1 |
1325 |
phoenix |
/* Linuxthreads - a simple clone()-based implementation of Posix */
|
2 |
|
|
/* threads for Linux. */
|
3 |
|
|
/* Copyright (C) 1998 Xavier Leroy (Xavier.Leroy@inria.fr) */
|
4 |
|
|
/* */
|
5 |
|
|
/* This program is free software; you can redistribute it and/or */
|
6 |
|
|
/* modify it under the terms of the GNU Library General Public License */
|
7 |
|
|
/* as published by the Free Software Foundation; either version 2 */
|
8 |
|
|
/* of the License, or (at your option) any later version. */
|
9 |
|
|
/* */
|
10 |
|
|
/* This program is distributed in the hope that it will be useful, */
|
11 |
|
|
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
|
12 |
|
|
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
|
13 |
|
|
/* GNU Library General Public License for more details. */
|
14 |
|
|
|
15 |
|
|
/* Internal locks */
|
16 |
|
|
|
17 |
|
|
#define __FORCE_GLIBC
|
18 |
|
|
#include <features.h>
|
19 |
|
|
#include <errno.h>
|
20 |
|
|
#include <sched.h>
|
21 |
|
|
#include <time.h>
|
22 |
|
|
#include <stdlib.h>
|
23 |
|
|
#include <limits.h>
|
24 |
|
|
#include "pthread.h"
|
25 |
|
|
#include "internals.h"
|
26 |
|
|
#include "spinlock.h"
|
27 |
|
|
#include "restart.h"
|
28 |
|
|
|
29 |
|
|
static void __pthread_acquire(int * spinlock);
|
30 |
|
|
|
31 |
|
|
static inline void __pthread_release(int * spinlock)
|
32 |
|
|
{
|
33 |
|
|
WRITE_MEMORY_BARRIER();
|
34 |
|
|
*spinlock = __LT_SPINLOCK_INIT;
|
35 |
|
|
__asm __volatile ("" : "=m" (*spinlock) : "0" (*spinlock));
|
36 |
|
|
}
|
37 |
|
|
|
38 |
|
|
|
39 |
|
|
/* The status field of a spinlock is a pointer whose least significant
|
40 |
|
|
bit is a locked flag.
|
41 |
|
|
|
42 |
|
|
Thus the field values have the following meanings:
|
43 |
|
|
|
44 |
|
|
status == 0: spinlock is free
|
45 |
|
|
status == 1: spinlock is taken; no thread is waiting on it
|
46 |
|
|
|
47 |
|
|
(status & 1) == 1: spinlock is taken and (status & ~1L) is a
|
48 |
|
|
pointer to the first waiting thread; other
|
49 |
|
|
waiting threads are linked via the p_nextlock
|
50 |
|
|
field.
|
51 |
|
|
(status & 1) == 0: same as above, but spinlock is not taken.
|
52 |
|
|
|
53 |
|
|
The waiting list is not sorted by priority order.
|
54 |
|
|
Actually, we always insert at top of list (sole insertion mode
|
55 |
|
|
that can be performed without locking).
|
56 |
|
|
For __pthread_unlock, we perform a linear search in the list
|
57 |
|
|
to find the highest-priority, oldest waiting thread.
