OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [net/] [ipv6/] [ip6_fib.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1275 phoenix
/*
2
 *      Linux INET6 implementation
3
 *      Forwarding Information Database
4
 *
5
 *      Authors:
6
 *      Pedro Roque             <roque@di.fc.ul.pt>
7
 *
8
 *      $Id: ip6_fib.c,v 1.1.1.1 2004-04-15 01:14:32 phoenix Exp $
9
 *
10
 *      This program is free software; you can redistribute it and/or
11
 *      modify it under the terms of the GNU General Public License
12
 *      as published by the Free Software Foundation; either version
13
 *      2 of the License, or (at your option) any later version.
14
 */
15
 
16
/*
17
 *      Changes:
18
 *      Yuji SEKIYA @USAGI:     Support default route on router node;
19
 *                              remove ip6_null_entry from the top of
20
 *                              routing table.
21
 */
22
#include <linux/config.h>
23
#include <linux/errno.h>
24
#include <linux/types.h>
25
#include <linux/net.h>
26
#include <linux/route.h>
27
#include <linux/netdevice.h>
28
#include <linux/in6.h>
29
#include <linux/init.h>
30
 
31
#ifdef  CONFIG_PROC_FS
32
#include <linux/proc_fs.h>
33
#endif
34
 
35
#include <net/ipv6.h>
36
#include <net/ndisc.h>
37
#include <net/addrconf.h>
38
 
39
#include <net/ip6_fib.h>
40
#include <net/ip6_route.h>
41
 
42
#define RT6_DEBUG 2
43
#undef CONFIG_IPV6_SUBTREES
44
 
45
#if RT6_DEBUG >= 3
46
#define RT6_TRACE(x...) printk(KERN_DEBUG x)
47
#else
48
#define RT6_TRACE(x...) do { ; } while (0)
49
#endif
50
 
51
struct rt6_statistics   rt6_stats;
52
 
53
static kmem_cache_t * fib6_node_kmem;
54
 
55
enum fib_walk_state_t
56
{
57
#ifdef CONFIG_IPV6_SUBTREES
58
        FWS_S,
59
#endif
60
        FWS_L,
61
        FWS_R,
62
        FWS_C,
63
        FWS_U
64
};
65
 
66
struct fib6_cleaner_t
67
{
68
        struct fib6_walker_t w;
69
        int (*func)(struct rt6_info *, void *arg);
70
        void *arg;
71
};
72
 
73
rwlock_t fib6_walker_lock = RW_LOCK_UNLOCKED;
74
 
75
 
76
#ifdef CONFIG_IPV6_SUBTREES
77
#define FWS_INIT FWS_S
78
#define SUBTREE(fn) ((fn)->subtree)
79
#else
80
#define FWS_INIT FWS_L
81
#define SUBTREE(fn) NULL
82
#endif
83
 
84
static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt);
85
static struct fib6_node * fib6_repair_tree(struct fib6_node *fn);
86
 
87
/*
88
 *      A routing update causes an increase of the serial number on the
89
 *      afected subtree. This allows for cached routes to be asynchronously
90
 *      tested when modifications are made to the destination cache as a
91
 *      result of redirects, path MTU changes, etc.
92
 */
93
 
94
static __u32    rt_sernum       = 0;
95
 
96
static struct timer_list ip6_fib_timer = { function: fib6_run_gc };
97
 
98
static struct fib6_walker_t fib6_walker_list = {
99
        &fib6_walker_list, &fib6_walker_list,
100
};
101
 
102
#define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
103
 
104
static __inline__ u32 fib6_new_sernum(void)
105
{
106
        u32 n = ++rt_sernum;
107
        if ((__s32)n <= 0)
108
                rt_sernum = n = 1;
109
        return n;
110
}
111
 
112
/*
113
 *      Auxiliary address test functions for the radix tree.
114
 *
115
 *      These assume a 32bit processor (although it will work on
116
 *      64bit processors)
117
 */
118
 
119
/*
120
 *      compare "prefix length" bits of an address
121
 */
122
 
123
static __inline__ int addr_match(void *token1, void *token2, int prefixlen)
124
{
125
        __u32 *a1 = token1;
126
        __u32 *a2 = token2;
127
        int pdw;
128
        int pbi;
129
 
130
        pdw = prefixlen >> 5;     /* num of whole __u32 in prefix */
131
        pbi = prefixlen &  0x1f;  /* num of bits in incomplete u32 in prefix */
132
 
133
        if (pdw)
134
                if (memcmp(a1, a2, pdw << 2))
135
                        return 0;
136
 
137
        if (pbi) {
138
                __u32 mask;
139
 
140
                mask = htonl((0xffffffff) << (32 - pbi));
141
 
142
                if ((a1[pdw] ^ a2[pdw]) & mask)
143
                        return 0;
144
        }
145
 
146
        return 1;
147
}
148
 
149
/*
150
 *      test bit
151
 */
152
 
153
static __inline__ int addr_bit_set(void *token, int fn_bit)
154
{
155
        __u32 *addr = token;
156
 
