1 |
1325 |
phoenix |
/* Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
|
2 |
|
|
This file is part of the GNU C Library.
|
3 |
|
|
|
4 |
|
|
The GNU C Library is free software; you can redistribute it and/or
|
5 |
|
|
modify it under the terms of the GNU Lesser General Public
|
6 |
|
|
License as published by the Free Software Foundation; either
|
7 |
|
|
version 2.1 of the License, or (at your option) any later version.
|
8 |
|
|
|
9 |
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
10 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
11 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
12 |
|
|
Lesser General Public License for more details.
|
13 |
|
|
|
14 |
|
|
You should have received a copy of the GNU Lesser General Public
|
15 |
|
|
License along with the GNU C Library; if not, write to the Free
|
16 |
|
|
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
17 |
|
|
02111-1307 USA. */
|
18 |
|
|
|
19 |
|
|
/*
|
20 |
|
|
* ISO C99 Standard: 7.22 Type-generic math <tgmath.h>
|
21 |
|
|
*/
|
22 |
|
|
|
23 |
|
|
#ifndef _TGMATH_H
|
24 |
|
|
#define _TGMATH_H 1
|
25 |
|
|
|
26 |
|
|
/* Include the needed headers. */
|
27 |
|
|
#include <math.h>
|
28 |
|
|
#include <complex.h>
|
29 |
|
|
|
30 |
|
|
|
31 |
|
|
/* Since `complex' is currently not really implemented in most C compilers
|
32 |
|
|
and if it is implemented, the implementations differ. This makes it
|
33 |
|
|
quite difficult to write a generic implementation of this header. We
|
34 |
|
|
do not try this for now and instead concentrate only on GNU CC. Once
|
35 |
|
|
we have more information support for other compilers might follow. */
|
36 |
|
|
|
37 |
|
|
#if __GNUC_PREREQ (2, 7)
|
38 |
|
|
|
39 |
|
|
# ifdef __NO_LONG_DOUBLE_MATH
|
40 |
|
|
# define __tgml(fct) fct
|
41 |
|
|
# else
|
42 |
|
|
# define __tgml(fct) fct ## l
|
43 |
|
|
# endif
|
44 |
|
|
|
45 |
|
|
/* This is ugly but unless gcc gets appropriate builtins we have to do
|
46 |
|
|
something like this. Don't ask how it works. */
|
47 |
|
|
|
48 |
|
|
/* 1 if 'type' is a floating type, 0 if 'type' is an integer type.
|
49 |
|
|
Allows for _Bool. Expands to an integer constant expression. */
|
50 |
|
|
# define __floating_type(type) (((type) 0.25) && ((type) 0.25 - 1))
|
51 |
|
|
|
52 |
|
|
/* The tgmath real type for T, where E is 0 if T is an integer type and
|
53 |
|
|
1 for a floating type. */
|
54 |
|
|
# define __tgmath_real_type_sub(T, E) \
|
55 |
|
|
__typeof__(*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0 \
|
56 |
|
|
: (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0))
|
57 |
|
|
|
58 |
|
|
/* The tgmath real type of EXPR. */
|
59 |
|
|
# define __tgmath_real_type(expr) \
|
60 |
|
|
__tgmath_real_type_sub(__typeof__(expr), __floating_type(__typeof__(expr)))
|
61 |
|
|
|
62 |
|
|
|
63 |
|
|
/* We have two kinds of generic macros: to support functions which are
|
64 |
|
|
only defined on real valued parameters and those which are defined
|
65 |
|
|
for complex functions as well. */
|
66 |
|
|
# define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \
|
67 |
|
|
(__extension__ ({ __tgmath_real_type (Val) __tgmres; \
|
68 |
|
|
if (sizeof (Val) == sizeof (double) \
|
69 |
|
|
|| __builtin_classify_type (Val) != 8) \
