1 |
1325 |
phoenix |
/* @(#)s_expm1.c 5.1 93/09/24 */
|
2 |
|
|
/*
|
3 |
|
|
* ====================================================
|
4 |
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
5 |
|
|
*
|
6 |
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
7 |
|
|
* Permission to use, copy, modify, and distribute this
|
8 |
|
|
* software is freely granted, provided that this notice
|
9 |
|
|
* is preserved.
|
10 |
|
|
* ====================================================
|
11 |
|
|
*/
|
12 |
|
|
|
13 |
|
|
#if defined(LIBM_SCCS) && !defined(lint)
|
14 |
|
|
static char rcsid[] = "$NetBSD: s_expm1.c,v 1.8 1995/05/10 20:47:09 jtc Exp $";
|
15 |
|
|
#endif
|
16 |
|
|
|
17 |
|
|
/* expm1(x)
|
18 |
|
|
* Returns exp(x)-1, the exponential of x minus 1.
|
19 |
|
|
*
|
20 |
|
|
* Method
|
21 |
|
|
* 1. Argument reduction:
|
22 |
|
|
* Given x, find r and integer k such that
|
23 |
|
|
*
|
24 |
|
|
* x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
|
25 |
|
|
*
|
26 |
|
|
* Here a correction term c will be computed to compensate
|
27 |
|
|
* the error in r when rounded to a floating-point number.
|
28 |
|
|
*
|
29 |
|
|
* 2. Approximating expm1(r) by a special rational function on
|
30 |
|
|
* the interval [0,0.34658]:
|
31 |
|
|
* Since
|
32 |
|
|
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
|
33 |
|
|
* we define R1(r*r) by
|
34 |
|
|
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
|
35 |
|
|
* That is,
|
36 |
|
|
* R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
|
37 |
|
|
* = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
|
38 |
|
|
* = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
|
39 |
|
|
* We use a special Reme algorithm on [0,0.347] to generate
|
40 |
|
|
* a polynomial of degree 5 in r*r to approximate R1. The
|
41 |
|
|
* maximum error of this polynomial approximation is bounded
|
42 |
|
|
* by 2**-61. In other words,
|
43 |
|
|
* R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
|
44 |
|
|
* where Q1 = -1.6666666666666567384E-2,
|
45 |
|
|
* Q2 = 3.9682539681370365873E-4,
|
46 |
|
|
* Q3 = -9.9206344733435987357E-6,
|
47 |
|
|
* Q4 = 2.5051361420808517002E-7,
|
48 |
|
|
* Q5 = -6.2843505682382617102E-9;
|
49 |
|
|
* (where z=r*r, and the values of Q1 to Q5 are listed below)
|
50 |
|
|
* with error bounded by
|
51 |
|
|
* | 5 | -61
|
52 |
|
|
* | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
|
53 |
|
|
* | |
|
54 |
|
|
*
|
55 |
|
|
* expm1(r) = exp(r)-1 is then computed by the following
|
56 |
|
|
* specific way which minimize the accumulation rounding error:
|
57 |
|
|
* 2 3
|
58 |
|
|
* r r [ 3 - (R1 + R1*r/2) ]
|
59 |
|
|
* expm1(r) = r + --- + --- * [--------------------]
|
60 |
|
|
* 2 2 [ 6 - r*(3 - R1*r/2) ]
|
61 |
|
|
*
|
62 |
|
|
* To compensate the error in the argument reduction, we use
|
63 |
|
|
* expm1(r+c) = expm1(r) + c + expm1(r)*c
|
64 |
|
|
* ~ expm1(r) + c + r*c
|
65 |
|
|
* Thus c+r*c will be added in as the correction terms for
|
66 |
|
|
* expm1(r+c). Now rearrange the term to avoid optimization
|
67 |
|
|
* screw up:
|
68 |
|
|
* ( 2 2 )
|
69 |
|
|
* ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
|
70 |
|
|
* expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
|
71 |
|
|
* ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
|
72 |
|
|
* ( )
|
73 |
|
|
*
|
74 |
|
|
* = r - E
|
75 |
|
|
* 3. Scale back to obtain expm1(x):
|
76 |
|
|
* From step 1, we have
|
77 |
|
|
* expm1(x) = either 2^k*[expm1(r)+1] - 1
|
78 |
|
|
* = or 2^k*[expm1(r) + (1-2^-k)]
|
79 |
|
|
* 4. Implementation notes:
|
80 |
|
|
* (A). To save one multiplication, we scale the coefficient Qi
|
81 |
|
|
* to Qi*2^i, and replace z by (x^2)/2.