157
        return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5];
158
}
159
 
160
/*
161
 *      find the first different bit between two addresses
162
 *      length of address must be a multiple of 32bits
163
 */
164
 
165
static __inline__ int addr_diff(void *token1, void *token2, int addrlen)
166
{
167
        __u32 *a1 = token1;
168
        __u32 *a2 = token2;
169
        int i;
170
 
171
        addrlen >>= 2;
172
 
173
        for (i = 0; i < addrlen; i++) {
174
                __u32 xb;
175
 
176
                xb = a1[i] ^ a2[i];
177
 
178
                if (xb) {
179
                        int j = 31;
180
 
181
                        xb = ntohl(xb);
182
 
183
                        while ((xb & (1 << j)) == 0)
184
                                j--;
185
 
186
                        return (i * 32 + 31 - j);
187
                }
188
        }
189
 
190
        /*
191
         *      we should *never* get to this point since that
192
         *      would mean the addrs are equal
193
         *
194
         *      However, we do get to it 8) And exacly, when
195
         *      addresses are equal 8)
196
         *
197
         *      ip route add 1111::/128 via ...
198
         *      ip route add 1111::/64 via ...
199
         *      and we are here.
200
         *
201
         *      Ideally, this function should stop comparison
202
         *      at prefix length. It does not, but it is still OK,
203
         *      if returned value is greater than prefix length.
204
         *                                      --ANK (980803)
205
         */
206
 
207
        return addrlen<<5;
208
}
209
 
210
static __inline__ struct fib6_node * node_alloc(void)
211
{
212
        struct fib6_node *fn;
213
 
214
        if ((fn = kmem_cache_alloc(fib6_node_kmem, SLAB_ATOMIC)) != NULL)
215
                memset(fn, 0, sizeof(struct fib6_node));
216
 
217
        return fn;
218
}
219
 
220
static __inline__ void node_free(struct fib6_node * fn)
221
{
222
        kmem_cache_free(fib6_node_kmem, fn);
223
}
224
 
225
static __inline__ void rt6_release(struct rt6_info *rt)
226
{
227
        if (atomic_dec_and_test(&rt->rt6i_ref))
228
                dst_free(&rt->u.dst);
229
}
230
 
231
 
232
/*
233
 *      Routing Table
234
 *
235
 *      return the apropriate node for a routing tree "add" operation
236
 *      by either creating and inserting or by returning an existing
237
 *      node.
238
 */
239
 
240
static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
241
                                     int addrlen, int plen,
242
                                     int offset)
243
{
244
        struct fib6_node *fn, *in, *ln;
245
        struct fib6_node *pn = NULL;
246
        struct rt6key *key;
247
        int     bit;
248
        int     dir = 0;
249
        __u32   sernum = fib6_new_sernum();
250
 
251
        RT6_TRACE("fib6_add_1\n");
252
 
253
        /* insert node in tree */
254
 
255
        fn = root;
256
 
257
        do {
258
                key = (struct rt6key *)((u8 *)fn->leaf + offset);
259
 
260
                /*
261
                 *      Prefix match
262
                 */
263
                if (plen < fn->fn_bit ||
264
                    !addr_match(&key->addr, addr, fn->fn_bit))
265
                        goto insert_above;
266
 
267
                /*
268
                 *      Exact match ?
269
                 */
270
 
271
                if (plen == fn->fn_bit) {
272
                        /* clean up an intermediate node */
273
                        if ((fn->fn_flags & RTN_RTINFO) == 0) {
274
                                rt6_release(fn->leaf);
275
                                fn->leaf = NULL;
276
                        }
277
 
278
                        fn->fn_sernum = sernum;
279
 
280
                        return fn;
281
                }
282
 
283
                /*
284
                 *      We have more bits to go
285
                 */
286
 
287
                /* Try to walk down on tree. */
288
                fn->fn_sernum = sernum;
289
                dir = addr_bit_set(addr, fn->fn_bit);
290
                pn = fn;
291
                fn = dir ? fn->right: fn->left;
292
        } while (fn);
293
 
294
        /*
295
         *      We walked to the bottom of tree.
296
         *      Create new leaf node without children.
297
         */
298
 
299
        ln = node_alloc();
300
 
301
        if (ln == NULL)
302
                return NULL;
303
        ln->fn_bit = plen;
304
 
305
        ln->parent = pn;
306
        ln->fn_sernum = sernum;
307
 
308
        if (dir)
309
                pn->right = ln;
310
        else
311
                pn->left  = ln;
312
 
313
        return ln;
314
 
315
 
316
insert_above:
317
        /*
318
         * split since we don't have a common prefix anymore or
319
         * we have a less significant route.
320
         * we've to insert an intermediate node on the list
321
         * this new node will point to the one we need to create
322
         * and the current
323
         */
324
 
