
        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
51
        7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
52
        12, 12, 13, 13};
53
 
54
/*
55
   Huffman code decoding is performed using a multi-level table lookup.
56
   The fastest way to decode is to simply build a lookup table whose
57
   size is determined by the longest code.  However, the time it takes
58
   to build this table can also be a factor if the data being decoded
59
   is not very long.  The most common codes are necessarily the
60
   shortest codes, so those codes dominate the decoding time, and hence
61
   the speed.  The idea is you can have a shorter table that decodes the
62
   shorter, more probable codes, and then point to subsidiary tables for
63
   the longer codes.  The time it costs to decode the longer codes is
64
   then traded against the time it takes to make longer tables.
65
 
66
   This results of this trade are in the variables lbits and dbits
67
   below.  lbits is the number of bits the first level table for literal/
68
   length codes can decode in one step, and dbits is the same thing for
69
   the distance codes.  Subsequent tables are also less than or equal to
70
   those sizes.  These values may be adjusted either when all of the
71
   codes are shorter than that, in which case the longest code length in
72
   bits is used, or when the shortest code is *longer* than the requested
73
   table size, in which case the length of the shortest code in bits is
74
   used.
75
 
76
   There are two different values for the two tables, since they code a
77
   different number of possibilities each.  The literal/length table
78
   codes 286 possible values, or in a flat code, a little over eight
79
   bits.  The distance table codes 30 possible values, or a little less
80
   than five bits, flat.  The optimum values for speed end up being
81
   about one bit more than those, so lbits is 8+1 and dbits is 5+1.
82
   The optimum values may differ though from machine to machine, and
83
   possibly even between compilers.  Your mileage may vary.
84
 */
85
 
86
 
87
/* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
88
#define BMAX 15         /* maximum bit length of any code */
89
 
90
local int huft_build(b, n, s, d, e, t, m, hp, hn, v)
91
uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
92
uInt n;                 /* number of codes (assumed <= 288) */
93
uInt s;                 /* number of simple-valued codes (0..s-1) */
94
const uIntf *d;         /* list of base values for non-simple codes */
95
const uIntf *e;         /* list of extra bits for non-simple codes */
96
inflate_huft * FAR *t;  /* result: starting table */
97
uIntf *m;               /* maximum lookup bits, returns actual */
98
inflate_huft *hp;       /* space for trees */
99
uInt *hn;               /* hufts used in space */
100
uIntf *v;               /* working area: values in order of bit length */
101
/* Given a list of code lengths and a maximum table size, make a set of
102
   tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
103
   if the given code set is incomplete (the tables are still built in this
104
   case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
105
   lengths), or Z_MEM_ERROR if not enough memory. */
106
{
107
 
108
  uInt a;                       /* counter for codes of length k */
109
  uInt c[BMAX+1];               /* bit length count table */
110
  uInt f;                       /* i repeats in table every f entries */
111
  int g;                        /* maximum code length */
112
  int h;                        /* table level */
113
  register uInt i;              /* counter, current code */
114
  register uInt j;              /* counter */
115
  register int k;               /* number of bits in current code */
116
  int l;                        /* bits per table (returned in m) */
117
  uInt mask;                    /* (1 << w) - 1, to avoid cc -O bug on HP */
118
  register uIntf *p;            /* pointer into c[], b[], or v[] */
119
  inflate_huft *q;              /* points to current table */
120
  struct inflate_huft_s r;      /* table entry for structure assignment */
121
  inflate_huft *u[BMAX];        /* table stack */
122
  register int w;               /* bits before this table == (l * h) */
123
  uInt x[BMAX+1];               /* bit offsets, then code stack */
124
  uIntf *xp;                    /* pointer into x */
125
  int y;                        /* number of dummy codes added */
126
  uInt z;                       /* number of entries in current table */
127
 
128
 
129
  /* Generate counts for each bit length */
130
  p = c;
131
#define C0 *p++ = 0;
132
#define C2 C0 C0 C0 C0
133
#define C4 C2 C2 C2 C2
134
  C4                            /* clear c[]--assume BMAX+1 is 16 */
135
  p = b;  i = n;
136
  do {
137
    c[*p++]++;                  /* assume all entries <= BMAX */
138
  } while (--i);
139
  if (c[0] == n)                /* null input--all zero length codes */
140
  {
141
    *t = (inflate_huft *)Z_NULL;
142
    *m = 0;
143
    return Z_OK;
144
  }
145
 