|
70 |
|
|
__tgmres = Fct (Val); \
|
71 |
|
|
else if (sizeof (Val) == sizeof (float)) \
|
72 |
|
|
__tgmres = Fct##f (Val); \
|
73 |
|
|
else \
|
74 |
|
|
__tgmres = __tgml(Fct) (Val); \
|
75 |
|
|
__tgmres; }))
|
76 |
|
|
|
77 |
|
|
# define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
|
78 |
|
|
(__extension__ ({ __tgmath_real_type (Val1) __tgmres; \
|
79 |
|
|
if (sizeof (Val1) == sizeof (double) \
|
80 |
|
|
|| __builtin_classify_type (Val1) != 8) \
|
81 |
|
|
__tgmres = Fct (Val1, Val2); \
|
82 |
|
|
else if (sizeof (Val1) == sizeof (float)) \
|
83 |
|
|
__tgmres = Fct##f (Val1, Val2); \
|
84 |
|
|
else \
|
85 |
|
|
__tgmres = __tgml(Fct) (Val1, Val2); \
|
86 |
|
|
__tgmres; }))
|
87 |
|
|
|
88 |
|
|
# define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
|
89 |
|
|
(__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres; \
|
90 |
|
|
if ((sizeof (Val1) > sizeof (double) \
|
91 |
|
|
|| sizeof (Val2) > sizeof (double)) \
|
92 |
|
|
&& __builtin_classify_type ((Val1) + (Val2)) == 8) \
|
93 |
|
|
__tgmres = __tgml(Fct) (Val1, Val2); \
|
94 |
|
|
else if (sizeof (Val1) == sizeof (double) \
|
95 |
|
|
|| sizeof (Val2) == sizeof (double) \
|
96 |
|
|
|| __builtin_classify_type (Val1) != 8 \
|
97 |
|
|
|| __builtin_classify_type (Val2) != 8) \
|
98 |
|
|
__tgmres = Fct (Val1, Val2); \
|
99 |
|
|
else \
|
100 |
|
|
__tgmres = Fct##f (Val1, Val2); \
|
101 |
|
|
__tgmres; }))
|
102 |
|
|
|
103 |
|
|
# define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
|
104 |
|
|
(__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres; \
|
105 |
|
|
if ((sizeof (Val1) > sizeof (double) \
|
106 |
|
|
|| sizeof (Val2) > sizeof (double)) \
|
107 |
|
|
&& __builtin_classify_type ((Val1) + (Val2)) == 8) \
|
108 |
|
|
__tgmres = __tgml(Fct) (Val1, Val2, Val3); \
|
109 |
|
|
else if (sizeof (Val1) == sizeof (double) \
|
110 |
|
|
|| sizeof (Val2) == sizeof (double) \
|
111 |
|
|
|| __builtin_classify_type (Val1) != 8 \
|
112 |
|
|
|| __builtin_classify_type (Val2) != 8) \
|
113 |
|
|
__tgmres = Fct (Val1, Val2, Val3); \
|
114 |
|
|
else \
|
115 |
|
|
__tgmres = Fct##f (Val1, Val2, Val3); \
|
116 |
|
|
__tgmres; }))
|
117 |
|
|
|
118 |
|
|
# define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
|
119 |
|
|
(__extension__ ({ __tgmath_real_type ((Val1) + (Val2) + (Val3)) __tgmres;\
|
120 |
|
|
if ((sizeof (Val1) > sizeof (double) \
|
121 |
|
|
|| sizeof (Val2) > sizeof (double) \
|
122 |
|
|
|| sizeof (Val3) > sizeof (double)) \
|
123 |
|
|
&& __builtin_classify_type ((Val1) + (Val2) \
|
124 |
|
|
+ (Val3)) == 8) \
|
125 |
|
|
__tgmres = __tgml(Fct) (Val1, Val2, Val3); \
|
126 |
|
|
else if (sizeof (Val1) == sizeof (double) \
|
127 |
|
|
|| sizeof (Val2) == sizeof (double) \
|
128 |
|
|
|| sizeof (Val3) == sizeof (double) \
|
129 |
|
|
|| __builtin_classify_type (Val1) != 8 \
|
130 |
|
|
|| __builtin_classify_type (Val2) != 8 \
|
131 |
|
|
|| __builtin_classify_type (Val3) != 8) \
|
132 |
|
|
__tgmres = Fct (Val1, Val2, Val3); \
|
133 |
|
|
else \
|
134 |
|
|
__tgmres = Fct##f (Val1, Val2, Val3); \
|
135 |
|
|
__tgmres; }))
|
136 |
|
|
|
137 |
|
|
/* XXX This definition has to be changed as soon as the compiler understands
|
138 |
|
|
the imaginary keyword. */
|
139 |
|
|