325
        pn = fn->parent;
326
 
327
        /* find 1st bit in difference between the 2 addrs.
328
 
329
           See comment in addr_diff: bit may be an invalid value,
330
           but if it is >= plen, the value is ignored in any case.
331
         */
332
 
333
        bit = addr_diff(addr, &key->addr, addrlen);
334
 
335
        /*
336
         *              (intermediate)[in]
337
         *                /        \
338
         *      (new leaf node)[ln] (old node)[fn]
339
         */
340
        if (plen > bit) {
341
                in = node_alloc();
342
                ln = node_alloc();
343
 
344
                if (in == NULL || ln == NULL) {
345
                        if (in)
346
                                node_free(in);
347
                        if (ln)
348
                                node_free(ln);
349
                        return NULL;
350
                }
351
 
352
                /*
353
                 * new intermediate node.
354
                 * RTN_RTINFO will
355
                 * be off since that an address that chooses one of
356
                 * the branches would not match less specific routes
357
                 * in the other branch
358
                 */
359
 
360
                in->fn_bit = bit;
361
 
362
                in->parent = pn;
363
                in->leaf = fn->leaf;
364
                atomic_inc(&in->leaf->rt6i_ref);
365
 
366
                in->fn_sernum = sernum;
367
 
368
                /* update parent pointer */
369
                if (dir)
370
                        pn->right = in;
371
                else
372
                        pn->left  = in;
373
 
374
                ln->fn_bit = plen;
375
 
376
                ln->parent = in;
377
                fn->parent = in;
378
 
379
                ln->fn_sernum = sernum;
380
 
381
                if (addr_bit_set(addr, bit)) {
382
                        in->right = ln;
383
                        in->left  = fn;
384
                } else {
385
                        in->left  = ln;
386
                        in->right = fn;
387
                }
388
        } else { /* plen <= bit */
389
 
390
                /*
391
                 *              (new leaf node)[ln]
392
                 *                /        \
393
                 *           (old node)[fn] NULL
394
                 */
395
 
396
                ln = node_alloc();
397
 
398
                if (ln == NULL)
399
                        return NULL;
400
 
401
                ln->fn_bit = plen;
402
 
403
                ln->parent = pn;
404
 
405
                ln->fn_sernum = sernum;
406
 
407
                if (dir)
408
                        pn->right = ln;
409
                else
410
                        pn->left  = ln;
411
 
412
                if (addr_bit_set(&key->addr, plen))
413
                        ln->right = fn;
414
                else
415
                        ln->left  = fn;
416
 
417
                fn->parent = ln;
418
        }
419
        return ln;
420
}
421
 
422
/*
423
 *      Insert routing information in a node.
424
 */
425
 
426
static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
427
    struct nlmsghdr *nlh)
428
{
429
        struct rt6_info *iter = NULL;
430
        struct rt6_info **ins;
431
 
432
        ins = &fn->leaf;
433
 
434
        if (fn->fn_flags&RTN_TL_ROOT &&
435
            fn->leaf == &ip6_null_entry &&
436
            !(rt->rt6i_flags & (RTF_DEFAULT | RTF_ADDRCONF | RTF_ALLONLINK)) ){
437
                /*
438
                 * The top fib of ip6 routing table includes ip6_null_entry.
439
                 */
440
                fn->leaf = rt;
441
                rt->u.next = NULL;
442
                goto out;
443
        }
444
 
445
        for (iter = fn->leaf; iter; iter=iter->u.next) {
446
                /*
447
                 *      Search for duplicates
448
                 */
449
 
450
                if (iter->rt6i_metric == rt->rt6i_metric) {
451
                        /*
452
                         *      Same priority level
453
                         */
454
 
455
                        if ((iter->rt6i_dev == rt->rt6i_dev) &&
456
                            (iter->rt6i_flowr == rt->rt6i_flowr) &&
457
                            (ipv6_addr_cmp(&iter->rt6i_gateway,
458
                                           &rt->rt6i_gateway) == 0)) {
459
                                if (!(iter->rt6i_flags&RTF_EXPIRES))
460
                                        return -EEXIST;
461
                                iter->rt6i_expires = rt->rt6i_expires;
462
                                if (!(rt->rt6i_flags&RTF_EXPIRES)) {
463
                                        iter->rt6i_flags &= ~RTF_EXPIRES;
464
                                        iter->rt6i_expires = 0;
465
                                }
466
                                return -EEXIST;
467
                        }
468
                }
469
 
470
                if (iter->rt6i_metric > rt->rt6i_metric)
471
                        break;
472
 
473
                ins = &iter->u.next;
474
        }
475
 
476
        /*
477
         *      insert node
478
         */
479
 
480
out:
481
        rt->u.next = iter;
482
        *ins = rt;
483
        rt->rt6i_node = fn;
484
        atomic_inc(&rt->rt6i_ref);
485
        inet6_rt_notify(RTM_NEWROUTE, rt, nlh);
486
        rt6_stats.fib_rt_entries++;
487
 
