OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [uClibc/] [libm/] [k_rem_pio2.c] - Blame information for rev 1771

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1325 phoenix
/* @(#)k_rem_pio2.c 5.1 93/09/24 */
2
/*
3
 * ====================================================
4
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
 *
6
 * Developed at SunPro, a Sun Microsystems, Inc. business.
7
 * Permission to use, copy, modify, and distribute this
8
 * software is freely granted, provided that this notice
9
 * is preserved.
10
 * ====================================================
11
 */
12
 
13
#if defined(LIBM_SCCS) && !defined(lint)
14
static char rcsid[] = "$NetBSD: k_rem_pio2.c,v 1.7 1995/05/10 20:46:25 jtc Exp $";
15
#endif
16
 
17
/*
18
 * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
19
 * double x[],y[]; int e0,nx,prec; int ipio2[];
20
 *
21
 * __kernel_rem_pio2 return the last three digits of N with
22
 *              y = x - N*pi/2
23
 * so that |y| < pi/2.
24
 *
25
 * The method is to compute the integer (mod 8) and fraction parts of
26
 * (2/pi)*x without doing the full multiplication. In general we
27
 * skip the part of the product that are known to be a huge integer (
28
 * more accurately, = 0 mod 8 ). Thus the number of operations are
29
 * independent of the exponent of the input.
30
 *
31
 * (2/pi) is represented by an array of 24-bit integers in ipio2[].
32
 *
33
 * Input parameters:
34
 *      x[]     The input value (must be positive) is broken into nx
35
 *              pieces of 24-bit integers in double precision format.
36
 *              x[i] will be the i-th 24 bit of x. The scaled exponent
37
 *              of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
38
 *              match x's up to 24 bits.
39
 *
40
 *              Example of breaking a double positive z into x[0]+x[1]+x[2]:
41
 *                      e0 = ilogb(z)-23
42
 *                      z  = scalbn(z,-e0)
43
 *              for i = 0,1,2
44
 *                      x[i] = floor(z)
45
 *                      z    = (z-x[i])*2**24
46
 *
47
 *
48
 *      y[]     ouput result in an array of double precision numbers.
49
 *              The dimension of y[] is:
50
 *                      24-bit  precision       1
51
 *                      53-bit  precision       2
52
 *                      64-bit  precision       2
53
 *                      113-bit precision       3
54
 *              The actual value is the sum of them. Thus for 113-bit
55
 *              precison, one may have to do something like:
56
 *
57
 *              long double t,w,r_head, r_tail;
58
 *              t = (long double)y[2] + (long double)y[1];
59
 *              w = (long double)y[0];
60
 *              r_head = t+w;
61
 *              r_tail = w - (r_head - t);
62
 *
63
 *      e0      The exponent of x[0]
64
 *
65
 *      nx      dimension of x[]
66
 *
67
 *      prec    an integer indicating the precision:
68
 *                      0        24  bits (single)
69
 *                      1       53  bits (double)
70
 *                      2       64  bits (extended)
71
 *                      3       113 bits (quad)
72
 *
73
 *      ipio2[]
74
 *              integer array, contains the (24*i)-th to (24*i+23)-th
75
 *              bit of 2/pi after binary point. The corresponding
76
 *              floating value is
77
 *
78
 *                      ipio2[i] * 2^(-24(i+1)).
79
 *
80
 * External function:
81
 *      double scalbn(), floor();
82
 *
83
 *
84
 * Here is the description of some local variables:
85
 *
86
 *      jk      jk+1 is the initial number of terms of ipio2[] needed
87
 *              in the computation. The recommended value is 2,3,4,
88
 *              6 for single, double, extended,and quad.
89
 *
90
 *      jz      local integer variable indicating the number of
91
 *              terms of ipio2[] used.
92
 *
93
 *      jx      nx - 1
94
 *
95
 *      jv      index for pointing to the suitable ipio2[] for the
96
 *              computation. In general, we want
97
 *                      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
98
 *              is an integer. Thus
99
 *                      e0-3-24*jv >= 0 or (e0-3)/24 >= jv
100
 *              Hence jv = max(0,(e0-3)/24).
101
 *
102
 *      jp      jp+1 is the number of terms in PIo2[] needed, jp = jk.
103
 *
104
 *      q[]     double array with integral value, representing the
105
 *              24-bits chunk of the product of x and 2/pi.
106
 *
107
 *      q0      the corresponding exponent of q[0]. Note that the
108
 *              exponent for q[i] would be q0-24*i.
109
 *
110
 *      PIo2[]  double precision array, obtained by cutting pi/2
111
 *              into 24 bits chunks.
112
 *
113
 *      f[]     ipio2[] in floating point
114
 *
115
 *      iq[]    integer array by breaking up q[] in 24-bits chunk.
116
 *
117
 *      fq[]    final product of x*(2/pi) in fq[0],..,fq[jk]
118
 *
119
 *      ih      integer. If >0 it indicates q[] is >= 0.5, hence
120
 *              it also indicates the *sign* of the result.
121
 *
122
 */
123
 
124
 
125
/*
126
 * Constants:
127
 * The hexadecimal values are the intended ones for the following
128
 * constants. The decimal values may be used, provided that the
129
 * compiler will convert from decimal to binary accurately enough
130
 * to produce the hexadecimal values shown.
131
 */
132
 
133
#include "math.h"
134
#include "math_private.h"
135
 
136
#ifdef __STDC__
137
static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
138
#else
139
static int init_jk[] = {2,3,4,6};
140
#endif
141
 
142
#ifdef __STDC__
143
static const double PIo2[] = {
144
#else
145
static double PIo2[] = {
146
#endif
147
  1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
148
  7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
149
  5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
150
  3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
151
  1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
152
  1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
153
  2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
154
  2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
155
};
156
 