# define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
|
140 |
|
|
(__extension__ ({ __tgmath_real_type (Val) __tgmres; \
|
141 |
|
|
if (sizeof (__real__ (Val)) > sizeof (double) \
|
142 |
|
|
&& __builtin_classify_type (__real__ (Val)) == 8) \
|
143 |
|
|
{ \
|
144 |
|
|
if (sizeof (__real__ (Val)) == sizeof (Val)) \
|
145 |
|
|
__tgmres = __tgml(Fct) (Val); \
|
146 |
|
|
else \
|
147 |
|
|
__tgmres = __tgml(Cfct) (Val); \
|
148 |
|
|
} \
|
149 |
|
|
else if (sizeof (__real__ (Val)) == sizeof (double) \
|
150 |
|
|
|| __builtin_classify_type (__real__ (Val)) \
|
151 |
|
|
!= 8) \
|
152 |
|
|
{ \
|
153 |
|
|
if (sizeof (__real__ (Val)) == sizeof (Val)) \
|
154 |
|
|
__tgmres = Fct (Val); \
|
155 |
|
|
else \
|
156 |
|
|
__tgmres = Cfct (Val); \
|
157 |
|
|
} \
|
158 |
|
|
else \
|
159 |
|
|
{ \
|
160 |
|
|
if (sizeof (__real__ (Val)) == sizeof (Val)) \
|
161 |
|
|
__tgmres = Fct##f (Val); \
|
162 |
|
|
else \
|
163 |
|
|
__tgmres = Cfct##f (Val); \
|
164 |
|
|
} \
|
165 |
|
|
__tgmres; }))
|
166 |
|
|
|
167 |
|
|
/* XXX This definition has to be changed as soon as the compiler understands
|
168 |
|
|
the imaginary keyword. */
|
169 |
|
|
# define __TGMATH_UNARY_IMAG_ONLY(Val, Fct) \
|
170 |
|
|
(__extension__ ({ __tgmath_real_type (Val) __tgmres; \
|
171 |
|
|
if (sizeof (Val) == sizeof (__complex__ double) \
|
172 |
|
|
|| __builtin_classify_type (__real__ (Val)) != 8) \
|
173 |
|
|
__tgmres = Fct (Val); \
|
174 |
|
|
else if (sizeof (Val) == sizeof (__complex__ float)) \
|
175 |
|
|
__tgmres = Fct##f (Val); \
|
176 |
|
|
else \
|
177 |
|
|
__tgmres = __tgml(Fct) (Val); \
|
178 |
|
|
__tgmres; }))
|
179 |
|
|
|
180 |
|
|
/* XXX This definition has to be changed as soon as the compiler understands
|
181 |
|
|
the imaginary keyword. */
|
182 |
|
|
# define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
|
183 |
|
|
(__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres; \
|
184 |
|
|
if ((sizeof (__real__ (Val1)) > sizeof (double) \
|
185 |
|
|
|| sizeof (__real__ (Val2)) > sizeof (double)) \
|
186 |
|
|
&& __builtin_classify_type (__real__ (Val1) \
|
187 |
|
|
+ __real__ (Val2)) \
|
188 |
|
|
== 8) \
|
189 |
|
|
{ \
|
190 |
|
|
if (sizeof (__real__ (Val1)) == sizeof (Val1) \
|
191 |
|
|
&& sizeof (__real__ (Val2)) == sizeof (Val2)) \
|
192 |
|
|
__tgmres = __tgml(Fct) (Val1, Val2); \
|
193 |
|
|
else \
|
194 |
|
|
__tgmres = __tgml(Cfct) (Val1, Val2); \
|
195 |
|
|
} \
|
196 |
|
|
else if (sizeof (__real__ (Val1)) == sizeof (double) \
|
197 |
|
|
|| sizeof (__real__ (Val2)) == sizeof(double) \
|
198 |
|
|
|| (__builtin_classify_type (__real__ (Val1)) \
|
199 |
|
|
!= 8) \
|
200 |
|
|
|| (__builtin_classify_type (__real__ (Val2)) \
|
201 |
|
|
!= 8)) \
|
202 |
|
|
{ \
|
203 |
|
|
if (sizeof (__real__ (Val1)) == sizeof (Val1) \
|
204 |
|
|
&& sizeof (__real__ (Val2)) == sizeof (Val2)) \
|
205 |
|
|
__tgmres = Fct (Val1, Val2); \
|
206 |
|
|
else \
|
207 |
|
|
__tgmres = Cfct (Val1, Val2); \
|
208 |
|
|
} \
|
209 |
|
|
else \
|
210 |
|
|
{ \
|
211 |
|
|
if (sizeof (__real__ (Val1)) == sizeof (Val1) \
|
212 |
|
|
&& sizeof (__real__ (Val2)) == sizeof (Val2)) \
|
213 |
|
|
__tgmres = Fct##f (Val1, Val2); \
|
214 |
|
|
else \
|
215 |
|
|
__tgmres = Cfct##f (Val1, Val2); \
|