|
58 |
|
|
This is safe because there are no concurrent __pthread_unlock
|
59 |
|
|
operations -- only the thread that locked the mutex can unlock it. */
|
60 |
|
|
|
61 |
|
|
|
62 |
|
|
void internal_function __pthread_lock(struct _pthread_fastlock * lock,
|
63 |
|
|
pthread_descr self)
|
64 |
|
|
{
|
65 |
|
|
#if defined HAS_COMPARE_AND_SWAP
|
66 |
|
|
long oldstatus, newstatus;
|
67 |
|
|
int successful_seizure, spurious_wakeup_count;
|
68 |
|
|
int spin_count;
|
69 |
|
|
#endif
|
70 |
|
|
|
71 |
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
72 |
|
|
if (!__pthread_has_cas)
|
73 |
|
|
#endif
|
74 |
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
75 |
|
|
{
|
76 |
|
|
__pthread_acquire(&lock->__spinlock);
|
77 |
|
|
return;
|
78 |
|
|
}
|
79 |
|
|
#endif
|
80 |
|
|
|
81 |
|
|
#if defined HAS_COMPARE_AND_SWAP
|
82 |
|
|
/* First try it without preparation. Maybe it's a completely
|
83 |
|
|
uncontested lock. */
|
84 |
|
|
if (lock->__status == 0 && __compare_and_swap (&lock->__status, 0, 1))
|
85 |
|
|
return;
|
86 |
|
|
|
87 |
|
|
spurious_wakeup_count = 0;
|
88 |
|
|
spin_count = 0;
|
89 |
|
|
|
90 |
|
|
/* On SMP, try spinning to get the lock. */
|
91 |
|
|
#if 0
|
92 |
|
|
if (__pthread_smp_kernel) {
|
93 |
|
|
int max_count = lock->__spinlock * 2 + 10;
|
94 |
|
|
|
95 |
|
|
if (max_count > MAX_ADAPTIVE_SPIN_COUNT)
|
96 |
|
|
max_count = MAX_ADAPTIVE_SPIN_COUNT;
|
97 |
|
|
|
98 |
|
|
for (spin_count = 0; spin_count < max_count; spin_count++) {
|
99 |
|
|
if (((oldstatus = lock->__status) & 1) == 0) {
|
100 |
|
|
if(__compare_and_swap(&lock->__status, oldstatus, oldstatus | 1))
|
101 |
|
|
{
|
102 |
|
|
if (spin_count)
|
103 |
|
|
lock->__spinlock += (spin_count - lock->__spinlock) / 8;
|
104 |
|
|
READ_MEMORY_BARRIER();
|
105 |
|
|
return;
|
106 |
|
|
}
|
107 |
|
|
}
|
108 |
|
|
#ifdef BUSY_WAIT_NOP
|
109 |
|
|
BUSY_WAIT_NOP;
|
110 |
|
|
#endif
|
111 |
|
|
__asm __volatile ("" : "=m" (lock->__status) : "0" (lock->__status));
|
112 |
|
|
}
|
113 |
|
|
|
114 |
|
|
lock->__spinlock += (spin_count - lock->__spinlock) / 8;
|
115 |
|
|
}
|
116 |
|
|
#endif
|
117 |
|
|
|
118 |
|
|
again:
|
119 |
|
|
|
120 |
|
|
/* No luck, try once more or suspend. */
|
121 |
|
|
|
122 |
|
|
do {
|
123 |
|
|
oldstatus = lock->__status;
|
124 |
|
|
successful_seizure = 0;
|
125 |
|
|
|
126 |
|
|
if ((oldstatus & 1) == 0) {
|
127 |
|
|
newstatus = oldstatus | 1;
|
128 |
|
|
successful_seizure = 1;
|
129 |
|
|
} else {
|
130 |
|
|
if (self == NULL)
|
131 |
|
|
self = thread_self();
|
132 |
|
|
newstatus = (long) self | 1;
|
133 |
|
|
}
|
134 |
|
|
|
135 |
|
|
if (self != NULL) {
|
136 |
|
|
THREAD_SETMEM(self, p_nextlock, (pthread_descr) (oldstatus));
|
137 |
|
|
/* Make sure the store in p_nextlock completes before performing
|
138 |
|
|
the compare-and-swap */
|
139 |
|
|
MEMORY_BARRIER();
|
140 |
|
|
}
|
141 |
|
|
} while(! __compare_and_swap(&lock->__status, oldstatus, newstatus));
|
142 |
|
|
|
143 |
|
|
/* Suspend with guard against spurious wakeup.
