1 |
1275 |
phoenix |
/*
|
2 |
|
|
* INET An implementation of the TCP/IP protocol suite for the LINUX
|
3 |
|
|
* operating system. INET is implemented using the BSD Socket
|
4 |
|
|
* interface as the means of communication with the user level.
|
5 |
|
|
*
|
6 |
|
|
* Implementation of the Transmission Control Protocol(TCP).
|
7 |
|
|
*
|
8 |
|
|
* Version: $Id: tcp_minisocks.c,v 1.1.1.1 2004-04-15 01:13:21 phoenix Exp $
|
9 |
|
|
*
|
10 |
|
|
* Authors: Ross Biro, <bir7@leland.Stanford.Edu>
|
11 |
|
|
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
|
12 |
|
|
* Mark Evans, <evansmp@uhura.aston.ac.uk>
|
13 |
|
|
* Corey Minyard <wf-rch!minyard@relay.EU.net>
|
14 |
|
|
* Florian La Roche, <flla@stud.uni-sb.de>
|
15 |
|
|
* Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
|
16 |
|
|
* Linus Torvalds, <torvalds@cs.helsinki.fi>
|
17 |
|
|
* Alan Cox, <gw4pts@gw4pts.ampr.org>
|
18 |
|
|
* Matthew Dillon, <dillon@apollo.west.oic.com>
|
19 |
|
|
* Arnt Gulbrandsen, <agulbra@nvg.unit.no>
|
20 |
|
|
* Jorge Cwik, <jorge@laser.satlink.net>
|
21 |
|
|
*/
|
22 |
|
|
|
23 |
|
|
#include <linux/config.h>
|
24 |
|
|
#include <linux/mm.h>
|
25 |
|
|
#include <linux/sysctl.h>
|
26 |
|
|
#include <net/tcp.h>
|
27 |
|
|
#include <net/inet_common.h>
|
28 |
|
|
|
29 |
|
|
#ifdef CONFIG_SYSCTL
|
30 |
|
|
#define SYNC_INIT 0 /* let the user enable it */
|
31 |
|
|
#else
|
32 |
|
|
#define SYNC_INIT 1
|
33 |
|
|
#endif
|
34 |
|
|
|
35 |
|
|
int sysctl_tcp_tw_recycle = 0;
|
36 |
|
|
int sysctl_tcp_max_tw_buckets = NR_FILE*2;
|
37 |
|
|
|
38 |
|
|
int sysctl_tcp_syncookies = SYNC_INIT;
|
39 |
|
|
int sysctl_tcp_abort_on_overflow = 0;
|
40 |
|
|
|
41 |
|
|
static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
|
42 |
|
|
{
|
43 |
|
|
if (seq == s_win)
|
44 |
|
|
return 1;
|
45 |
|
|
if (after(end_seq, s_win) && before(seq, e_win))
|
46 |
|
|
return 1;
|
47 |
|
|
return (seq == e_win && seq == end_seq);
|
48 |
|
|
}
|
49 |
|
|
|
50 |
|
|
/* New-style handling of TIME_WAIT sockets. */
|
51 |
|
|
|
52 |
|
|
int tcp_tw_count = 0;
|
53 |
|
|
|
54 |
|
|
|
55 |
|
|
/* Must be called with locally disabled BHs. */
|
56 |
|
|
void tcp_timewait_kill(struct tcp_tw_bucket *tw)
|
57 |
|
|
{
|
58 |
|
|
struct tcp_ehash_bucket *ehead;
|
59 |
|
|
struct tcp_bind_hashbucket *bhead;
|
60 |
|
|
struct tcp_bind_bucket *tb;
|
61 |
|
|
|
62 |
|
|
/* Unlink from established hashes. */
|
63 |
|
|
ehead = &tcp_ehash[tw->hashent];
|
64 |
|
|
write_lock(&ehead->lock);
|
65 |
|
|
if (!tw->pprev) {
|
66 |
|
|
write_unlock(&ehead->lock);
|
67 |
|
|
return;
|
68 |
|
|
}
|
69 |
|
|
if(tw->next)
|
70 |
|
|
tw->next->pprev = tw->pprev;
|
71 |
|
|
*(tw->pprev) = tw->next;
|
72 |
|
|
tw->pprev = NULL;
|
73 |
|
|
write_unlock(&ehead->lock);
|
74 |
|
|
|
75 |
|
|
/* Disassociate with bind bucket. */
|
76 |
|
|
bhead = &tcp_bhash[tcp_bhashfn(tw->num)];
|
77 |
|
|
spin_lock(&bhead->lock);
|
78 |
|
|
tb = tw->tb;
|
79 |
|
|
if(tw->bind_next)
|
80 |
|
|
tw->bind_next->bind_pprev = tw->bind_pprev;
|
81 |
|
|
*(tw->bind_pprev) = tw->bind_next;
|
82 |
|
|
tw->tb = NULL;
|
83 |
|
|
if (tb->owners == NULL) {
|
84 |
|
|
if (tb->next)
|
85 |
|
|
tb->next->pprev = tb->pprev;
|
86 |
|
|
*(tb->pprev) = tb->next;
|
87 |
|
|
kmem_cache_free(tcp_bucket_cachep, tb);
|
88 |
|
|
}
|
89 |
|
|
spin_unlock(&bhead->lock);
|
90 |
|
|
|
91 |
|
|
#ifdef INET_REFCNT_DEBUG
|
92 |
|
|
if (atomic_read(&tw->refcnt) != 1) {
|
93 |
|
|
printk(KERN_DEBUG "tw_bucket %p refcnt=%d\n", tw, atomic_read(&tw->refcnt));
|
94 |
|
|
}
|
95 |
|
|
#endif
|
96 |
|
|
tcp_tw_put(tw);
|
97 |
|
|
}
|
98 |
|
|
|
99 |
|
|
/*
|
100 |
|
|
* * Main purpose of TIME-WAIT state is to close connection gracefully,
|
101 |
|
|
* when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
|
102 |
|
|
* (and, probably, tail of data) and one or more our ACKs are lost.
|
103 |
|
|
* * What is TIME-WAIT timeout? It is associated with maximal packet
|
104 |
|
|
* lifetime in the internet, which results in wrong conclusion, that
|
105 |
|
|
* it is set to catch "old duplicate segments" wandering out of their path.
|
106 |
|
|
* It is not quite correct. This timeout is calculated so that it exceeds
|
107 |
|
|
* maximal retransmission timeout enough to allow to lose one (or more)
|
108 |
|
|
* segments sent by peer and our ACKs. This time may be calculated from RTO.
|
109 |
|
|
* * When TIME-WAIT socket receives RST, it means that another end
|
110 |
|
|
* finally closed and we are allowed to kill TIME-WAIT too.
|
111 |
|
|
* * Second purpose of TIME-WAIT is catching old duplicate segments.
|
112 |
|
|
* Well, certainly it is pure paranoia, but if we load TIME-WAIT
|
113 |
|
|
* with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
|
114 |
|
|
* * If we invented some more clever way to catch duplicates
|
115 |
|
|
* (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
|
116 |
|
|
*
|
117 |
|
|
* The algorithm below is based on FORMAL INTERPRETATION of RFCs.
|
118 |
|
|
* When you compare it to RFCs, please, read section SEGMENT ARRIVES
|
119 |
|
|
* from the very beginning.