216 |
|
|
} \
|
217 |
|
|
__tgmres; }))
|
218 |
|
|
#else
|
219 |
|
|
# error "Unsupported compiler; you cannot use <tgmath.h>"
|
220 |
|
|
#endif
|
221 |
|
|
|
222 |
|
|
|
223 |
|
|
/* Unary functions defined for real and complex values. */
|
224 |
|
|
|
225 |
|
|
|
226 |
|
|
/* Trigonometric functions. */
|
227 |
|
|
|
228 |
|
|
/* Arc cosine of X. */
|
229 |
|
|
#define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos)
|
230 |
|
|
/* Arc sine of X. */
|
231 |
|
|
#define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin)
|
232 |
|
|
/* Arc tangent of X. */
|
233 |
|
|
#define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan)
|
234 |
|
|
/* Arc tangent of Y/X. */
|
235 |
|
|
#define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2)
|
236 |
|
|
|
237 |
|
|
/* Cosine of X. */
|
238 |
|
|
#define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos)
|
239 |
|
|
/* Sine of X. */
|
240 |
|
|
#define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin)
|
241 |
|
|
/* Tangent of X. */
|
242 |
|
|
#define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan)
|
243 |
|
|
|
244 |
|
|
|
245 |
|
|
/* Hyperbolic functions. */
|
246 |
|
|
|
247 |
|
|
/* Hyperbolic arc cosine of X. */
|
248 |
|
|
#define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh)
|
249 |
|
|
/* Hyperbolic arc sine of X. */
|
250 |
|
|
#define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh)
|
251 |
|
|
/* Hyperbolic arc tangent of X. */
|
252 |
|
|
#define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh)
|
253 |
|
|
|
254 |
|
|
/* Hyperbolic cosine of X. */
|
255 |
|
|
#define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh)
|
256 |
|
|
/* Hyperbolic sine of X. */
|
257 |
|
|
#define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh)
|
258 |
|
|
/* Hyperbolic tangent of X. */
|
259 |
|
|
#define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh)
|
260 |
|
|
|
261 |
|
|
|
262 |
|
|
/* Exponential and logarithmic functions. */
|
263 |
|
|
|
264 |
|
|
/* Exponential function of X. */
|
265 |
|
|
#define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp)
|
266 |
|
|
|
267 |
|
|
/* Break VALUE into a normalized fraction and an integral power of 2. */
|
268 |
|
|
#define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp)
|
269 |
|
|
|
270 |
|
|
/* X times (two to the EXP power). */
|
271 |
|
|
#define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp)
|
272 |
|
|
|
273 |
|
|
/* Natural logarithm of X. */
|
274 |
|
|
#define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog)
|
275 |
|
|
|
276 |
|
|
/* Base-ten logarithm of X. */
|
277 |
|
|
#ifdef __USE_GNU
|
278 |
|
|
# define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, __clog10)
|
279 |
|
|
#else
|
280 |
|
|
# define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10)
|
281 |
|
|
#endif
|
282 |
|
|
|
283 |
|
|
/* Return exp(X) - 1. */
|
284 |
|
|
#define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1)
|
285 |
|
|
|
286 |
|
|
/* Return log(1 + X). */
|
287 |
|
|
#define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p)
|
288 |
|
|
|
289 |
|
|
/* Return the base 2 signed integral exponent of X. */
|
290 |
|
|
#define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb)
|
291 |
|
|