|
144 |
|
|
This can happen in pthread_cond_timedwait_relative, when the thread
|
145 |
|
|
wakes up due to timeout and is still on the condvar queue, and then
|
146 |
|
|
locks the queue to remove itself. At that point it may still be on the
|
147 |
|
|
queue, and may be resumed by a condition signal. */
|
148 |
|
|
|
149 |
|
|
if (!successful_seizure) {
|
150 |
|
|
for (;;) {
|
151 |
|
|
suspend(self);
|
152 |
|
|
if (self->p_nextlock != NULL) {
|
153 |
|
|
/* Count resumes that don't belong to us. */
|
154 |
|
|
spurious_wakeup_count++;
|
155 |
|
|
continue;
|
156 |
|
|
}
|
157 |
|
|
break;
|
158 |
|
|
}
|
159 |
|
|
goto again;
|
160 |
|
|
}
|
161 |
|
|
|
162 |
|
|
/* Put back any resumes we caught that don't belong to us. */
|
163 |
|
|
while (spurious_wakeup_count--)
|
164 |
|
|
restart(self);
|
165 |
|
|
|
166 |
|
|
READ_MEMORY_BARRIER();
|
167 |
|
|
#endif
|
168 |
|
|
}
|
169 |
|
|
|
170 |
|
|
int __pthread_unlock(struct _pthread_fastlock * lock)
|
171 |
|
|
{
|
172 |
|
|
#if defined HAS_COMPARE_AND_SWAP
|
173 |
|
|
long oldstatus;
|
174 |
|
|
pthread_descr thr, * ptr, * maxptr;
|
175 |
|
|
int maxprio;
|
176 |
|
|
#endif
|
177 |
|
|
|
178 |
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
179 |
|
|
if (!__pthread_has_cas)
|
180 |
|
|
#endif
|
181 |
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
182 |
|
|
{
|
183 |
|
|
__pthread_release(&lock->__spinlock);
|
184 |
|
|
return 0;
|
185 |
|
|
}
|
186 |
|
|
#endif
|
187 |
|
|
|
188 |
|
|
#if defined HAS_COMPARE_AND_SWAP
|
189 |
|
|
WRITE_MEMORY_BARRIER();
|
190 |
|
|
|
191 |
|
|
again:
|
192 |
|
|
while ((oldstatus = lock->__status) == 1) {
|
193 |
|
|
if (__compare_and_swap_with_release_semantics(&lock->__status,
|
194 |
|
|
oldstatus, 0))
|
195 |
|
|
return 0;
|
196 |
|
|
}
|
197 |
|
|
|
198 |
|
|
/* Find thread in waiting queue with maximal priority */
|
199 |
|
|
ptr = (pthread_descr *) &lock->__status;
|
200 |
|
|
thr = (pthread_descr) (oldstatus & ~1L);
|
201 |
|
|
maxprio = 0;
|
202 |
|
|
maxptr = ptr;
|
203 |
|
|
|
204 |
|
|
/* Before we iterate over the wait queue, we need to execute
|
205 |
|
|
a read barrier, otherwise we may read stale contents of nodes that may
|
206 |
|
|
just have been inserted by other processors. One read barrier is enough to
|
207 |
|
|
ensure we have a stable list; we don't need one for each pointer chase
|
208 |
|
|
through the list, because we are the owner of the lock; other threads
|
209 |
|
|
can only add nodes at the front; if a front node is consistent,
|
210 |
|
|
the ones behind it must also be. */
|
211 |
|
|
|
212 |
|
|
READ_MEMORY_BARRIER();
|
213 |
|
|
|
214 |
|
|
while (thr != 0) {
|
215 |
|
|
if (thr->p_priority >= maxprio) {
|
216 |
|
|
maxptr = ptr;
|
217 |
|
|
maxprio = thr->p_priority;
|
218 |
|
|
}
|
219 |
|
|
ptr = &(thr->p_nextlock);
|
220 |
|
|
thr = (pthread_descr)((long)(thr->p_nextlock) & ~1L);
|
221 |
|
|
}
|
222 |
|
|
|
223 |
|
|
/* Remove max prio thread from waiting list. */
|
224 |
|
|
if (maxptr == (pthread_descr *) &lock->__status) {
|
225 |
|
|
/* If max prio thread is at head, remove it with compare-and-swap
|
226 |
|
|
to guard against concurrent lock operation. This removal
|
227 |
|
|
also has the side effect of marking the lock as released
|
228 |
|
|
because the new status comes from thr->p_nextlock whose
|
229 |
|
|
least significant bit is clear. */
|
230 |
|
|
thr = (pthread_descr) (oldstatus & ~1L);
|
231 |
|
|
if (! __compare_and_swap_with_release_semantics
|
232 |
|
|
(&lock->__status, oldstatus, (long)(thr->p_nextlock) & ~1L))
|
233 |
|
|
goto again;
|
234 |
|
|
} else {
|
235 |
|
|
/* No risk of concurrent access, remove max prio thread normally.