146
 
147
  /* Find minimum and maximum length, bound *m by those */
148
  l = *m;
149
  for (j = 1; j <= BMAX; j++)
150
    if (c[j])
151
      break;
152
  k = j;                        /* minimum code length */
153
  if ((uInt)l < j)
154
    l = j;
155
  for (i = BMAX; i; i--)
156
    if (c[i])
157
      break;
158
  g = i;                        /* maximum code length */
159
  if ((uInt)l > i)
160
    l = i;
161
  *m = l;
162
 
163
 
164
  /* Adjust last length count to fill out codes, if needed */
165
  for (y = 1 << j; j < i; j++, y <<= 1)
166
    if ((y -= c[j]) < 0)
167
      return Z_DATA_ERROR;
168
  if ((y -= c[i]) < 0)
169
    return Z_DATA_ERROR;
170
  c[i] += y;
171
 
172
 
173
  /* Generate starting offsets into the value table for each length */
174
  x[1] = j = 0;
175
  p = c + 1;  xp = x + 2;
176
  while (--i) {                 /* note that i == g from above */
177
    *xp++ = (j += *p++);
178
  }
179
 
180
 
181
  /* Make a table of values in order of bit lengths */
182
  p = b;  i = 0;
183
  do {
184
    if ((j = *p++) != 0)
185
      v[x[j]++] = i;
186
  } while (++i < n);
187
  n = x[g];                     /* set n to length of v */
188
 
189
 
190
  /* Generate the Huffman codes and for each, make the table entries */
191
  x[0] = i = 0;                 /* first Huffman code is zero */
192
  p = v;                        /* grab values in bit order */
193
  h = -1;                       /* no tables yet--level -1 */
194
  w = -l;                       /* bits decoded == (l * h) */
195
  u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
196
  q = (inflate_huft *)Z_NULL;   /* ditto */
197
  z = 0;                        /* ditto */
198
 
199
  /* go through the bit lengths (k already is bits in shortest code) */
200
  for (; k <= g; k++)
201
  {
202
    a = c[k];
203
    while (a--)
204
    {
205
      /* here i is the Huffman code of length k bits for value *p */
206
      /* make tables up to required level */
207
      while (k > w + l)
208
      {
209
        h++;
210
        w += l;                 /* previous table always l bits */
211
 
212
        /* compute minimum size table less than or equal to l bits */
213
        z = g - w;
214
        z = z > (uInt)l ? l : z;        /* table size upper limit */
215
        if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
216
        {                       /* too few codes for k-w bit table */
217
          f -= a + 1;           /* deduct codes from patterns left */
218
          xp = c + k;
219
          if (j < z)
220
            while (++j < z)     /* try smaller tables up to z bits */
221
            {
222
              if ((f <<= 1) <= *++xp)
223
                break;          /* enough codes to use up j bits */
224
              f -= *xp;         /* else deduct codes from patterns */
225
            }
226
        }
227
        z = 1 << j;             /* table entries for j-bit table */
228
 
229
        /* allocate new table */
230
        if (*hn + z > MANY)     /* (note: doesn't matter for fixed) */
231
          return Z_MEM_ERROR;   /* not enough memory */
232
        u[h] = q = hp + *hn;
233
        *hn += z;
234
 
235
        /* connect to last table, if there is one */
236
        if (h)
237
        {
238
          x[h] = i;             /* save pattern for backing up */
239
          r.bits = (Byte)l;     /* bits to dump before this table */
240
          r.exop = (Byte)j;     /* bits in this table */
241
          j = i >> (w - l);
242
          r.base = (uInt)(q - u[h-1] - j);   /* offset to this table */
243
          u[h-1][j] = r;        /* connect to last table */
244
        }
245
        else
246
          *t = q;               /* first table is returned result */
247
      }
248
 
249
      /* set up table entry in r */
250
      r.bits = (Byte)(k - w);
251
      if (p >= v + n)
252
        r.exop = 128 + 64;      /* out of values--invalid code */
253
      else if (*p < s)
254
      {
255
        r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
256
        r.base = *p++;          /* simple code is just the value */
257
      }
258
      else
259
      {
260
        r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
261
        r.base = d[*p++ - s];
262
      }
263
 
264
      /* fill code-like entries with r */
265
      f = 1 << (k - w);
266
      for (j = i >> w; j < z; j += f)
267
        q[j] = r;
268
 