488
        if ((fn->fn_flags & RTN_RTINFO) == 0) {
489
                rt6_stats.fib_route_nodes++;
490
                fn->fn_flags |= RTN_RTINFO;
491
        }
492
 
493
        return 0;
494
}
495
 
496
static __inline__ void fib6_start_gc(struct rt6_info *rt)
497
{
498
        if (ip6_fib_timer.expires == 0 &&
499
            (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
500
                mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
501
}
502
 
503
/*
504
 *      Add routing information to the routing tree.
505
 *      <destination addr>/<source addr>
506
 *      with source addr info in sub-trees
507
 */
508
 
509
int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nlmsghdr *nlh)
510
{
511
        struct fib6_node *fn;
512
        int err = -ENOMEM;
513
 
514
        fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
515
                        rt->rt6i_dst.plen, (u8*) &rt->rt6i_dst - (u8*) rt);
516
 
517
        if (fn == NULL)
518
                goto out;
519
 
520
#ifdef CONFIG_IPV6_SUBTREES
521
        if (rt->rt6i_src.plen) {
522
                struct fib6_node *sn;
523
 
524
                if (fn->subtree == NULL) {
525
                        struct fib6_node *sfn;
526
 
527
                        /*
528
                         * Create subtree.
529
                         *
530
                         *              fn[main tree]
531
                         *              |
532
                         *              sfn[subtree root]
533
                         *                 \
534
                         *                  sn[new leaf node]
535
                         */
536
 
537
                        /* Create subtree root node */
538
                        sfn = node_alloc();
539
                        if (sfn == NULL)
540
                                goto st_failure;
541
 
542
                        sfn->leaf = &ip6_null_entry;
543
                        atomic_inc(&ip6_null_entry.rt6i_ref);
544
                        sfn->fn_flags = RTN_ROOT;
545
                        sfn->fn_sernum = fib6_new_sernum();
546
 
547
                        /* Now add the first leaf node to new subtree */
548
 
549
                        sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
550
                                        sizeof(struct in6_addr), rt->rt6i_src.plen,
551
                                        (u8*) &rt->rt6i_src - (u8*) rt);
552
 
553
                        if (sn == NULL) {
554
                                /* If it is failed, discard just allocated
555
                                   root, and then (in st_failure) stale node
556
                                   in main tree.
557
                                 */
558
                                node_free(sfn);
559
                                goto st_failure;
560
                        }
561
 
562
                        /* Now link new subtree to main tree */
563
                        sfn->parent = fn;
564
                        fn->subtree = sfn;
565
                        if (fn->leaf == NULL) {
566
                                fn->leaf = rt;
567
                                atomic_inc(&rt->rt6i_ref);
568
                        }
569
                } else {
570
                        sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
571
                                        sizeof(struct in6_addr), rt->rt6i_src.plen,
572
                                        (u8*) &rt->rt6i_src - (u8*) rt);
573
 
574
                        if (sn == NULL)
575
                                goto st_failure;
576
                }
577
 
578
                fn = sn;
579
        }
580
#endif
581
 
582
        err = fib6_add_rt2node(fn, rt, nlh);
583
 
584
        if (err == 0) {
585
                fib6_start_gc(rt);
586
                if (!(rt->rt6i_flags&RTF_CACHE))
587
                        fib6_prune_clones(fn, rt);
588
        }
589
 
590
out:
591
        if (err)
592
                dst_free(&rt->u.dst);
593
        return err;
594
 
595
#ifdef CONFIG_IPV6_SUBTREES
596
        /* Subtree creation failed, probably main tree node
597
           is orphan. If it is, shoot it.
598
         */
599
st_failure:
600
        if (fn && !(fn->fn_flags&RTN_RTINFO|RTN_ROOT))
601
                fib_repair_tree(fn);
602
        dst_free(&rt->u.dst);
603
        return err;
604
#endif
605
}
606
 
607
/*
608
 *      Routing tree lookup
609
 *
610
 */
611
 
612
struct lookup_args {
613
        int             offset;         /* key offset on rt6_info       */
614
        struct in6_addr *addr;          /* search key                   */
615
};
616
 
617
static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
618
                                        struct lookup_args *args)
619
{
620
        struct fib6_node *fn;
621
        int dir;
622
 
623
        /*
624
         *      Descend on a tree
625
         */
626
 
627
        fn = root;
628
 
629
        for (;;) {
630
                struct fib6_node *next;
631
 
632
                dir = addr_bit_set(args->addr, fn->fn_bit);
633
 
634
                next = dir ? fn->right : fn->left;
635
 
636
                if (next) {
637
                        fn = next;
638
                        continue;
639
                }
640
 
641
                break;
642
        }
643
 
644
        while ((fn->fn_flags & RTN_ROOT) == 0) {
645
#ifdef CONFIG_IPV6_SUBTREES
646
                if (fn->subtree) {
647
                        struct fib6_node *st;
648
                        struct lookup_args *narg;
649
 
650
                        narg = args + 1;
651
 
652
                        if (narg->addr) {
653
                                st = fib6_lookup_1(fn->subtree, narg);
654
 