|
236 |
|
|
But in this case we must also flip the least significant bit
|
237 |
|
|
of the status to mark the lock as released. */
|
238 |
|
|
thr = (pthread_descr)((long)*maxptr & ~1L);
|
239 |
|
|
*maxptr = thr->p_nextlock;
|
240 |
|
|
|
241 |
|
|
/* Ensure deletion from linked list completes before we
|
242 |
|
|
release the lock. */
|
243 |
|
|
WRITE_MEMORY_BARRIER();
|
244 |
|
|
|
245 |
|
|
do {
|
246 |
|
|
oldstatus = lock->__status;
|
247 |
|
|
} while (!__compare_and_swap_with_release_semantics(&lock->__status,
|
248 |
|
|
oldstatus, oldstatus & ~1L));
|
249 |
|
|
}
|
250 |
|
|
|
251 |
|
|
/* Wake up the selected waiting thread. Woken thread can check
|
252 |
|
|
its own p_nextlock field for NULL to detect that it has been removed. No
|
253 |
|
|
barrier is needed here, since restart() and suspend() take
|
254 |
|
|
care of memory synchronization. */
|
255 |
|
|
|
256 |
|
|
thr->p_nextlock = NULL;
|
257 |
|
|
restart(thr);
|
258 |
|
|
|
259 |
|
|
return 0;
|
260 |
|
|
#endif
|
261 |
|
|
}
|
262 |
|
|
|
263 |
|
|
/*
|
264 |
|
|
* Alternate fastlocks do not queue threads directly. Instead, they queue
|
265 |
|
|
* these wait queue node structures. When a timed wait wakes up due to
|
266 |
|
|
* a timeout, it can leave its wait node in the queue (because there
|
267 |
|
|
* is no safe way to remove from the quue). Some other thread will
|
268 |
|
|
* deallocate the abandoned node.
|
269 |
|
|
*/
|
270 |
|
|
|
271 |
|
|
|
272 |
|
|
struct wait_node {
|
273 |
|
|
struct wait_node *next; /* Next node in null terminated linked list */
|
274 |
|
|
pthread_descr thr; /* The thread waiting with this node */
|
275 |
|
|
int abandoned; /* Atomic flag */
|
276 |
|
|
};
|
277 |
|
|
|
278 |
|
|
static long wait_node_free_list;
|
279 |
|
|
static int wait_node_free_list_spinlock;
|
280 |
|
|
|
281 |
|
|
/* Allocate a new node from the head of the free list using an atomic
|
282 |
|
|
operation, or else using malloc if that list is empty. A fundamental
|
283 |
|
|
assumption here is that we can safely access wait_node_free_list->next.
|
284 |
|
|
That's because we never free nodes once we allocate them, so a pointer to a
|
285 |
|
|
node remains valid indefinitely. */
|
286 |
|
|
|
287 |
|
|
static struct wait_node *wait_node_alloc(void)
|
288 |
|
|
{
|
289 |
|
|
struct wait_node *new_node = 0;
|
290 |
|
|
|
291 |
|
|
__pthread_acquire(&wait_node_free_list_spinlock);
|
292 |
|
|
if (wait_node_free_list != 0) {
|
293 |
|
|
new_node = (struct wait_node *) wait_node_free_list;
|
294 |
|
|
wait_node_free_list = (long) new_node->next;
|
295 |
|
|
}
|
296 |
|
|
WRITE_MEMORY_BARRIER();
|
297 |
|
|
__pthread_release(&wait_node_free_list_spinlock);
|
298 |
|
|
|
299 |
|
|
if (new_node == 0)
|
300 |
|
|
return malloc(sizeof *wait_node_alloc());
|
301 |
|
|
|
302 |
|
|
return new_node;
|
303 |
|
|
}
|
304 |
|
|
|
305 |
|
|
/* Return a node to the head of the free list using an atomic
|
306 |
|
|
operation. */
|
307 |
|
|
|
308 |
|
|
static void wait_node_free(struct wait_node *wn)
|
309 |
|
|
{
|
310 |
|
|
__pthread_acquire(&wait_node_free_list_spinlock);
|
311 |
|
|
wn->next = (struct wait_node *) wait_node_free_list;
|
312 |
|
|
wait_node_free_list = (long) wn;
|
313 |
|
|
WRITE_MEMORY_BARRIER();
|
314 |
|
|
__pthread_release(&wait_node_free_list_spinlock);
|
315 |
|
|
return;
|
316 |
|
|
}
|
317 |
|
|
|
318 |
|
|
#if defined HAS_COMPARE_AND_SWAP
|
319 |
|
|
|
320 |
|
|
/* Remove a wait node from the specified queue. It is assumed
|
321 |
|
|
that the removal takes place concurrently with only atomic insertions at the
|
322 |
|
|
head of the queue. */
|
323 |
|
|
|
324 |
|
|
static void wait_node_dequeue(struct wait_node **pp_head,
|
325 |
|
|
struct wait_node **pp_node,
|
326 |
|
|
struct wait_node *p_node)
|
327 |
|
|
{
|
328 |
|
|
/* If the node is being deleted from the head of the
|
329 |
|
|
list, it must be deleted using atomic compare-and-swap.