269
      /* backwards increment the k-bit code i */
270
      for (j = 1 << (k - 1); i & j; j >>= 1)
271
        i ^= j;
272
      i ^= j;
273
 
274
      /* backup over finished tables */
275
      mask = (1 << w) - 1;      /* needed on HP, cc -O bug */
276
      while ((i & mask) != x[h])
277
      {
278
        h--;                    /* don't need to update q */
279
        w -= l;
280
        mask = (1 << w) - 1;
281
      }
282
    }
283
  }
284
 
285
 
286
  /* Return Z_BUF_ERROR if we were given an incomplete table */
287
  return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
288
}
289
 
290
 
291
int zlib_inflate_trees_bits(c, bb, tb, hp, z)
292
uIntf *c;               /* 19 code lengths */
293
uIntf *bb;              /* bits tree desired/actual depth */
294
inflate_huft * FAR *tb; /* bits tree result */
295
inflate_huft *hp;       /* space for trees */
296
z_streamp z;            /* for messages */
297
{
298
  int r;
299
  uInt hn = 0;          /* hufts used in space */
300
  uIntf *v;             /* work area for huft_build */
301
 
302
  v = WS(z)->tree_work_area_1;
303
  r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL,
304
                 tb, bb, hp, &hn, v);
305
  if (r == Z_DATA_ERROR)
306
    z->msg = (char*)"oversubscribed dynamic bit lengths tree";
307
  else if (r == Z_BUF_ERROR || *bb == 0)
308
  {
309
    z->msg = (char*)"incomplete dynamic bit lengths tree";
310
    r = Z_DATA_ERROR;
311
  }
312
  return r;
313
}
314
 
315
int zlib_inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, hp, z)
316
uInt nl;                /* number of literal/length codes */
317
uInt nd;                /* number of distance codes */
318
uIntf *c;               /* that many (total) code lengths */
319
uIntf *bl;              /* literal desired/actual bit depth */
320
uIntf *bd;              /* distance desired/actual bit depth */
321
inflate_huft * FAR *tl; /* literal/length tree result */
322
inflate_huft * FAR *td; /* distance tree result */
323
inflate_huft *hp;       /* space for trees */
324
z_streamp z;            /* for messages */
325
{
326
  int r;
327
  uInt hn = 0;          /* hufts used in space */
328
  uIntf *v;             /* work area for huft_build */
329
 
330
  /* allocate work area */
331
  v = WS(z)->tree_work_area_2;
332
 
333
  /* build literal/length tree */
334
  r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
335
  if (r != Z_OK || *bl == 0)
336
  {
337
    if (r == Z_DATA_ERROR)
338
      z->msg = (char*)"oversubscribed literal/length tree";
339
    else if (r != Z_MEM_ERROR)
340
    {
341
      z->msg = (char*)"incomplete literal/length tree";
342
      r = Z_DATA_ERROR;
343
    }
344
    return r;
345
  }
346
 
347
  /* build distance tree */
348
  r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
349
  if (r != Z_OK || (*bd == 0 && nl > 257))
350
  {
351
    if (r == Z_DATA_ERROR)
352
      z->msg = (char*)"oversubscribed distance tree";
353
    else if (r == Z_BUF_ERROR) {
354
#ifdef PKZIP_BUG_WORKAROUND
355
      r = Z_OK;
356
    }
357
#else
358
      z->msg = (char*)"incomplete distance tree";
359
      r = Z_DATA_ERROR;
360
    }
361
    else if (r != Z_MEM_ERROR)
362
    {
363
      z->msg = (char*)"empty distance tree with lengths";
364
      r = Z_DATA_ERROR;
365
    }
366
    return r;
367
#endif
368
  }
369
 
370
  /* done */
371
  return Z_OK;
372
}
373
 
374
 
375
/* build fixed tables only once--keep them here */
376
#include "inffixed.h"
377
 
378
 
379
int zlib_inflate_trees_fixed(bl, bd, tl, td, z)
380
uIntf *bl;               /* literal desired/actual bit depth */
381
uIntf *bd;               /* distance desired/actual bit depth */
382
inflate_huft * FAR *tl;  /* literal/length tree result */
383
inflate_huft * FAR *td;  /* distance tree result */
384
z_streamp z;             /* for memory allocation */
385
{
386
  *bl = fixed_bl;
387
  *bd = fixed_bd;
388
  *tl = fixed_tl;
389
  *td = fixed_td;
390
  return Z_OK;
391
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.