|
120 |
|
|
*
|
121 |
|
|
* NOTE. With recycling (and later with fin-wait-2) TW bucket
|
122 |
|
|
* is _not_ stateless. It means, that strictly speaking we must
|
123 |
|
|
* spinlock it. I do not want! Well, probability of misbehaviour
|
124 |
|
|
* is ridiculously low and, seems, we could use some mb() tricks
|
125 |
|
|
* to avoid misread sequence numbers, states etc. --ANK
|
126 |
|
|
*/
|
127 |
|
|
enum tcp_tw_status
|
128 |
|
|
tcp_timewait_state_process(struct tcp_tw_bucket *tw, struct sk_buff *skb,
|
129 |
|
|
struct tcphdr *th, unsigned len)
|
130 |
|
|
{
|
131 |
|
|
struct tcp_opt tp;
|
132 |
|
|
int paws_reject = 0;
|
133 |
|
|
|
134 |
|
|
tp.saw_tstamp = 0;
|
135 |
|
|
if (th->doff > (sizeof(struct tcphdr)>>2) && tw->ts_recent_stamp) {
|
136 |
|
|
tcp_parse_options(skb, &tp, 0);
|
137 |
|
|
|
138 |
|
|
if (tp.saw_tstamp) {
|
139 |
|
|
tp.ts_recent = tw->ts_recent;
|
140 |
|
|
tp.ts_recent_stamp = tw->ts_recent_stamp;
|
141 |
|
|
paws_reject = tcp_paws_check(&tp, th->rst);
|
142 |
|
|
}
|
143 |
|
|
}
|
144 |
|
|
|
145 |
|
|
if (tw->substate == TCP_FIN_WAIT2) {
|
146 |
|
|
/* Just repeat all the checks of tcp_rcv_state_process() */
|
147 |
|
|
|
148 |
|
|
/* Out of window, send ACK */
|
149 |
|
|
if (paws_reject ||
|
150 |
|
|
!tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
|
151 |
|
|
tw->rcv_nxt, tw->rcv_nxt + tw->rcv_wnd))
|
152 |
|
|
return TCP_TW_ACK;
|
153 |
|
|
|
154 |
|
|
if (th->rst)
|
155 |
|
|
goto kill;
|
156 |
|
|
|
157 |
|
|
if (th->syn && !before(TCP_SKB_CB(skb)->seq, tw->rcv_nxt))
|
158 |
|
|
goto kill_with_rst;
|
159 |
|
|
|
160 |
|
|
/* Dup ACK? */
|
161 |
|
|
if (!after(TCP_SKB_CB(skb)->end_seq, tw->rcv_nxt) ||
|
162 |
|
|
TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
|
163 |
|
|
tcp_tw_put(tw);
|
164 |
|
|
return TCP_TW_SUCCESS;
|
165 |
|
|
}
|
166 |
|
|
|
167 |
|
|
/* New data or FIN. If new data arrive after half-duplex close,
|
168 |
|
|
* reset.
|
169 |
|
|
*/
|
170 |
|
|
if (!th->fin || TCP_SKB_CB(skb)->end_seq != tw->rcv_nxt+1) {
|
171 |
|
|
kill_with_rst:
|
172 |
|
|
tcp_tw_deschedule(tw);
|
173 |
|
|
tcp_timewait_kill(tw);
|
174 |
|
|
tcp_tw_put(tw);
|
175 |
|
|
return TCP_TW_RST;
|
176 |
|
|
}
|
177 |
|
|
|
178 |
|
|
/* FIN arrived, enter true time-wait state. */
|
179 |
|
|
tw->substate = TCP_TIME_WAIT;
|
180 |
|
|
tw->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
|
181 |
|
|
if (tp.saw_tstamp) {
|
182 |
|
|
tw->ts_recent_stamp = xtime.tv_sec;
|
183 |
|
|
tw->ts_recent = tp.rcv_tsval;
|
184 |
|
|
}
|
185 |
|
|
|
186 |
|
|
/* I am shamed, but failed to make it more elegant.
|
187 |
|
|
* Yes, it is direct reference to IP, which is impossible
|
188 |
|
|
* to generalize to IPv6. Taking into account that IPv6
|
189 |
|
|
* do not undertsnad recycling in any case, it not
|
190 |
|
|
* a big problem in practice. --ANK */
|
191 |
|
|
if (tw->family == AF_INET &&
|
192 |
|
|
sysctl_tcp_tw_recycle && tw->ts_recent_stamp &&
|
193 |
|
|
tcp_v4_tw_remember_stamp(tw))
|
194 |
|
|
tcp_tw_schedule(tw, tw->timeout);
|
195 |
|
|
else
|
196 |
|
|
tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
|
197 |
|
|
return TCP_TW_ACK;
|
198 |
|
|
}
|
199 |
|
|
|
200 |
|
|
/*
|
201 |
|
|
* Now real TIME-WAIT state.
|
202 |
|
|
*
|
203 |
|
|
* RFC 1122:
|
204 |
|
|
* "When a connection is [...] on TIME-WAIT state [...]
|
205 |
|
|
* [a TCP] MAY accept a new SYN from the remote TCP to
|
206 |
|
|
* reopen the connection directly, if it:
|
207 |
|
|
*
|
208 |
|
|
* (1) assigns its initial sequence number for the new
|
209 |
|
|
* connection to be larger than the largest sequence
|
210 |
|
|
* number it used on the previous connection incarnation,
|
211 |
|
|
* and
|
212 |
|
|
*
|
213 |
|
|
* (2) returns to TIME-WAIT state if the SYN turns out
|
214 |
|
|
* to be an old duplicate".
|
215 |
|
|
*/
|
216 |
|
|
|
217 |
|
|
if (!paws_reject &&
|
218 |
|
|
(TCP_SKB_CB(skb)->seq == tw->rcv_nxt &&
|
219 |
|
|
(TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
|
220 |
|
|
/* In window segment, it may be only reset or bare ack. */
|
221 |
|
|
|
222 |
|
|
if (th->rst) {
|
223 |
|
|
/* This is TIME_WAIT assasination, in two flavors.
|
224 |
|
|
* Oh well... nobody has a sufficient solution to this
|
225 |
|
|
* protocol bug yet.
|
226 |
|
|
*/
|
227 |
|
|
if (sysctl_tcp_rfc1337 == 0) {
|
228 |
|
|
kill:
|
229 |
|
|
tcp_tw_deschedule(tw);
|
230 |
|
|
tcp_timewait_kill(tw);
|
231 |
|
|
tcp_tw_put(tw);
|
232 |
|
|
return TCP_TW_SUCCESS;
|
233 |
|
|
}
|
234 |
|
|
}
|
235 |
|
|
tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
|
236 |
|
|
|
237 |
|
|
if (tp.saw_tstamp) {
|
238 |
|
|
tw->ts_recent = tp.rcv_tsval;
|
239 |
|
|
tw->ts_recent_stamp = xtime.tv_sec;
|
240 |
|
|
}
|
241 |
|
|
|
242 |
|
|
tcp_tw_put(tw);
|
243 |
|
|
return TCP_TW_SUCCESS;
|
244 |
|
|
}
|
245 |
|
|
|
246 |
|
|
/* Out of window segment.
|
247 |
|
|
|
248 |
|
|
All the segments are ACKed immediately.
|
249 |
|
|
|
250 |
|
|
The only exception is new SYN. We accept it, if it is
|
251 |
|
|
not old duplicate and we are not in danger to be killed
|
252 |
|
|
by delayed old duplicates. RFC check is that it has
|
253 |
|
|
newer sequence number works at rates <40Mbit/sec.