|
330 |
|
|
Otherwise it can be deleted in the straightforward way. */
|
331 |
|
|
|
332 |
|
|
if (pp_node == pp_head) {
|
333 |
|
|
/* We don't need a read barrier between these next two loads,
|
334 |
|
|
because it is assumed that the caller has already ensured
|
335 |
|
|
the stability of *p_node with respect to p_node. */
|
336 |
|
|
|
337 |
|
|
long oldvalue = (long) p_node;
|
338 |
|
|
long newvalue = (long) p_node->next;
|
339 |
|
|
|
340 |
|
|
if (__compare_and_swap((long *) pp_node, oldvalue, newvalue))
|
341 |
|
|
return;
|
342 |
|
|
|
343 |
|
|
/* Oops! Compare and swap failed, which means the node is
|
344 |
|
|
no longer first. We delete it using the ordinary method. But we don't
|
345 |
|
|
know the identity of the node which now holds the pointer to the node
|
346 |
|
|
being deleted, so we must search from the beginning. */
|
347 |
|
|
|
348 |
|
|
for (pp_node = pp_head; p_node != *pp_node; ) {
|
349 |
|
|
pp_node = &(*pp_node)->next;
|
350 |
|
|
READ_MEMORY_BARRIER(); /* Stabilize *pp_node for next iteration. */
|
351 |
|
|
}
|
352 |
|
|
}
|
353 |
|
|
|
354 |
|
|
*pp_node = p_node->next;
|
355 |
|
|
return;
|
356 |
|
|
}
|
357 |
|
|
|
358 |
|
|
#endif
|
359 |
|
|
|
360 |
|
|
void __pthread_alt_lock(struct _pthread_fastlock * lock,
|
361 |
|
|
pthread_descr self)
|
362 |
|
|
{
|
363 |
|
|
#if defined HAS_COMPARE_AND_SWAP
|
364 |
|
|
long oldstatus, newstatus;
|
365 |
|
|
#endif
|
366 |
|
|
struct wait_node wait_node;
|
367 |
|
|
|
368 |
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
369 |
|
|
if (!__pthread_has_cas)
|
370 |
|
|
#endif
|
371 |
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
372 |
|
|
{
|
373 |
|
|
int suspend_needed = 0;
|
374 |
|
|
__pthread_acquire(&lock->__spinlock);
|
375 |
|
|
|
376 |
|
|
if (lock->__status == 0)
|
377 |
|
|
lock->__status = 1;
|
378 |
|
|
else {
|
379 |
|
|
if (self == NULL)
|
380 |
|
|
self = thread_self();
|
381 |
|
|
|
382 |
|
|
wait_node.abandoned = 0;
|
383 |
|
|
wait_node.next = (struct wait_node *) lock->__status;
|
384 |
|
|
wait_node.thr = self;
|
385 |
|
|
lock->__status = (long) &wait_node;
|
386 |
|
|
suspend_needed = 1;
|
387 |
|
|
}
|
388 |
|
|
|
389 |
|
|
__pthread_release(&lock->__spinlock);
|
390 |
|
|
|
391 |
|
|
if (suspend_needed)
|
392 |
|
|
suspend (self);
|
393 |
|
|
return;
|
394 |
|
|
}
|
395 |
|
|
#endif
|
396 |
|
|
|
397 |
|
|
#if defined HAS_COMPARE_AND_SWAP
|
398 |
|
|
do {
|
399 |
|
|
oldstatus = lock->__status;
|
400 |
|
|
if (oldstatus == 0) {
|
401 |
|
|
newstatus = 1;
|
402 |
|
|
} else {
|
403 |
|
|
if (self == NULL)
|
404 |
|
|
self = thread_self();
|
405 |
|
|
wait_node.thr = self;
|
406 |
|
|
newstatus = (long) &wait_node;
|
407 |
|
|
}
|
408 |
|
|
wait_node.abandoned = 0;
|
409 |
|
|
wait_node.next = (struct wait_node *) oldstatus;
|
410 |
|
|
/* Make sure the store in wait_node.next completes before performing
|
411 |
|
|
the compare-and-swap */
|
412 |
|
|
MEMORY_BARRIER();
|
413 |
|
|
} while(! __compare_and_swap(&lock->__status, oldstatus, newstatus));