|
82 |
|
|
* (B). To achieve maximum accuracy, we compute expm1(x) by
|
83 |
|
|
* (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
|
84 |
|
|
* (ii) if k=0, return r-E
|
85 |
|
|
* (iii) if k=-1, return 0.5*(r-E)-0.5
|
86 |
|
|
* (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
|
87 |
|
|
* else return 1.0+2.0*(r-E);
|
88 |
|
|
* (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
|
89 |
|
|
* (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
|
90 |
|
|
* (vii) return 2^k(1-((E+2^-k)-r))
|
91 |
|
|
*
|
92 |
|
|
* Special cases:
|
93 |
|
|
* expm1(INF) is INF, expm1(NaN) is NaN;
|
94 |
|
|
* expm1(-INF) is -1, and
|
95 |
|
|
* for finite argument, only expm1(0)=0 is exact.
|
96 |
|
|
*
|
97 |
|
|
* Accuracy:
|
98 |
|
|
* according to an error analysis, the error is always less than
|
99 |
|
|
* 1 ulp (unit in the last place).
|
100 |
|
|
*
|
101 |
|
|
* Misc. info.
|
102 |
|
|
* For IEEE double
|
103 |
|
|
* if x > 7.09782712893383973096e+02 then expm1(x) overflow
|
104 |
|
|
*
|
105 |
|
|
* Constants:
|
106 |
|
|
* The hexadecimal values are the intended ones for the following
|
107 |
|
|
* constants. The decimal values may be used, provided that the
|
108 |
|
|
* compiler will convert from decimal to binary accurately enough
|
109 |
|
|
* to produce the hexadecimal values shown.
|
110 |
|
|
*/
|
111 |
|
|
|
112 |
|
|
#include "math.h"
|
113 |
|
|
#include "math_private.h"
|
114 |
|
|
|
115 |
|
|
#ifdef __STDC__
|
116 |
|
|
static const double
|
117 |
|
|
#else
|
118 |
|
|
static double
|
119 |
|
|
#endif
|
120 |
|
|
one = 1.0,
|
121 |
|
|
huge = 1.0e+300,
|
122 |
|
|
tiny = 1.0e-300,
|
123 |
|
|
o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
|
124 |
|
|
ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
|
125 |
|
|
ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
|
126 |
|
|
invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
|
127 |
|
|
/* scaled coefficients related to expm1 */
|
128 |
|
|
Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
|
129 |
|
|
Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
|
130 |
|
|
Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
|
131 |
|
|
Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
|
132 |
|
|
Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
|
133 |
|
|
|
134 |
|
|
#ifdef __STDC__
|
135 |
|
|
double expm1(double x)
|
136 |
|
|
#else
|
137 |
|
|
double expm1(x)
|
138 |
|
|
double x;
|
139 |
|
|
#endif
|
140 |
|
|
{
|
141 |
|
|
double y,hi,lo,c=0.0,t,e,hxs,hfx,r1;
|
142 |
|
|
int32_t k,xsb;
|
143 |
|
|
u_int32_t hx;
|
144 |
|
|
|
145 |
|
|
GET_HIGH_WORD(hx,x);
|
146 |
|
|
xsb = hx&0x80000000; /* sign bit of x */
|
147 |
|
|
if(xsb==0) y=x; else y= -x; /* y = |x| */
|
148 |
|
|
hx &= 0x7fffffff; /* high word of |x| */
|
149 |
|
|
|
150 |
|
|
/* filter out huge and non-finite argument */