|
254 |
|
|
However, if paws works, it is reliable AND even more,
|
255 |
|
|
we even may relax silly seq space cutoff.
|
256 |
|
|
|
257 |
|
|
RED-PEN: we violate main RFC requirement, if this SYN will appear
|
258 |
|
|
old duplicate (i.e. we receive RST in reply to SYN-ACK),
|
259 |
|
|
we must return socket to time-wait state. It is not good,
|
260 |
|
|
but not fatal yet.
|
261 |
|
|
*/
|
262 |
|
|
|
263 |
|
|
if (th->syn && !th->rst && !th->ack && !paws_reject &&
|
264 |
|
|
(after(TCP_SKB_CB(skb)->seq, tw->rcv_nxt) ||
|
265 |
|
|
(tp.saw_tstamp && (s32)(tw->ts_recent - tp.rcv_tsval) < 0))) {
|
266 |
|
|
u32 isn = tw->snd_nxt+65535+2;
|
267 |
|
|
if (isn == 0)
|
268 |
|
|
isn++;
|
269 |
|
|
TCP_SKB_CB(skb)->when = isn;
|
270 |
|
|
return TCP_TW_SYN;
|
271 |
|
|
}
|
272 |
|
|
|
273 |
|
|
if (paws_reject)
|
274 |
|
|
NET_INC_STATS_BH(PAWSEstabRejected);
|
275 |
|
|
|
276 |
|
|
if(!th->rst) {
|
277 |
|
|
/* In this case we must reset the TIMEWAIT timer.
|
278 |
|
|
*
|
279 |
|
|
* If it is ACKless SYN it may be both old duplicate
|
280 |
|
|
* and new good SYN with random sequence number <rcv_nxt.
|
281 |
|
|
* Do not reschedule in the last case.
|
282 |
|
|
*/
|
283 |
|
|
if (paws_reject || th->ack)
|
284 |
|
|
tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
|
285 |
|
|
|
286 |
|
|
/* Send ACK. Note, we do not put the bucket,
|
287 |
|
|
* it will be released by caller.
|
288 |
|
|
*/
|
289 |
|
|
return TCP_TW_ACK;
|
290 |
|
|
}
|
291 |
|
|
tcp_tw_put(tw);
|
292 |
|
|
return TCP_TW_SUCCESS;
|
293 |
|
|
}
|
294 |
|
|
|
295 |
|
|
/* Enter the time wait state. This is called with locally disabled BH.
|
296 |
|
|
* Essentially we whip up a timewait bucket, copy the
|
297 |
|
|
* relevant info into it from the SK, and mess with hash chains
|
298 |
|
|
* and list linkage.
|
299 |
|
|
*/
|
300 |
|
|
static void __tcp_tw_hashdance(struct sock *sk, struct tcp_tw_bucket *tw)
|
301 |
|
|
{
|
302 |
|
|
struct tcp_ehash_bucket *ehead = &tcp_ehash[sk->hashent];
|
303 |
|
|
struct tcp_bind_hashbucket *bhead;
|
304 |
|
|
struct sock **head, *sktw;
|
305 |
|
|
|
306 |
|
|
/* Step 1: Put TW into bind hash. Original socket stays there too.
|
307 |
|
|
Note, that any socket with sk->num!=0 MUST be bound in binding
|
308 |
|
|
cache, even if it is closed.
|
309 |
|
|
*/
|
310 |
|
|
bhead = &tcp_bhash[tcp_bhashfn(sk->num)];
|
311 |
|
|
spin_lock(&bhead->lock);
|
312 |
|
|
tw->tb = (struct tcp_bind_bucket *)sk->prev;
|
313 |
|
|
BUG_TRAP(sk->prev!=NULL);
|
314 |
|
|
if ((tw->bind_next = tw->tb->owners) != NULL)
|
315 |
|
|
tw->tb->owners->bind_pprev = &tw->bind_next;
|
316 |
|
|
tw->tb->owners = (struct sock*)tw;
|
317 |
|
|
tw->bind_pprev = &tw->tb->owners;
|
318 |
|
|
spin_unlock(&bhead->lock);
|
319 |
|
|
|
320 |
|
|
write_lock(&ehead->lock);
|
321 |
|
|
|
322 |
|
|
/* Step 2: Remove SK from established hash. */
|
323 |
|
|
if (sk->pprev) {
|
324 |
|
|
if(sk->next)
|
325 |
|
|
sk->next->pprev = sk->pprev;
|
326 |
|
|
*sk->pprev = sk->next;
|
327 |
|
|
sk->pprev = NULL;
|
328 |
|
|
sock_prot_dec_use(sk->prot);
|
329 |
|
|
}
|
330 |
|
|
|
331 |
|
|
/* Step 3: Hash TW into TIMEWAIT half of established hash table. */
|
332 |
|
|
head = &(ehead + tcp_ehash_size)->chain;
|
333 |
|
|
sktw = (struct sock *)tw;
|
334 |
|
|
if((sktw->next = *head) != NULL)
|
335 |
|
|
(*head)->pprev = &sktw->next;
|
336 |
|
|
*head = sktw;
|
337 |
|
|
sktw->pprev = head;
|
338 |
|
|
atomic_inc(&tw->refcnt);
|
339 |
|
|
|
340 |
|
|
write_unlock(&ehead->lock);
|
341 |
|
|
}
|
342 |
|
|
|
343 |
|
|
/*
|
344 |
|
|
* Move a socket to time-wait or dead fin-wait-2 state.
|
345 |
|
|
*/
|
346 |
|
|
void tcp_time_wait(struct sock *sk, int state, int timeo)
|
347 |
|
|
{
|
348 |
|
|
struct tcp_tw_bucket *tw = NULL;
|
349 |
|
|
struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
|
350 |
|
|
int recycle_ok = 0;
|
351 |
|
|
|
352 |
|
|
if (sysctl_tcp_tw_recycle && tp->ts_recent_stamp)
|
353 |
|
|
recycle_ok = tp->af_specific->remember_stamp(sk);
|
354 |
|
|
|
355 |
|
|
if (tcp_tw_count < sysctl_tcp_max_tw_buckets)
|
356 |
|
|
tw = kmem_cache_alloc(tcp_timewait_cachep, SLAB_ATOMIC);
|
357 |
|
|
|
358 |
|
|
if(tw != NULL) {
|
359 |
|
|
int rto = (tp->rto<<2) - (tp->rto>>1);
|
360 |
|
|
|
361 |
|
|
/* Give us an identity. */
|
362 |
|
|
tw->daddr = sk->daddr;
|
363 |
|
|
tw->rcv_saddr = sk->rcv_saddr;
|
364 |
|
|
tw->bound_dev_if= sk->bound_dev_if;
|
365 |
|
|
tw->num = sk->num;
|
366 |
|
|
tw->state = TCP_TIME_WAIT;
|
367 |
|
|
tw->substate = state;
|
368 |
|
|
tw->sport = sk->sport;
|
369 |
|
|
tw->dport = sk->dport;
|
370 |
|
|
tw->family = sk->family;
|
371 |
|
|
tw->reuse = sk->reuse;
|
372 |
|
|
tw->rcv_wscale = tp->rcv_wscale;
|
373 |
|
|
atomic_set(&tw->refcnt, 1);
|
374 |
|
|
|
375 |
|
|
tw->hashent = sk->hashent;
|
376 |
|
|
tw->rcv_nxt = tp->rcv_nxt;
|
377 |
|
|
tw->snd_nxt = tp->snd_nxt;
|
378 |
|
|
tw->rcv_wnd = tcp_receive_window(tp);
|
379 |
|
|
tw->ts_recent = tp->ts_recent;
|
380 |
|
|
tw->ts_recent_stamp= tp->ts_recent_stamp;
|
381 |
|
|
tw->pprev_death = NULL;
|
382 |
|
|
|
383 |
|
|
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
|
384 |
|
|
if(tw->family == PF_INET6) {
|
385 |
|
|
memcpy(&tw->v6_daddr,
|
386 |
|
|
&sk->net_pinfo.af_inet6.daddr,
|
387 |
|
|
sizeof(struct in6_addr));
|
388 |
|
|
memcpy(&tw->v6_rcv_saddr,
|
389 |
|
|
&sk->net_pinfo.af_inet6.rcv_saddr,
|
390 |
|
|
sizeof(struct in6_addr));
|
391 |
|
|
}
|
392 |
|
|
#endif
|
393 |
|
|
/* Linkage updates. */
|
394 |
|
|
__tcp_tw_hashdance(sk, tw);
|
395 |
|
|
|
396 |
|
|
/* Get the TIME_WAIT timeout firing. */
|
397 |
|
|
if (timeo < rto)
|
398 |
|
|
timeo = rto;
|
399 |
|
|
|
400 |
|
|
if (recycle_ok) {
|
401 |
|
|
tw->timeout = rto;
|
402 |
|
|
} else {
|
403 |
|
|
tw->timeout = TCP_TIMEWAIT_LEN;
|
404 |
|
|
if (state == TCP_TIME_WAIT)
|
405 |
|
|
timeo = TCP_TIMEWAIT_LEN;
|
406 |
|
|
}
|
407 |
|
|
|
408 |
|
|
tcp_tw_schedule(tw, timeo);
|
409 |
|
|
tcp_tw_put(tw);
|
410 |
|
|
} else {
|
411 |
|
|
/* Sorry, if we're out of memory, just CLOSE this
|
412 |
|
|
* socket up. We've got bigger problems than
|
413 |
|
|
* non-graceful socket closings.