655
                                if (st && !(st->fn_flags & RTN_ROOT))
656
                                        return st;
657
                        }
658
                }
659
#endif
660
 
661
                if (fn->fn_flags & RTN_RTINFO) {
662
                        struct rt6key *key;
663
 
664
                        key = (struct rt6key *) ((u8 *) fn->leaf +
665
                                                 args->offset);
666
 
667
                        if (addr_match(&key->addr, args->addr, key->plen))
668
                                return fn;
669
                }
670
 
671
                fn = fn->parent;
672
        }
673
 
674
        return NULL;
675
}
676
 
677
struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
678
                               struct in6_addr *saddr)
679
{
680
        struct lookup_args args[2];
681
        struct rt6_info *rt = NULL;
682
        struct fib6_node *fn;
683
 
684
        args[0].offset = (u8*) &rt->rt6i_dst - (u8*) rt;
685
        args[0].addr = daddr;
686
 
687
#ifdef CONFIG_IPV6_SUBTREES
688
        args[1].offset = (u8*) &rt->rt6i_src - (u8*) rt;
689
        args[1].addr = saddr;
690
#endif
691
 
692
        fn = fib6_lookup_1(root, args);
693
 
694
        if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
695
                fn = root;
696
 
697
        return fn;
698
}
699
 
700
/*
701
 *      Get node with sepciafied destination prefix (and source prefix,
702
 *      if subtrees are used)
703
 */
704
 
705
 
706
static struct fib6_node * fib6_locate_1(struct fib6_node *root,
707
                                        struct in6_addr *addr,
708
                                        int plen, int offset)
709
{
710
        struct fib6_node *fn;
711
 
712
        for (fn = root; fn ; ) {
713
                struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
714
 
715
                /*
716
                 *      Prefix match
717
                 */
718
                if (plen < fn->fn_bit ||
719
                    !addr_match(&key->addr, addr, fn->fn_bit))
720
                        return NULL;
721
 
722
                if (plen == fn->fn_bit)
723
                        return fn;
724
 
725
                /*
726
                 *      We have more bits to go
727
                 */
728
                if (addr_bit_set(addr, fn->fn_bit))
729
                        fn = fn->right;
730
                else
731
                        fn = fn->left;
732
        }
733
        return NULL;
734
}
735
 
736
struct fib6_node * fib6_locate(struct fib6_node *root,
737
                               struct in6_addr *daddr, int dst_len,
738
                               struct in6_addr *saddr, int src_len)
739
{
740
        struct rt6_info *rt = NULL;
741
        struct fib6_node *fn;
742
 
743
        fn = fib6_locate_1(root, daddr, dst_len,
744
                           (u8*) &rt->rt6i_dst - (u8*) rt);
745
 
746
#ifdef CONFIG_IPV6_SUBTREES
747
        if (src_len) {
748
                BUG_TRAP(saddr!=NULL);
749
                if (fn == NULL)
750
                        fn = fn->subtree;
751
                if (fn)
752
                        fn = fib6_locate_1(fn, saddr, src_len,
753
                                           (u8*) &rt->rt6i_src - (u8*) rt);
754
        }
755
#endif
756
 
757
        if (fn && fn->fn_flags&RTN_RTINFO)
758
                return fn;
759
 
760
        return NULL;
761
}
762
 
763
 
764
/*
765
 *      Deletion
766
 *
767
 */
768
 
769
static struct rt6_info * fib6_find_prefix(struct fib6_node *fn)
770
{
771
        if (fn->fn_flags&RTN_ROOT)
772
                return &ip6_null_entry;
773
 
774
        while(fn) {
775
                if(fn->left)
776
                        return fn->left->leaf;
777
 
778
                if(fn->right)
779
                        return fn->right->leaf;
780
 
781
                fn = SUBTREE(fn);
782
        }
783
        return NULL;
784
}
785
 
786
/*
787
 *      Called to trim the tree of intermediate nodes when possible. "fn"
788
 *      is the node we want to try and remove.
789
 */
790
 
791
static struct fib6_node * fib6_repair_tree(struct fib6_node *fn)
792
{
793
        int children;
794
        int nstate;
795
        struct fib6_node *child, *pn;
796
        struct fib6_walker_t *w;
797
        int iter = 0;
798
 
799
        for (;;) {
800
                RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
801
                iter++;
802
 
803
                BUG_TRAP(!(fn->fn_flags&RTN_RTINFO));
804
                BUG_TRAP(!(fn->fn_flags&RTN_TL_ROOT));
805
                BUG_TRAP(fn->leaf==NULL);
806
 
807
                children = 0;
808
                child = NULL;
809
                if (fn->right) child = fn->right, children |= 1;
810
                if (fn->left) child = fn->left, children |= 2;
811
 