|
151 |
|
|
if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
|
152 |
|
|
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
|
153 |
|
|
if(hx>=0x7ff00000) {
|
154 |
|
|
u_int32_t low;
|
155 |
|
|
GET_LOW_WORD(low,x);
|
156 |
|
|
if(((hx&0xfffff)|low)!=0)
|
157 |
|
|
return x+x; /* NaN */
|
158 |
|
|
else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
|
159 |
|
|
}
|
160 |
|
|
if(x > o_threshold) return huge*huge; /* overflow */
|
161 |
|
|
}
|
162 |
|
|
if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
|
163 |
|
|
if(x+tiny<0.0) /* raise inexact */
|
164 |
|
|
return tiny-one; /* return -1 */
|
165 |
|
|
}
|
166 |
|
|
}
|
167 |
|
|
|
168 |
|
|
/* argument reduction */
|
169 |
|
|
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
170 |
|
|
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
|
171 |
|
|
if(xsb==0)
|
172 |
|
|
{hi = x - ln2_hi; lo = ln2_lo; k = 1;}
|
173 |
|
|
else
|
174 |
|
|
{hi = x + ln2_hi; lo = -ln2_lo; k = -1;}
|
175 |
|
|
} else {
|
176 |
|
|
k = invln2*x+((xsb==0)?0.5:-0.5);
|
177 |
|
|
t = k;
|
178 |
|
|
hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
|
179 |
|
|
lo = t*ln2_lo;
|
180 |
|
|
}
|
181 |
|
|
x = hi - lo;
|
182 |
|
|
c = (hi-x)-lo;
|
183 |
|
|
}
|
184 |
|
|
else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
|
185 |
|
|
t = huge+x; /* return x with inexact flags when x!=0 */
|
186 |
|
|
return x - (t-(huge+x));
|
187 |
|
|
}
|
188 |
|
|
else k = 0;
|
189 |
|
|
|
190 |
|
|
/* x is now in primary range */
|
191 |
|
|
hfx = 0.5*x;
|
192 |
|
|
hxs = x*hfx;
|
193 |
|
|
r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
|
194 |
|
|
t = 3.0-r1*hfx;
|
195 |
|
|
e = hxs*((r1-t)/(6.0 - x*t));
|
196 |
|
|
if(k==0) return x - (x*e-hxs); /* c is 0 */
|
197 |
|
|
else {
|
198 |
|
|
e = (x*(e-c)-c);
|
199 |
|
|
e -= hxs;
|
200 |
|
|
if(k== -1) return 0.5*(x-e)-0.5;
|
201 |
|
|
if(k==1) {
|
202 |
|
|
if(x < -0.25) return -2.0*(e-(x+0.5));
|
203 |
|
|
else return one+2.0*(x-e);
|
204 |
|
|
}
|
205 |
|
|
if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
|
206 |
|
|
u_int32_t high;
|
207 |
|
|
y = one-(e-x);
|
208 |
|
|
GET_HIGH_WORD(high,y);
|
209 |
|
|
SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
|
210 |
|
|
return y-one;
|
211 |
|
|
}
|
212 |
|
|
t = one;
|
213 |
|
|
if(k<20) {
|
214 |
|
|
u_int32_t high;
|
215 |
|
|
SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */
|
216 |
|
|
y = t-(e-x);
|
217 |
|
|
GET_HIGH_WORD(high,y);
|
218 |
|
|
SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
|
219 |
|
|
} else {
|
220 |
|
|
u_int32_t high;
|
221 |
|
|
SET_HIGH_WORD(t,((0x3ff-k)<<20)); /* 2^-k */
|
222 |
|
|
y = x-(e+t);
|
223 |
|
|
y += one;
|
224 |
|
|
GET_HIGH_WORD(high,y);
|
225 |
|
|
SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
|
226 |
|
|
}
|
227 |
|
|
}
|
228 |
|
|
return y;
|
229 |
|
|
}
|