|
414 |
|
|
*/
|
415 |
|
|
if (net_ratelimit())
|
416 |
|
|
printk(KERN_INFO "TCP: time wait bucket table overflow\n");
|
417 |
|
|
}
|
418 |
|
|
|
419 |
|
|
tcp_update_metrics(sk);
|
420 |
|
|
tcp_done(sk);
|
421 |
|
|
}
|
422 |
|
|
|
423 |
|
|
/* Kill off TIME_WAIT sockets once their lifetime has expired. */
|
424 |
|
|
static int tcp_tw_death_row_slot = 0;
|
425 |
|
|
|
426 |
|
|
static void tcp_twkill(unsigned long);
|
427 |
|
|
|
428 |
|
|
static struct tcp_tw_bucket *tcp_tw_death_row[TCP_TWKILL_SLOTS];
|
429 |
|
|
static spinlock_t tw_death_lock = SPIN_LOCK_UNLOCKED;
|
430 |
|
|
static struct timer_list tcp_tw_timer = { function: tcp_twkill };
|
431 |
|
|
|
432 |
|
|
static void SMP_TIMER_NAME(tcp_twkill)(unsigned long dummy)
|
433 |
|
|
{
|
434 |
|
|
struct tcp_tw_bucket *tw;
|
435 |
|
|
int killed = 0;
|
436 |
|
|
|
437 |
|
|
/* NOTE: compare this to previous version where lock
|
438 |
|
|
* was released after detaching chain. It was racy,
|
439 |
|
|
* because tw buckets are scheduled in not serialized context
|
440 |
|
|
* in 2.3 (with netfilter), and with softnet it is common, because
|
441 |
|
|
* soft irqs are not sequenced.
|
442 |
|
|
*/
|
443 |
|
|
spin_lock(&tw_death_lock);
|
444 |
|
|
|
445 |
|
|
if (tcp_tw_count == 0)
|
446 |
|
|
goto out;
|
447 |
|
|
|
448 |
|
|
while((tw = tcp_tw_death_row[tcp_tw_death_row_slot]) != NULL) {
|
449 |
|
|
tcp_tw_death_row[tcp_tw_death_row_slot] = tw->next_death;
|
450 |
|
|
if (tw->next_death)
|
451 |
|
|
tw->next_death->pprev_death = tw->pprev_death;
|
452 |
|
|
tw->pprev_death = NULL;
|
453 |
|
|
spin_unlock(&tw_death_lock);
|
454 |
|
|
|
455 |
|
|
tcp_timewait_kill(tw);
|
456 |
|
|
tcp_tw_put(tw);
|
457 |
|
|
|
458 |
|
|
killed++;
|
459 |
|
|
|
460 |
|
|
spin_lock(&tw_death_lock);
|
461 |
|
|
}
|
462 |
|
|
tcp_tw_death_row_slot =
|
463 |
|
|
((tcp_tw_death_row_slot + 1) & (TCP_TWKILL_SLOTS - 1));
|
464 |
|
|
|
465 |
|
|
if ((tcp_tw_count -= killed) != 0)
|
466 |
|
|
mod_timer(&tcp_tw_timer, jiffies+TCP_TWKILL_PERIOD);
|
467 |
|
|
net_statistics[smp_processor_id()*2].TimeWaited += killed;
|
468 |
|
|
out:
|
469 |
|
|
spin_unlock(&tw_death_lock);
|
470 |
|
|
}
|
471 |
|
|
|
472 |
|
|
SMP_TIMER_DEFINE(tcp_twkill, tcp_twkill_task);
|
473 |
|
|
|
474 |
|
|
/* These are always called from BH context. See callers in
|
475 |
|
|
* tcp_input.c to verify this.
|
476 |
|
|
*/
|
477 |
|
|
|
478 |
|
|
/* This is for handling early-kills of TIME_WAIT sockets. */
|
479 |
|
|
void tcp_tw_deschedule(struct tcp_tw_bucket *tw)
|
480 |
|
|
{
|
481 |
|
|
spin_lock(&tw_death_lock);
|
482 |
|
|
if (tw->pprev_death) {
|
483 |
|
|
if(tw->next_death)
|
484 |
|
|
tw->next_death->pprev_death = tw->pprev_death;
|
485 |
|
|
*tw->pprev_death = tw->next_death;
|
486 |
|
|
tw->pprev_death = NULL;
|
487 |
|
|
tcp_tw_put(tw);
|
488 |
|
|
if (--tcp_tw_count == 0)
|
489 |
|
|
del_timer(&tcp_tw_timer);
|
490 |
|
|
}
|
491 |
|
|
spin_unlock(&tw_death_lock);
|
492 |
|
|
}
|
493 |
|
|
|
494 |
|
|
/* Short-time timewait calendar */
|
495 |
|
|
|
496 |
|
|
static int tcp_twcal_hand = -1;
|
497 |
|
|
static int tcp_twcal_jiffie;
|
498 |
|
|
static void tcp_twcal_tick(unsigned long);
|
499 |
|
|
static struct timer_list tcp_twcal_timer = {function: tcp_twcal_tick};
|
500 |
|
|
static struct tcp_tw_bucket *tcp_twcal_row[TCP_TW_RECYCLE_SLOTS];
|
501 |
|
|
|
502 |
|
|
void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo)
|
503 |
|
|
{
|
504 |
|
|
struct tcp_tw_bucket **tpp;
|
505 |
|
|
int slot;
|
506 |
|
|
|
507 |
|
|
/* timeout := RTO * 3.5
|
508 |
|
|
*
|
509 |
|
|
* 3.5 = 1+2+0.5 to wait for two retransmits.