812
                if (children == 3 || SUBTREE(fn)
813
#ifdef CONFIG_IPV6_SUBTREES
814
                    /* Subtree root (i.e. fn) may have one child */
815
                    || (children && fn->fn_flags&RTN_ROOT)
816
#endif
817
                    ) {
818
                        fn->leaf = fib6_find_prefix(fn);
819
#if RT6_DEBUG >= 2
820
                        if (fn->leaf==NULL) {
821
                                BUG_TRAP(fn->leaf);
822
                                fn->leaf = &ip6_null_entry;
823
                        }
824
#endif
825
                        atomic_inc(&fn->leaf->rt6i_ref);
826
                        return fn->parent;
827
                }
828
 
829
                pn = fn->parent;
830
#ifdef CONFIG_IPV6_SUBTREES
831
                if (SUBTREE(pn) == fn) {
832
                        BUG_TRAP(fn->fn_flags&RTN_ROOT);
833
                        SUBTREE(pn) = NULL;
834
                        nstate = FWS_L;
835
                } else {
836
                        BUG_TRAP(!(fn->fn_flags&RTN_ROOT));
837
#endif
838
                        if (pn->right == fn) pn->right = child;
839
                        else if (pn->left == fn) pn->left = child;
840
#if RT6_DEBUG >= 2
841
                        else BUG_TRAP(0);
842
#endif
843
                        if (child)
844
                                child->parent = pn;
845
                        nstate = FWS_R;
846
#ifdef CONFIG_IPV6_SUBTREES
847
                }
848
#endif
849
 
850
                read_lock(&fib6_walker_lock);
851
                FOR_WALKERS(w) {
852
                        if (child == NULL) {
853
                                if (w->root == fn) {
854
                                        w->root = w->node = NULL;
855
                                        RT6_TRACE("W %p adjusted by delroot 1\n", w);
856
                                } else if (w->node == fn) {
857
                                        RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
858
                                        w->node = pn;
859
                                        w->state = nstate;
860
                                }
861
                        } else {
862
                                if (w->root == fn) {
863
                                        w->root = child;
864
                                        RT6_TRACE("W %p adjusted by delroot 2\n", w);
865
                                }
866
                                if (w->node == fn) {
867
                                        w->node = child;
868
                                        if (children&2) {
869
                                                RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
870
                                                w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
871
                                        } else {
872
                                                RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
873
                                                w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
874
                                        }
875
                                }
876
                        }
877
                }
878
                read_unlock(&fib6_walker_lock);
879
 
880
                node_free(fn);
881
                if (pn->fn_flags&RTN_RTINFO || SUBTREE(pn))
882
                        return pn;
883
 
884
                rt6_release(pn->leaf);
885
                pn->leaf = NULL;
886
                fn = pn;
887
        }
888
}
889
 
890
static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
891
    struct nlmsghdr *nlh)
892
{
893
        struct fib6_walker_t *w;
894
        struct rt6_info *rt = *rtp;
895
 
896
        RT6_TRACE("fib6_del_route\n");
897
 
898
        /* Unlink it */
899
        *rtp = rt->u.next;
900
        rt->rt6i_node = NULL;
901
        rt6_stats.fib_rt_entries--;
902
 
903
        /* Adjust walkers */
904
        read_lock(&fib6_walker_lock);
905
        FOR_WALKERS(w) {
906
                if (w->state == FWS_C && w->leaf == rt) {
907
                        RT6_TRACE("walker %p adjusted by delroute\n", w);
908
                        w->leaf = rt->u.next;
909
                        if (w->leaf == NULL)
910
                                w->state = FWS_U;
911
                }
912
        }
913
        read_unlock(&fib6_walker_lock);
914
 
915
        rt->u.next = NULL;
916
 
917
        if (fn->leaf == NULL && fn->fn_flags&RTN_TL_ROOT)
918
                fn->leaf = &ip6_null_entry;
919
 
920
        /* If it was last route, expunge its radix tree node */
921
        if (fn->leaf == NULL) {
922
                fn->fn_flags &= ~RTN_RTINFO;
923
                rt6_stats.fib_route_nodes--;
924
                fn = fib6_repair_tree(fn);
925
        }
926
 
927
        if (atomic_read(&rt->rt6i_ref) != 1) {
928
                /* This route is used as dummy address holder in some split
929
                 * nodes. It is not leaked, but it still holds other resources,
930
                 * which must be released in time. So, scan ascendant nodes
931
                 * and replace dummy references to this route with references
932
                 * to still alive ones.
933
                 */
934
                while (fn) {
935
                        if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
936
                                fn->leaf = fib6_find_prefix(fn);
937
                                atomic_inc(&fn->leaf->rt6i_ref);
938
                                rt6_release(rt);
939
                        }
940
                        fn = fn->parent;
941
                }
942
                /* No more references are possiible at this point. */
943
                if (atomic_read(&rt->rt6i_ref) != 1) BUG();
944
        }
945
 
946
        inet6_rt_notify(RTM_DELROUTE, rt, nlh);
947
        rt6_release(rt);
948
}
949
 