|
414 |
|
|
|
415 |
|
|
/* Suspend. Note that unlike in __pthread_lock, we don't worry
|
416 |
|
|
here about spurious wakeup. That's because this lock is not
|
417 |
|
|
used in situations where that can happen; the restart can
|
418 |
|
|
only come from the previous lock owner. */
|
419 |
|
|
|
420 |
|
|
if (oldstatus != 0)
|
421 |
|
|
suspend(self);
|
422 |
|
|
|
423 |
|
|
READ_MEMORY_BARRIER();
|
424 |
|
|
#endif
|
425 |
|
|
}
|
426 |
|
|
|
427 |
|
|
/* Timed-out lock operation; returns 0 to indicate timeout. */
|
428 |
|
|
|
429 |
|
|
int __pthread_alt_timedlock(struct _pthread_fastlock * lock,
|
430 |
|
|
pthread_descr self, const struct timespec *abstime)
|
431 |
|
|
{
|
432 |
|
|
long oldstatus = 0;
|
433 |
|
|
#if defined HAS_COMPARE_AND_SWAP
|
434 |
|
|
long newstatus;
|
435 |
|
|
#endif
|
436 |
|
|
struct wait_node *p_wait_node = wait_node_alloc();
|
437 |
|
|
|
438 |
|
|
/* Out of memory, just give up and do ordinary lock. */
|
439 |
|
|
if (p_wait_node == 0) {
|
440 |
|
|
__pthread_alt_lock(lock, self);
|
441 |
|
|
return 1;
|
442 |
|
|
}
|
443 |
|
|
|
444 |
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
445 |
|
|
if (!__pthread_has_cas)
|
446 |
|
|
#endif
|
447 |
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
448 |
|
|
{
|
449 |
|
|
__pthread_acquire(&lock->__spinlock);
|
450 |
|
|
|
451 |
|
|
if (lock->__status == 0)
|
452 |
|
|
lock->__status = 1;
|
453 |
|
|
else {
|
454 |
|
|
if (self == NULL)
|
455 |
|
|
self = thread_self();
|
456 |
|
|
|
457 |
|
|
p_wait_node->abandoned = 0;
|
458 |
|
|
p_wait_node->next = (struct wait_node *) lock->__status;
|
459 |
|
|
p_wait_node->thr = self;
|
460 |
|
|
lock->__status = (long) p_wait_node;
|
461 |
|
|
oldstatus = 1; /* force suspend */
|
462 |
|
|
}
|
463 |
|
|
|
464 |
|
|
__pthread_release(&lock->__spinlock);
|
465 |
|
|
goto suspend;
|
466 |
|
|
}
|
467 |
|
|
#endif
|
468 |
|
|
|
469 |
|
|
#if defined HAS_COMPARE_AND_SWAP
|
470 |
|
|
do {
|
471 |
|
|
oldstatus = lock->__status;
|
472 |
|
|
if (oldstatus == 0) {
|
473 |
|
|
newstatus = 1;
|
474 |
|
|
} else {
|
475 |
|
|
if (self == NULL)
|
476 |
|
|
self = thread_self();
|
477 |
|
|
p_wait_node->thr = self;
|
478 |
|
|
newstatus = (long) p_wait_node;
|
479 |
|
|
}
|
480 |
|
|
p_wait_node->abandoned = 0;
|
481 |
|
|
p_wait_node->next = (struct wait_node *) oldstatus;
|
482 |
|
|
/* Make sure the store in wait_node.next completes before performing
|
483 |
|
|
the compare-and-swap */
|
484 |
|
|
MEMORY_BARRIER();
|
485 |
|
|
} while(! __compare_and_swap(&lock->__status, oldstatus, newstatus));
|
486 |
|
|
#endif
|
487 |
|
|
|
488 |
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
489 |
|
|
suspend:
|
490 |
|
|
#endif
|
491 |
|
|
|
492 |
|
|
/* If we did not get the lock, do a timed suspend. If we wake up due
|
493 |
|
|
to a timeout, then there is a race; the old lock owner may try
|
494 |
|
|
to remove us from the queue. This race is resolved by us and the owner
|
495 |
|
|
doing an atomic testandset() to change the state of the wait node from 0