|
510 |
|
|
*
|
511 |
|
|
* RATIONALE: if FIN arrived and we entered TIME-WAIT state,
|
512 |
|
|
* our ACK acking that FIN can be lost. If N subsequent retransmitted
|
513 |
|
|
* FINs (or previous seqments) are lost (probability of such event
|
514 |
|
|
* is p^(N+1), where p is probability to lose single packet and
|
515 |
|
|
* time to detect the loss is about RTO*(2^N - 1) with exponential
|
516 |
|
|
* backoff). Normal timewait length is calculated so, that we
|
517 |
|
|
* waited at least for one retransmitted FIN (maximal RTO is 120sec).
|
518 |
|
|
* [ BTW Linux. following BSD, violates this requirement waiting
|
519 |
|
|
* only for 60sec, we should wait at least for 240 secs.
|
520 |
|
|
* Well, 240 consumes too much of resources 8)
|
521 |
|
|
* ]
|
522 |
|
|
* This interval is not reduced to catch old duplicate and
|
523 |
|
|
* responces to our wandering segments living for two MSLs.
|
524 |
|
|
* However, if we use PAWS to detect
|
525 |
|
|
* old duplicates, we can reduce the interval to bounds required
|
526 |
|
|
* by RTO, rather than MSL. So, if peer understands PAWS, we
|
527 |
|
|
* kill tw bucket after 3.5*RTO (it is important that this number
|
528 |
|
|
* is greater than TS tick!) and detect old duplicates with help
|
529 |
|
|
* of PAWS.
|
530 |
|
|
*/
|
531 |
|
|
slot = (timeo + (1<<TCP_TW_RECYCLE_TICK) - 1) >> TCP_TW_RECYCLE_TICK;
|
532 |
|
|
|
533 |
|
|
spin_lock(&tw_death_lock);
|
534 |
|
|
|
535 |
|
|
/* Unlink it, if it was scheduled */
|
536 |
|
|
if (tw->pprev_death) {
|
537 |
|
|
if(tw->next_death)
|
538 |
|
|
tw->next_death->pprev_death = tw->pprev_death;
|
539 |
|
|
*tw->pprev_death = tw->next_death;
|
540 |
|
|
tw->pprev_death = NULL;
|
541 |
|
|
tcp_tw_count--;
|
542 |
|
|
} else
|
543 |
|
|
atomic_inc(&tw->refcnt);
|
544 |
|
|
|
545 |
|
|
if (slot >= TCP_TW_RECYCLE_SLOTS) {
|
546 |
|
|
/* Schedule to slow timer */
|
547 |
|
|
if (timeo >= TCP_TIMEWAIT_LEN) {
|
548 |
|
|
slot = TCP_TWKILL_SLOTS-1;
|
549 |
|
|
} else {
|
550 |
|
|
slot = (timeo + TCP_TWKILL_PERIOD-1) / TCP_TWKILL_PERIOD;
|
551 |
|
|
if (slot >= TCP_TWKILL_SLOTS)
|
552 |
|
|
slot = TCP_TWKILL_SLOTS-1;
|
553 |
|
|
}
|
554 |
|
|
tw->ttd = jiffies + timeo;
|
555 |
|
|
slot = (tcp_tw_death_row_slot + slot) & (TCP_TWKILL_SLOTS - 1);
|
556 |
|
|
tpp = &tcp_tw_death_row[slot];
|
557 |
|
|
} else {
|
558 |
|
|
tw->ttd = jiffies + (slot<<TCP_TW_RECYCLE_TICK);
|
559 |
|
|
|
560 |
|
|
if (tcp_twcal_hand < 0) {
|
561 |
|
|
tcp_twcal_hand = 0;
|
562 |
|
|
tcp_twcal_jiffie = jiffies;
|
563 |
|
|
tcp_twcal_timer.expires = tcp_twcal_jiffie + (slot<<TCP_TW_RECYCLE_TICK);
|
564 |
|
|
add_timer(&tcp_twcal_timer);
|
565 |
|
|
} else {
|
566 |
|
|
if ((long)(tcp_twcal_timer.expires - jiffies) > (slot<<TCP_TW_RECYCLE_TICK))
|
567 |
|
|
mod_timer(&tcp_twcal_timer, jiffies + (slot<<TCP_TW_RECYCLE_TICK));
|
568 |
|
|
slot = (tcp_twcal_hand + slot)&(TCP_TW_RECYCLE_SLOTS-1);
|
569 |
|
|
}
|
570 |
|
|
tpp = &tcp_twcal_row[slot];
|
571 |
|
|
}
|
572 |
|
|
|
573 |
|
|
if((tw->next_death = *tpp) != NULL)
|
574 |
|
|
(*tpp)->pprev_death = &tw->next_death;
|
575 |
|
|
*tpp = tw;
|
576 |
|
|
tw->pprev_death = tpp;
|
577 |
|
|
|
578 |
|
|
if (tcp_tw_count++ == 0)
|
579 |
|
|
mod_timer(&tcp_tw_timer, jiffies+TCP_TWKILL_PERIOD);
|
580 |
|
|
spin_unlock(&tw_death_lock);
|
581 |
|
|
}
|
582 |
|
|
|
583 |
|
|
void SMP_TIMER_NAME(tcp_twcal_tick)(unsigned long dummy)
|
584 |
|
|
{
|
585 |
|
|
int n, slot;
|
586 |
|
|
unsigned long j;
|
587 |
|
|
unsigned long now = jiffies;
|
588 |
|
|
int killed = 0;
|
589 |
|
|
int adv = 0;
|
590 |
|
|
|
591 |
|
|
spin_lock(&tw_death_lock);
|
592 |
|
|
if (tcp_twcal_hand < 0)
|
593 |
|
|
goto out;
|
594 |
|
|
|
595 |
|
|
slot = tcp_twcal_hand;
|
596 |
|
|
j = tcp_twcal_jiffie;
|
597 |
|
|
|
598 |
|
|
for (n=0; n<TCP_TW_RECYCLE_SLOTS; n++) {
|
599 |
|
|
if ((long)(j - now) <= 0) {
|
600 |
|
|
struct tcp_tw_bucket *tw;
|
601 |
|
|
|
602 |
|
|
while((tw = tcp_twcal_row[slot]) != NULL) {
|
603 |
|
|
tcp_twcal_row[slot] = tw->next_death;
|
604 |
|
|
tw->pprev_death = NULL;
|
605 |
|
|
|
606 |
|
|
tcp_timewait_kill(tw);
|
607 |
|
|
tcp_tw_put(tw);
|
608 |
|
|
killed++;
|
609 |
|
|
}
|
610 |
|
|
} else {
|
611 |
|
|
if (!adv) {
|
612 |
|
|
adv = 1;
|
613 |
|
|
tcp_twcal_jiffie = j;
|
614 |
|
|
tcp_twcal_hand = slot;
|
615 |
|
|
}
|
616 |
|
|
|
617 |
|
|
if (tcp_twcal_row[slot] != NULL) {
|
618 |
|
|
mod_timer(&tcp_twcal_timer, j);
|
619 |
|
|
goto out;
|
620 |
|
|
}
|
621 |
|
|
}
|
622 |
|
|
j += (1<<TCP_TW_RECYCLE_TICK);
|
623 |
|
|
slot = (slot+1)&(TCP_TW_RECYCLE_SLOTS-1);
|
624 |
|
|
}
|
625 |
|
|
tcp_twcal_hand = -1;
|
626 |
|
|
|
627 |
|
|
out:
|
628 |
|
|
if ((tcp_tw_count -= killed) == 0)
|
629 |
|
|
del_timer(&tcp_tw_timer);
|
630 |
|
|
net_statistics[smp_processor_id()*2].TimeWaitKilled += killed;
|
631 |
|
|
spin_unlock(&tw_death_lock);
|
632 |
|
|
}
|
633 |
|
|
|
634 |
|
|
SMP_TIMER_DEFINE(tcp_twcal_tick, tcp_twcal_tasklet);
|
635 |
|
|
|
636 |
|
|
|
637 |
|
|
/* This is not only more efficient than what we used to do, it eliminates
|
638 |
|
|
* a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
|
639 |
|
|
*
|
640 |
|
|
* Actually, we could lots of memory writes here. tp of listening
|
641 |
|
|
* socket contains all necessary default parameters.