950
int fib6_del(struct rt6_info *rt, struct nlmsghdr *nlh)
951
{
952
        struct fib6_node *fn = rt->rt6i_node;
953
        struct rt6_info **rtp;
954
 
955
#if RT6_DEBUG >= 2
956
        if (rt->u.dst.obsolete>0) {
957
                BUG_TRAP(fn==NULL);
958
                return -ENOENT;
959
        }
960
#endif
961
        if (fn == NULL || rt == &ip6_null_entry)
962
                return -ENOENT;
963
 
964
        BUG_TRAP(fn->fn_flags&RTN_RTINFO);
965
 
966
        if (!(rt->rt6i_flags&RTF_CACHE))
967
                fib6_prune_clones(fn, rt);
968
 
969
        /*
970
         *      Walk the leaf entries looking for ourself
971
         */
972
 
973
        for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.next) {
974
                if (*rtp == rt) {
975
                        fib6_del_route(fn, rtp, nlh);
976
                        return 0;
977
                }
978
        }
979
        return -ENOENT;
980
}
981
 
982
/*
983
 *      Tree traversal function.
984
 *
985
 *      Certainly, it is not interrupt safe.
986
 *      However, it is internally reenterable wrt itself and fib6_add/fib6_del.
987
 *      It means, that we can modify tree during walking
988
 *      and use this function for garbage collection, clone pruning,
989
 *      cleaning tree when a device goes down etc. etc.
990
 *
991
 *      It guarantees that every node will be traversed,
992
 *      and that it will be traversed only once.
993
 *
994
 *      Callback function w->func may return:
995
 *      0 -> continue walking.
996
 *      positive value -> walking is suspended (used by tree dumps,
997
 *      and probably by gc, if it will be split to several slices)
998
 *      negative value -> terminate walking.
999
 *
1000
 *      The function itself returns:
1001
 *      0   -> walk is complete.
1002
 *      >0  -> walk is incomplete (i.e. suspended)
1003
 *      <0  -> walk is terminated by an error.
1004
 */
1005
 
1006
int fib6_walk_continue(struct fib6_walker_t *w)
1007
{
1008
        struct fib6_node *fn, *pn;
1009
 
1010
        for (;;) {
1011
                fn = w->node;
1012
                if (fn == NULL)
1013
                        return 0;
1014
 
1015
                if (w->prune && fn != w->root &&
1016
                    fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1017
                        w->state = FWS_C;
1018
                        w->leaf = fn->leaf;
1019
                }
1020
                switch (w->state) {
1021
#ifdef CONFIG_IPV6_SUBTREES
1022
                case FWS_S:
1023
                        if (SUBTREE(fn)) {
1024
                                w->node = SUBTREE(fn);
1025
                                continue;
1026
                        }
1027
                        w->state = FWS_L;
1028
#endif  
1029
                case FWS_L:
1030
                        if (fn->left) {
1031
                                w->node = fn->left;
1032
                                w->state = FWS_INIT;
1033
                                continue;
1034
                        }
1035
                        w->state = FWS_R;
1036
                case FWS_R:
1037
                        if (fn->right) {
1038
                                w->node = fn->right;
1039
                                w->state = FWS_INIT;
1040
                                continue;
1041
                        }
1042
                        w->state = FWS_C;
1043
                        w->leaf = fn->leaf;
1044
                case FWS_C:
1045
                        if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1046
                                int err = w->func(w);
1047
                                if (err)
1048
                                        return err;
1049
                                continue;
1050
                        }
1051
                        w->state = FWS_U;
1052
                case FWS_U:
1053
                        if (fn == w->root)
1054
                                return 0;
1055
                        pn = fn->parent;
1056
                        w->node = pn;
1057
#ifdef CONFIG_IPV6_SUBTREES
1058
                        if (SUBTREE(pn) == fn) {
1059
                                BUG_TRAP(fn->fn_flags&RTN_ROOT);
1060
                                w->state = FWS_L;
1061
                                continue;
1062
                        }
1063
#endif
1064
                        if (pn->left == fn) {
1065
                                w->state = FWS_R;
1066
                                continue;
1067
                        }
1068
                        if (pn->right == fn) {
1069
                                w->state = FWS_C;
1070
                                w->leaf = w->node->leaf;
1071
                                continue;
1072
                        }
1073
#if RT6_DEBUG >= 2
1074
                        BUG_TRAP(0);
1075
#endif
1076
                }
1077
        }
1078
}
1079
 
1080
int fib6_walk(struct fib6_walker_t *w)
1081
{
1082
        int res;
1083
 
1084
        w->state = FWS_INIT;
1085
        w->node = w->root;
1086
 
1087
        fib6_walker_link(w);
1088
        res = fib6_walk_continue(w);
1089
        if (res <= 0)
1090
                fib6_walker_unlink(w);
1091
        return res;
1092
}
1093
 
1094
static int fib6_clean_node(struct fib6_walker_t *w)
1095
{
1096
        int res;
1097
        struct rt6_info *rt;
1098
        struct fib6_cleaner_t *c = (struct fib6_cleaner_t*)w;
1099
 