157
#ifdef __STDC__
158
static const double
159
#else
160
static double
161
#endif
162
zero   = 0.0,
163
one    = 1.0,
164
two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
165
twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
166
 
167
#ifdef __STDC__
168
        int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2)
169
#else
170
        int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
171
        double x[], y[]; int e0,nx,prec; int32_t ipio2[];
172
#endif
173
{
174
        int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
175
        double z,fw,f[20],fq[20],q[20];
176
 
177
    /* initialize jk*/
178
        jk = init_jk[prec];
179
        jp = jk;
180
 
181
    /* determine jx,jv,q0, note that 3>q0 */
182
        jx =  nx-1;
183
        jv = (e0-3)/24; if(jv<0) jv=0;
184
        q0 =  e0-24*(jv+1);
185
 
186
    /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
187
        j = jv-jx; m = jx+jk;
188
        for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
189
 
190
    /* compute q[0],q[1],...q[jk] */
191
        for (i=0;i<=jk;i++) {
192
            for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
193
        }
194
 
195
        jz = jk;
196
recompute:
197
    /* distill q[] into iq[] reversingly */
198
        for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
199
            fw    =  (double)((int32_t)(twon24* z));
200
            iq[i] =  (int32_t)(z-two24*fw);
201
            z     =  q[j-1]+fw;
202
        }
203
 
204
    /* compute n */
205
        z  = scalbn(z,q0);              /* actual value of z */
206
        z -= 8.0*floor(z*0.125);                /* trim off integer >= 8 */
207
        n  = (int32_t) z;
208
        z -= (double)n;
209
        ih = 0;
210
        if(q0>0) {       /* need iq[jz-1] to determine n */
211
            i  = (iq[jz-1]>>(24-q0)); n += i;
212
            iq[jz-1] -= i<<(24-q0);
213
            ih = iq[jz-1]>>(23-q0);
214
        }
215
        else if(q0==0) ih = iq[jz-1]>>23;
216
        else if(z>=0.5) ih=2;
217
 
218
        if(ih>0) {       /* q > 0.5 */
219
            n += 1; carry = 0;
220
            for(i=0;i<jz ;i++) { /* compute 1-q */
221
                j = iq[i];
222
                if(carry==0) {
223
                    if(j!=0) {
224
                        carry = 1; iq[i] = 0x1000000- j;
225
                    }
226
                } else  iq[i] = 0xffffff - j;
227
            }
228
            if(q0>0) {           /* rare case: chance is 1 in 12 */
229
                switch(q0) {
230
                case 1:
231
                   iq[jz-1] &= 0x7fffff; break;
232
                case 2:
233
                   iq[jz-1] &= 0x3fffff; break;
234
                }
235
            }
236
            if(ih==2) {
237
                z = one - z;
238
                if(carry!=0) z -= scalbn(one,q0);
239
            }
240
        }
241
 
242
    /* check if recomputation is needed */
243
        if(z==zero) {
244
            j = 0;
245
            for (i=jz-1;i>=jk;i--) j |= iq[i];
246
            if(j==0) { /* need recomputation */
247
                for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
248
 
249
                for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
250
                    f[jx+i] = (double) ipio2[jv+i];
251
                    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
252
                    q[i] = fw;
253
                }
254
                jz += k;
255
                goto recompute;
256
            }
257
        }
258
 
259
    /* chop off zero terms */
260
        if(z==0.0) {
261
            jz -= 1; q0 -= 24;
262
            while(iq[jz]==0) { jz--; q0-=24;}
263
        } else { /* break z into 24-bit if necessary */
264
            z = scalbn(z,-q0);
265
            if(z>=two24) {
266
                fw = (double)((int32_t)(twon24*z));
267
                iq[jz] = (int32_t)(z-two24*fw);
268
                jz += 1; q0 += 24;
269
                iq[jz] = (int32_t) fw;
270
            } else iq[jz] = (int32_t) z ;
271
        }
272
 
273
    /* convert integer "bit" chunk to floating-point value */
274
        fw = scalbn(one,q0);
275
        for(i=jz;i>=0;i--) {
276
            q[i] = fw*(double)iq[i]; fw*=twon24;
277
        }
278
 
279
    /* compute PIo2[0,...,jp]*q[jz,...,0] */
280
        for(i=jz;i>=0;i--) {
281
            for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
282
            fq[jz-i] = fw;
283
        }
284
 
285
    /* compress fq[] into y[] */
286
        switch(prec) {
287
            case 0:
288
                fw = 0.0;
289
                for (i=jz;i>=0;i--) fw += fq[i];
290
                y[0] = (ih==0)? fw: -fw;
291
                break;
292
            case 1:
293
            case 2:
294
                fw = 0.0;
295
                for (i=jz;i>=0;i--) fw += fq[i];
296
                y[0] = (ih==0)? fw: -fw;
297
                fw = fq[0]-fw;
298
                for (i=1;i<=jz;i++) fw += fq[i];
299
                y[1] = (ih==0)? fw: -fw;
300
                break;
301
            case 3:     /* painful */
302
                for (i=jz;i>0;i--) {
303
                    fw      = fq[i-1]+fq[i];
304
                    fq[i]  += fq[i-1]-fw;
305
                    fq[i-1] = fw;
306
                }
307
                for (i=jz;i>1;i--) {
308
                    fw      = fq[i-1]+fq[i];
309
                    fq[i]  += fq[i-1]-fw;
310
                    fq[i-1] = fw;
311
                }
312
                for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
313
                if(ih==0) {
314
                    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
315
                } else {
316
                    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
317
                }
318
        }
319
        return n&7;
320
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.