|
642 |
|
|
*/
|
643 |
|
|
struct sock *tcp_create_openreq_child(struct sock *sk, struct open_request *req, struct sk_buff *skb)
|
644 |
|
|
{
|
645 |
|
|
struct sock *newsk = sk_alloc(PF_INET, GFP_ATOMIC, 0);
|
646 |
|
|
|
647 |
|
|
if(newsk != NULL) {
|
648 |
|
|
struct tcp_opt *newtp;
|
649 |
|
|
#ifdef CONFIG_FILTER
|
650 |
|
|
struct sk_filter *filter;
|
651 |
|
|
#endif
|
652 |
|
|
|
653 |
|
|
memcpy(newsk, sk, sizeof(*newsk));
|
654 |
|
|
newsk->state = TCP_SYN_RECV;
|
655 |
|
|
|
656 |
|
|
/* SANITY */
|
657 |
|
|
newsk->pprev = NULL;
|
658 |
|
|
newsk->prev = NULL;
|
659 |
|
|
|
660 |
|
|
/* Clone the TCP header template */
|
661 |
|
|
newsk->dport = req->rmt_port;
|
662 |
|
|
|
663 |
|
|
sock_lock_init(newsk);
|
664 |
|
|
bh_lock_sock(newsk);
|
665 |
|
|
|
666 |
|
|
newsk->dst_lock = RW_LOCK_UNLOCKED;
|
667 |
|
|
atomic_set(&newsk->rmem_alloc, 0);
|
668 |
|
|
skb_queue_head_init(&newsk->receive_queue);
|
669 |
|
|
atomic_set(&newsk->wmem_alloc, 0);
|
670 |
|
|
skb_queue_head_init(&newsk->write_queue);
|
671 |
|
|
atomic_set(&newsk->omem_alloc, 0);
|
672 |
|
|
newsk->wmem_queued = 0;
|
673 |
|
|
newsk->forward_alloc = 0;
|
674 |
|
|
|
675 |
|
|
newsk->done = 0;
|
676 |
|
|
newsk->userlocks = sk->userlocks & ~SOCK_BINDPORT_LOCK;
|
677 |
|
|
newsk->proc = 0;
|
678 |
|
|
newsk->backlog.head = newsk->backlog.tail = NULL;
|
679 |
|
|
newsk->callback_lock = RW_LOCK_UNLOCKED;
|
680 |
|
|
skb_queue_head_init(&newsk->error_queue);
|
681 |
|
|
newsk->write_space = tcp_write_space;
|
682 |
|
|
#ifdef CONFIG_FILTER
|
683 |
|
|
if ((filter = newsk->filter) != NULL)
|
684 |
|
|
sk_filter_charge(newsk, filter);
|
685 |
|
|
#endif
|
686 |
|
|
|
687 |
|
|
/* Now setup tcp_opt */
|
688 |
|
|
newtp = &(newsk->tp_pinfo.af_tcp);
|
689 |
|
|
newtp->pred_flags = 0;
|
690 |
|
|
newtp->rcv_nxt = req->rcv_isn + 1;
|
691 |
|
|
newtp->snd_nxt = req->snt_isn + 1;
|
692 |
|
|
newtp->snd_una = req->snt_isn + 1;
|
693 |
|
|
newtp->snd_sml = req->snt_isn + 1;
|
694 |
|
|
|
695 |
|
|
tcp_prequeue_init(newtp);
|
696 |
|
|
|
697 |
|
|
tcp_init_wl(newtp, req->snt_isn, req->rcv_isn);
|
698 |
|
|
|
699 |
|
|
newtp->retransmits = 0;
|
700 |
|
|
newtp->backoff = 0;
|
701 |
|
|
newtp->srtt = 0;
|
702 |
|
|
newtp->mdev = TCP_TIMEOUT_INIT;
|
703 |
|
|
newtp->rto = TCP_TIMEOUT_INIT;
|
704 |
|
|
|
705 |
|
|
newtp->packets_out = 0;
|
706 |
|
|
newtp->left_out = 0;
|
707 |
|
|
newtp->retrans_out = 0;
|
708 |
|
|
newtp->sacked_out = 0;
|
709 |
|
|
newtp->fackets_out = 0;
|
710 |
|
|
newtp->snd_ssthresh = 0x7fffffff;
|
711 |
|
|
|
712 |
|
|
/* So many TCP implementations out there (incorrectly) count the
|
713 |
|
|
* initial SYN frame in their delayed-ACK and congestion control
|
714 |
|
|
* algorithms that we must have the following bandaid to talk
|
715 |
|
|
* efficiently to them. -DaveM
|
716 |
|
|
*/
|
717 |
|
|
newtp->snd_cwnd = 2;
|
718 |
|
|
newtp->snd_cwnd_cnt = 0;
|
719 |
|
|
|
720 |
|
|
newtp->frto_counter = 0;
|
721 |
|
|
newtp->frto_highmark = 0;
|
722 |
|
|
|
723 |
|
|
newtp->ca_state = TCP_CA_Open;
|
724 |
|
|
tcp_init_xmit_timers(newsk);
|
725 |
|
|
skb_queue_head_init(&newtp->out_of_order_queue);
|
726 |
|
|
newtp->send_head = NULL;
|
727 |
|
|
newtp->rcv_wup = req->rcv_isn + 1;
|
728 |
|
|
newtp->write_seq = req->snt_isn + 1;
|
729 |
|
|
newtp->pushed_seq = newtp->write_seq;
|
730 |
|
|
newtp->copied_seq = req->rcv_isn + 1;
|
731 |
|
|
|
732 |
|
|
newtp->saw_tstamp = 0;
|
733 |
|
|
|
734 |
|
|
newtp->dsack = 0;
|
735 |
|
|
newtp->eff_sacks = 0;
|
736 |
|
|
|
737 |
|
|
newtp->probes_out = 0;
|
738 |
|
|
newtp->num_sacks = 0;
|
739 |
|
|
newtp->urg_data = 0;
|
740 |
|
|
newtp->listen_opt = NULL;
|
741 |
|
|
newtp->accept_queue = newtp->accept_queue_tail = NULL;
|
742 |
|
|
/* Deinitialize syn_wait_lock to trap illegal accesses. */
|
743 |
|
|
memset(&newtp->syn_wait_lock, 0, sizeof(newtp->syn_wait_lock));
|
744 |
|
|
|
745 |
|
|
/* Back to base struct sock members. */
|
746 |
|
|
newsk->err = 0;
|
747 |
|
|
newsk->priority = 0;
|
748 |
|
|
atomic_set(&newsk->refcnt, 2);
|
749 |
|
|
#ifdef INET_REFCNT_DEBUG
|
750 |
|
|
atomic_inc(&inet_sock_nr);
|
751 |
|
|
#endif
|
752 |
|
|
atomic_inc(&tcp_sockets_allocated);
|
753 |
|
|
|
754 |
|
|
if (newsk->keepopen)
|
755 |
|
|
tcp_reset_keepalive_timer(newsk, keepalive_time_when(newtp));
|
756 |
|
|
newsk->socket = NULL;
|
757 |
|
|
newsk->sleep = NULL;
|
758 |
|
|
|
759 |
|
|
newtp->tstamp_ok = req->tstamp_ok;
|
760 |
|
|
if((newtp->sack_ok = req->sack_ok) != 0) {
|
761 |
|
|
if (sysctl_tcp_fack)
|
762 |
|
|
newtp->sack_ok |= 2;
|
763 |
|
|
}
|
764 |
|
|
newtp->window_clamp = req->window_clamp;
|
765 |
|
|
newtp->rcv_ssthresh = req->rcv_wnd;
|
766 |
|
|
newtp->rcv_wnd = req->rcv_wnd;
|
767 |
|
|
newtp->wscale_ok = req->wscale_ok;