1100
        for (rt = w->leaf; rt; rt = rt->u.next) {
1101
                res = c->func(rt, c->arg);
1102
                if (res < 0) {
1103
                        w->leaf = rt;
1104
                        res = fib6_del(rt, NULL);
1105
                        if (res) {
1106
#if RT6_DEBUG >= 2
1107
                                printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1108
#endif
1109
                                continue;
1110
                        }
1111
                        return 0;
1112
                }
1113
                BUG_TRAP(res==0);
1114
        }
1115
        w->leaf = rt;
1116
        return 0;
1117
}
1118
 
1119
/*
1120
 *      Convenient frontend to tree walker.
1121
 *
1122
 *      func is called on each route.
1123
 *              It may return -1 -> delete this route.
1124
 *                            0  -> continue walking
1125
 *
1126
 *      prune==1 -> only immediate children of node (certainly,
1127
 *      ignoring pure split nodes) will be scanned.
1128
 */
1129
 
1130
void fib6_clean_tree(struct fib6_node *root,
1131
                     int (*func)(struct rt6_info *, void *arg),
1132
                     int prune, void *arg)
1133
{
1134
        struct fib6_cleaner_t c;
1135
 
1136
        c.w.root = root;
1137
        c.w.func = fib6_clean_node;
1138
        c.w.prune = prune;
1139
        c.func = func;
1140
        c.arg = arg;
1141
 
1142
        fib6_walk(&c.w);
1143
}
1144
 
1145
static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1146
{
1147
        if (rt->rt6i_flags & RTF_CACHE) {
1148
                RT6_TRACE("pruning clone %p\n", rt);
1149
                return -1;
1150
        }
1151
 
1152
        return 0;
1153
}
1154
 
1155
static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt)
1156
{
1157
        fib6_clean_tree(fn, fib6_prune_clone, 1, rt);
1158
}
1159
 
1160
/*
1161
 *      Garbage collection
1162
 */
1163
 
1164
static struct fib6_gc_args
1165
{
1166
        int                     timeout;
1167
        int                     more;
1168
} gc_args;
1169
 
1170
static int fib6_age(struct rt6_info *rt, void *arg)
1171
{
1172
        unsigned long now = jiffies;
1173
 
1174
        /* Age clones. Note, that clones are aged out
1175
           only if they are not in use now.
1176
         */
1177
 
1178
        /*
1179
         *      check addrconf expiration here.
1180
         *      They are expired even if they are in use.
1181
         */
1182
 
1183
        if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1184
                if (time_after(now, rt->rt6i_expires)) {
1185
                        RT6_TRACE("expiring %p\n", rt);
1186
                        return -1;
1187
                }
1188
                gc_args.more++;
1189
        } else if (rt->rt6i_flags & RTF_CACHE) {
1190
                if (atomic_read(&rt->u.dst.__refcnt) == 0 &&
1191
                    time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) {
1192
                        RT6_TRACE("aging clone %p\n", rt);
1193
                        return -1;
1194
                }
1195
                gc_args.more++;
1196
        }
1197
 
1198
        return 0;
1199
}
1200
 
1201
static spinlock_t fib6_gc_lock = SPIN_LOCK_UNLOCKED;
1202
 
1203
void fib6_run_gc(unsigned long dummy)
1204
{
1205
        if (dummy != ~0UL) {
1206
                spin_lock_bh(&fib6_gc_lock);
1207
                gc_args.timeout = (int)dummy;
1208
        } else {
1209
                local_bh_disable();
1210
                if (!spin_trylock(&fib6_gc_lock)) {
1211
                        mod_timer(&ip6_fib_timer, jiffies + HZ);
1212
                        local_bh_enable();
1213
                        return;
1214
                }
1215
                gc_args.timeout = ip6_rt_gc_interval;
1216
        }
1217
        gc_args.more = 0;
1218
 
1219
 
1220
        write_lock_bh(&rt6_lock);
1221
        fib6_clean_tree(&ip6_routing_table, fib6_age, 0, NULL);
1222
        write_unlock_bh(&rt6_lock);
1223
 
1224
        if (gc_args.more)
1225
                mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
1226
        else {
1227
                del_timer(&ip6_fib_timer);
1228
                ip6_fib_timer.expires = 0;
1229
        }
1230
        spin_unlock_bh(&fib6_gc_lock);
1231
}
1232
 
1233
void __init fib6_init(void)
1234
{
1235
        if (!fib6_node_kmem)
1236
                fib6_node_kmem = kmem_cache_create("fib6_nodes",
1237
                                                   sizeof(struct fib6_node),
1238
                                                   0, SLAB_HWCACHE_ALIGN,
1239
                                                   NULL, NULL);
1240
}
1241
 
1242
#ifdef MODULE
1243
void fib6_gc_cleanup(void)
1244
{
1245
        del_timer(&ip6_fib_timer);
1246
}
1247
#endif
1248
 
1249
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.