|
292 |
|
|
/* Compute base-2 exponential of X. */
|
293 |
|
|
#define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2)
|
294 |
|
|
|
295 |
|
|
/* Compute base-2 logarithm of X. */
|
296 |
|
|
#define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2)
|
297 |
|
|
|
298 |
|
|
|
299 |
|
|
/* Power functions. */
|
300 |
|
|
|
301 |
|
|
/* Return X to the Y power. */
|
302 |
|
|
#define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow)
|
303 |
|
|
|
304 |
|
|
/* Return the square root of X. */
|
305 |
|
|
#define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt)
|
306 |
|
|
|
307 |
|
|
/* Return `sqrt(X*X + Y*Y)'. */
|
308 |
|
|
#define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot)
|
309 |
|
|
|
310 |
|
|
/* Return the cube root of X. */
|
311 |
|
|
#define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt)
|
312 |
|
|
|
313 |
|
|
|
314 |
|
|
/* Nearest integer, absolute value, and remainder functions. */
|
315 |
|
|
|
316 |
|
|
/* Smallest integral value not less than X. */
|
317 |
|
|
#define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil)
|
318 |
|
|
|
319 |
|
|
/* Absolute value of X. */
|
320 |
|
|
#define fabs(Val) __TGMATH_UNARY_REAL_IMAG (Val, fabs, cabs)
|
321 |
|
|
|
322 |
|
|
/* Largest integer not greater than X. */
|
323 |
|
|
#define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor)
|
324 |
|
|
|
325 |
|
|
/* Floating-point modulo remainder of X/Y. */
|
326 |
|
|
#define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod)
|
327 |
|
|
|
328 |
|
|
/* Round X to integral valuein floating-point format using current
|
329 |
|
|
rounding direction, but do not raise inexact exception. */
|
330 |
|
|
#define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint)
|
331 |
|
|
|
332 |
|
|
/* Round X to nearest integral value, rounding halfway cases away from
|
333 |
|
|
zero. */
|
334 |
|
|
#define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round)
|
335 |
|
|
|
336 |
|
|
/* Round X to the integral value in floating-point format nearest but
|
337 |
|
|
not larger in magnitude. */
|
338 |
|
|
#define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc)
|
339 |
|
|
|
340 |
|
|
/* Compute remainder of X and Y and put in *QUO a value with sign of x/y
|
341 |
|
|
and magnitude congruent `mod 2^n' to the magnitude of the integral
|
342 |
|
|
quotient x/y, with n >= 3. */
|
343 |
|
|
#define remquo(Val1, Val2, Val3) \
|
344 |
|
|
__TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo)
|
345 |
|
|
|
346 |
|
|
/* Round X to nearest integral value according to current rounding
|
347 |
|
|
direction. */
|
348 |
|
|
#define lrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, lrint)
|
349 |
|
|
#define llrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, llrint)
|
350 |
|
|
|
351 |
|
|
/* Round X to nearest integral value, rounding halfway cases away from
|
352 |
|
|
zero. */
|
353 |
|
|
#define lround(Val) __TGMATH_UNARY_REAL_ONLY (Val, lround)
|
354 |
|
|
#define llround(Val) __TGMATH_UNARY_REAL_ONLY (Val, llround)
|
355 |
|
|
|
356 |
|
|
|
357 |
|
|
/* Return X with its signed changed to Y's. */
|
358 |
|
|
#define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign)
|
359 |
|
|
|
360 |
|
|
/* Error and gamma functions. */