|
768 |
|
|
if (newtp->wscale_ok) {
|
769 |
|
|
newtp->snd_wscale = req->snd_wscale;
|
770 |
|
|
newtp->rcv_wscale = req->rcv_wscale;
|
771 |
|
|
} else {
|
772 |
|
|
newtp->snd_wscale = newtp->rcv_wscale = 0;
|
773 |
|
|
newtp->window_clamp = min(newtp->window_clamp, 65535U);
|
774 |
|
|
}
|
775 |
|
|
newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->snd_wscale;
|
776 |
|
|
newtp->max_window = newtp->snd_wnd;
|
777 |
|
|
|
778 |
|
|
if (newtp->tstamp_ok) {
|
779 |
|
|
newtp->ts_recent = req->ts_recent;
|
780 |
|
|
newtp->ts_recent_stamp = xtime.tv_sec;
|
781 |
|
|
newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
|
782 |
|
|
} else {
|
783 |
|
|
newtp->ts_recent_stamp = 0;
|
784 |
|
|
newtp->tcp_header_len = sizeof(struct tcphdr);
|
785 |
|
|
}
|
786 |
|
|
if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len)
|
787 |
|
|
newtp->ack.last_seg_size = skb->len-newtp->tcp_header_len;
|
788 |
|
|
newtp->mss_clamp = req->mss;
|
789 |
|
|
TCP_ECN_openreq_child(newtp, req);
|
790 |
|
|
|
791 |
|
|
TCP_INC_STATS_BH(TcpPassiveOpens);
|
792 |
|
|
}
|
793 |
|
|
return newsk;
|
794 |
|
|
}
|
795 |
|
|
|
796 |
|
|
/*
|
797 |
|
|
* Process an incoming packet for SYN_RECV sockets represented
|
798 |
|
|
* as an open_request.
|
799 |
|
|
*/
|
800 |
|
|
|
801 |
|
|
struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb,
|
802 |
|
|
struct open_request *req,
|
803 |
|
|
struct open_request **prev)
|
804 |
|
|
{
|
805 |
|
|
struct tcphdr *th = skb->h.th;
|
806 |
|
|
struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
|
807 |
|
|
u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
|
808 |
|
|
int paws_reject = 0;
|
809 |
|
|
struct tcp_opt ttp;
|
810 |
|
|
struct sock *child;
|
811 |
|
|
|
812 |
|
|
ttp.saw_tstamp = 0;
|
813 |
|
|
if (th->doff > (sizeof(struct tcphdr)>>2)) {
|
814 |
|
|
tcp_parse_options(skb, &ttp, 0);
|
815 |
|
|
|
816 |
|
|
if (ttp.saw_tstamp) {
|
817 |
|
|
ttp.ts_recent = req->ts_recent;
|
818 |
|
|
/* We do not store true stamp, but it is not required,
|
819 |
|
|
* it can be estimated (approximately)
|
820 |
|
|
* from another data.
|
821 |
|
|
*/
|
822 |
|
|
ttp.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
|
823 |
|
|
paws_reject = tcp_paws_check(&ttp, th->rst);
|
824 |
|
|
}
|
825 |
|
|
}
|
826 |
|
|
|
827 |
|
|
/* Check for pure retransmitted SYN. */
|
828 |
|
|
if (TCP_SKB_CB(skb)->seq == req->rcv_isn &&
|
829 |
|
|
flg == TCP_FLAG_SYN &&
|
830 |
|
|
!paws_reject) {
|
831 |
|
|
/*
|
832 |
|
|
* RFC793 draws (Incorrectly! It was fixed in RFC1122)
|
833 |
|
|
* this case on figure 6 and figure 8, but formal
|
834 |
|
|
* protocol description says NOTHING.
|
835 |
|
|
* To be more exact, it says that we should send ACK,
|
836 |
|
|
* because this segment (at least, if it has no data)
|
837 |
|
|
* is out of window.
|
838 |
|
|
*
|
839 |
|
|
* CONCLUSION: RFC793 (even with RFC1122) DOES NOT
|
840 |
|
|
* describe SYN-RECV state. All the description
|
841 |
|
|
* is wrong, we cannot believe to it and should
|
842 |
|
|
* rely only on common sense and implementation
|
843 |
|
|
* experience.
|
844 |
|
|
*
|
845 |
|
|
* Enforce "SYN-ACK" according to figure 8, figure 6
|
846 |
|
|
* of RFC793, fixed by RFC1122.
|
847 |
|
|
*/
|
848 |
|
|
req->class->rtx_syn_ack(sk, req, NULL);
|
849 |
|
|
return NULL;
|
850 |
|
|
}
|
851 |
|
|
|
852 |
|
|
/* Further reproduces section "SEGMENT ARRIVES"
|
853 |
|
|
for state SYN-RECEIVED of RFC793.
|
854 |
|
|
It is broken, however, it does not work only
|
855 |
|
|
when SYNs are crossed.
|
856 |
|
|
|
857 |
|
|
You would think that SYN crossing is impossible here, since
|
858 |
|
|
we should have a SYN_SENT socket (from connect()) on our end,
|
859 |
|
|
but this is not true if the crossed SYNs were sent to both
|
860 |
|
|
ends by a malicious third party. We must defend against this,
|
861 |
|
|
and to do that we first verify the ACK (as per RFC793, page
|
862 |
|
|
36) and reset if it is invalid. Is this a true full defense?
|
863 |
|
|
To convince ourselves, let us consider a way in which the ACK
|
864 |
|
|
test can still pass in this 'malicious crossed SYNs' case.
|
865 |
|
|
Malicious sender sends identical SYNs (and thus identical sequence
|
866 |
|
|
numbers) to both A and B:
|
867 |
|
|
|
868 |
|
|
A: gets SYN, seq=7
|
869 |
|
|
B: gets SYN, seq=7
|
870 |
|
|
|
871 |
|
|
By our good fortune, both A and B select the same initial
|
872 |
|
|
send sequence number of seven :-)
|
873 |
|
|
|
874 |
|
|
A: sends SYN|ACK, seq=7, ack_seq=8
|
875 |
|
|
B: sends SYN|ACK, seq=7, ack_seq=8
|
876 |
|
|
|
877 |
|
|
So we are now A eating this SYN|ACK, ACK test passes. So
|
878 |
|
|
does sequence test, SYN is truncated, and thus we consider
|
879 |
|
|
it a bare ACK.
|
880 |
|
|
|
881 |
|
|
If tp->defer_accept, we silently drop this bare ACK. Otherwise,
|
882 |
|
|
we create an established connection. Both ends (listening sockets)
|
883 |
|
|
accept the new incoming connection and try to talk to each other. 8-)
|
884 |
|
|
|
885 |
|
|
Note: This case is both harmless, and rare. Possibility is about the
|
886 |
|
|
same as us discovering intelligent life on another plant tomorrow.
|
887 |
|
|
|
888 |
|
|
But generally, we should (RFC lies!) to accept ACK
|
889 |
|
|
from SYNACK both here and in tcp_rcv_state_process().
|
890 |
|
|
tcp_rcv_state_process() does not, hence, we do not too.
|
891 |
|
|
|
892 |
|
|
Note that the case is absolutely generic:
|
893 |
|
|
we cannot optimize anything here without
|
894 |
|
|
violating protocol. All the checks must be made
|
895 |
|
|
before attempt to create socket.
|
896 |
|
|
*/
|
897 |
|
|
|
898 |
|
|
/* RFC793 page 36: "If the connection is in any non-synchronized state ...
|
899 |
|
|
* and the incoming segment acknowledges something not yet
|
900 |
|
|
* sent (the segment carries an unaccaptable ACK) ...
|
901 |
|
|
* a reset is sent."
|
902 |
|
|
*
|
903 |
|
|
* Invalid ACK: reset will be sent by listening socket
|
904 |
|
|
*/
|
905 |
|
|
if ((flg & TCP_FLAG_ACK) &&
|
906 |
|
|
(TCP_SKB_CB(skb)->ack_seq != req->snt_isn+1))
|
907 |
|
|
return sk;
|
908 |
|
|
|
909 |
|
|
/* Also, it would be not so bad idea to check rcv_tsecr, which
|
910 |
|
|
* is essentially ACK extension and too early or too late values
|
911 |
|
|
* should cause reset in unsynchronized states.
|
912 |
|
|
*/
|
913 |
|
|
|
914 |
|
|
/* RFC793: "first check sequence number". */
|
915 |
|
|
|
916 |
|
|
if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
|
917 |
|
|
req->rcv_isn+1, req->rcv_isn+1+req->rcv_wnd)) {
|
918 |
|
|
/* Out of window: send ACK and drop. */
|
919 |
|
|
if (!(flg & TCP_FLAG_RST))
|
920 |
|
|
req->class->send_ack(skb, req);
|
921 |
|
|
if (paws_reject)
|
922 |
|
|
NET_INC_STATS_BH(PAWSEstabRejected);
|
923 |
|
|
return NULL;
|
924 |
|
|
}
|
925 |
|
|
|
926 |
|
|
/* In sequence, PAWS is OK. */
|
927 |
|
|
|
928 |
|
|
if (ttp.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, req->rcv_isn+1))
|
929 |
|
|
req->ts_recent = ttp.rcv_tsval;
|
930 |
|
|
|
931 |
|
|
if (TCP_SKB_CB(skb)->seq == req->rcv_isn) {
|
932 |
|
|
/* Truncate SYN, it is out of window starting
|
933 |
|
|
at req->rcv_isn+1. */
|
934 |
|
|
flg &= ~TCP_FLAG_SYN;
|
935 |
|
|
}
|
936 |
|
|
|
937 |
|
|
/* RFC793: "second check the RST bit" and
|
938 |
|
|
* "fourth, check the SYN bit"
|
939 |
|
|
*/
|
940 |
|
|
if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN))
|
941 |
|
|
goto embryonic_reset;
|
942 |
|
|
|
943 |
|
|
/* ACK sequence verified above, just make sure ACK is
|
944 |
|
|
* set. If ACK not set, just silently drop the packet.
|
945 |
|
|
*/
|
946 |
|
|
if (!(flg & TCP_FLAG_ACK))
|
947 |
|
|
return NULL;
|
948 |
|
|
|
949 |
|
|
/* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
|
950 |
|
|
if (tp->defer_accept && TCP_SKB_CB(skb)->end_seq == req->rcv_isn+1) {
|
951 |
|
|
req->acked = 1;
|
952 |
|
|
return NULL;
|
953 |
|
|
}
|
954 |
|
|
|
955 |
|
|
/* OK, ACK is valid, create big socket and
|
956 |
|
|
* feed this segment to it. It will repeat all
|
957 |
|
|
* the tests. THIS SEGMENT MUST MOVE SOCKET TO
|
958 |
|
|
* ESTABLISHED STATE. If it will be dropped after
|
959 |
|
|
* socket is created, wait for troubles.
|
960 |
|
|
*/
|
961 |
|
|
child = tp->af_specific->syn_recv_sock(sk, skb, req, NULL);
|
962 |
|
|
if (child == NULL)
|
963 |
|
|
goto listen_overflow;
|
964 |
|
|
|
965 |
|
|
tcp_synq_unlink(tp, req, prev);
|
966 |
|
|
tcp_synq_removed(sk, req);
|
967 |
|
|
|
968 |
|
|
tcp_acceptq_queue(sk, req, child);
|
969 |
|
|
return child;
|
970 |
|
|
|
971 |
|
|
listen_overflow:
|
972 |
|
|
if (!sysctl_tcp_abort_on_overflow) {
|
973 |
|
|
req->acked = 1;
|
974 |
|
|
return NULL;
|
975 |
|
|
}
|
976 |
|
|
|
977 |
|
|
embryonic_reset:
|
978 |
|
|
NET_INC_STATS_BH(EmbryonicRsts);
|
979 |
|
|
if (!(flg & TCP_FLAG_RST))
|
980 |
|
|
req->class->send_reset(skb);
|
981 |
|
|
|
982 |
|
|
tcp_synq_drop(sk, req, prev);
|
983 |
|
|
return NULL;
|
984 |
|
|
}
|
985 |
|
|
|
986 |
|
|
/*
|
987 |
|
|
* Queue segment on the new socket if the new socket is active,
|
988 |
|
|
* otherwise we just shortcircuit this and continue with
|
989 |
|
|
* the new socket.
|
990 |
|
|
*/
|
991 |
|
|
|
992 |
|
|
int tcp_child_process(struct sock *parent, struct sock *child,
|
993 |
|
|
struct sk_buff *skb)
|
994 |
|
|
{
|
995 |
|
|
int ret = 0;
|
996 |
|
|
int state = child->state;
|
997 |
|
|
|
998 |
|
|
if (child->lock.users == 0) {
|
999 |
|
|
ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len);
|
1000 |
|
|
|
1001 |
|
|
/* Wakeup parent, send SIGIO */
|
1002 |
|
|
if (state == TCP_SYN_RECV && child->state != state)
|
1003 |
|
|
parent->data_ready(parent, 0);
|
1004 |
|
|
} else {
|
1005 |
|
|
/* Alas, it is possible again, because we do lookup
|
1006 |
|
|
* in main socket hash table and lock on listening
|
1007 |
|
|
* socket does not protect us more.
|
1008 |
|
|
*/
|
1009 |
|
|
sk_add_backlog(child, skb);
|
1010 |
|
|
}
|
1011 |
|
|
|
1012 |
|
|
bh_unlock_sock(child);
|
1013 |
|
|
sock_put(child);
|
1014 |
|
|
return ret;
|
1015 |
|
|
}
|