|
361 |
|
|
#define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf)
|
362 |
|
|
#define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc)
|
363 |
|
|
#define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma)
|
364 |
|
|
#define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma)
|
365 |
|
|
|
366 |
|
|
|
367 |
|
|
/* Return the integer nearest X in the direction of the
|
368 |
|
|
prevailing rounding mode. */
|
369 |
|
|
#define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint)
|
370 |
|
|
|
371 |
|
|
/* Return X + epsilon if X < Y, X - epsilon if X > Y. */
|
372 |
|
|
#define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter)
|
373 |
|
|
#define nexttoward(Val1, Val2) \
|
374 |
|
|
__TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, nexttoward)
|
375 |
|
|
|
376 |
|
|
/* Return the remainder of integer divison X / Y with infinite precision. */
|
377 |
|
|
#define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder)
|
378 |
|
|
|
379 |
|
|
/* Return X times (2 to the Nth power). */
|
380 |
|
|
#if defined __USE_MISC || defined __USE_XOPEN_EXTENDED
|
381 |
|
|
# define scalb(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, scalb)
|
382 |
|
|
#endif
|
383 |
|
|
|
384 |
|
|
/* Return X times (2 to the Nth power). */
|
385 |
|
|
#define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn)
|
386 |
|
|
|
387 |
|
|
/* Return X times (2 to the Nth power). */
|
388 |
|
|
#define scalbln(Val1, Val2) \
|
389 |
|
|
__TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln)
|
390 |
|
|
|
391 |
|
|
/* Return the binary exponent of X, which must be nonzero. */
|
392 |
|
|
#define ilogb(Val) __TGMATH_UNARY_REAL_ONLY (Val, ilogb)
|
393 |
|
|
|
394 |
|
|
|
395 |
|
|
/* Return positive difference between X and Y. */
|
396 |
|
|
#define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim)
|
397 |
|
|
|
398 |
|
|
/* Return maximum numeric value from X and Y. */
|
399 |
|
|
#define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax)
|
400 |
|
|
|
401 |
|
|
/* Return minimum numeric value from X and Y. */
|
402 |
|
|
#define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin)
|
403 |
|
|
|
404 |
|
|
|
405 |
|
|
/* Multiply-add function computed as a ternary operation. */
|
406 |
|
|
#define fma(Val1, Val2, Val3) \
|
407 |
|
|
__TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma)
|
408 |
|
|
|
409 |
|
|
|
410 |
|
|
/* Absolute value, conjugates, and projection. */
|
411 |
|
|
|
412 |
|
|
/* Argument value of Z. */
|
413 |
|
|
#define carg(Val) __TGMATH_UNARY_IMAG_ONLY (Val, carg)
|
414 |
|
|
|
415 |
|
|
/* Complex conjugate of Z. */
|
416 |
|
|
#define conj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, conj)
|
417 |
|
|
|
418 |
|
|
/* Projection of Z onto the Riemann sphere. */
|
419 |
|
|
#define cproj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cproj)
|
420 |
|
|
|
421 |
|
|
|
422 |
|
|
/* Decomposing complex values. */
|
423 |
|
|
|
424 |
|
|
/* Imaginary part of Z. */
|
425 |
|
|
#define cimag(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cimag)
|
426 |
|
|
|
427 |
|
|
/* Real part of Z. */
|
428 |
|
|
#define creal(Val) __TGMATH_UNARY_IMAG_ONLY (Val, creal)
|
429 |
|
|
|
430 |
|
|
#endif /* tgmath.h */
|