|
496 |
|
|
to 1. If we succeed, then it's a timeout and we abandon the node in the
|
497 |
|
|
queue. If we fail, it means the owner gave us the lock. */
|
498 |
|
|
|
499 |
|
|
if (oldstatus != 0) {
|
500 |
|
|
if (timedsuspend(self, abstime) == 0) {
|
501 |
|
|
if (!testandset(&p_wait_node->abandoned))
|
502 |
|
|
return 0; /* Timeout! */
|
503 |
|
|
|
504 |
|
|
/* Eat oustanding resume from owner, otherwise wait_node_free() below
|
505 |
|
|
will race with owner's wait_node_dequeue(). */
|
506 |
|
|
suspend(self);
|
507 |
|
|
}
|
508 |
|
|
}
|
509 |
|
|
|
510 |
|
|
wait_node_free(p_wait_node);
|
511 |
|
|
|
512 |
|
|
READ_MEMORY_BARRIER();
|
513 |
|
|
|
514 |
|
|
return 1; /* Got the lock! */
|
515 |
|
|
}
|
516 |
|
|
|
517 |
|
|
void __pthread_alt_unlock(struct _pthread_fastlock *lock)
|
518 |
|
|
{
|
519 |
|
|
struct wait_node *p_node, **pp_node, *p_max_prio, **pp_max_prio;
|
520 |
|
|
struct wait_node ** const pp_head = (struct wait_node **) &lock->__status;
|
521 |
|
|
int maxprio;
|
522 |
|
|
|
523 |
|
|
WRITE_MEMORY_BARRIER();
|
524 |
|
|
|
525 |
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
526 |
|
|
if (!__pthread_has_cas)
|
527 |
|
|
#endif
|
528 |
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
529 |
|
|
{
|
530 |
|
|
__pthread_acquire(&lock->__spinlock);
|
531 |
|
|
}
|
532 |
|
|
#endif
|
533 |
|
|
|
534 |
|
|
while (1) {
|
535 |
|
|
|
536 |
|
|
/* If no threads are waiting for this lock, try to just
|
537 |
|
|
atomically release it. */
|
538 |
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
539 |
|
|
if (!__pthread_has_cas)
|
540 |
|
|
#endif
|
541 |
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
542 |
|
|
{
|
543 |
|
|
if (lock->__status == 0 || lock->__status == 1) {
|
544 |
|
|
lock->__status = 0;
|
545 |
|
|
break;
|
546 |
|
|
}
|
547 |
|
|
}
|
548 |
|
|
#endif
|
549 |
|
|
|
550 |
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
551 |
|
|
else
|
552 |
|
|
#endif
|
553 |
|
|
|
554 |
|
|
#if defined HAS_COMPARE_AND_SWAP
|
555 |
|
|
{
|
556 |
|
|
long oldstatus = lock->__status;
|
557 |
|
|
if (oldstatus == 0 || oldstatus == 1) {
|
558 |
|
|
if (__compare_and_swap_with_release_semantics (&lock->__status, oldstatus, 0))
|
559 |
|
|
break;
|
560 |
|
|
else
|
561 |
|
|
continue;
|
562 |
|
|
}
|
563 |
|
|
}
|
564 |
|
|
#endif
|
565 |
|
|
|
566 |
|
|
/* Process the entire queue of wait nodes. Remove all abandoned
|
567 |
|
|
wait nodes and put them into the global free queue, and
|
568 |
|
|
remember the one unabandoned node which refers to the thread
|
569 |
|
|
having the highest priority. */
|
570 |
|
|
|
571 |
|
|
pp_max_prio = pp_node = pp_head;
|
572 |
|
|
p_max_prio = p_node = *pp_head;
|
573 |
|
|
maxprio = INT_MIN;
|
574 |
|
|
|
575 |
|
|
READ_MEMORY_BARRIER(); /* Prevent access to stale data through p_node */
|
576 |
|
|
|
577 |
|
|
while (p_node != (struct wait_node *) 1) {
|
578 |
|
|
int prio;
|
579 |
|
|
|
580 |
|
|
if (p_node->abandoned) {
|
581 |
|
|
/* Remove abandoned node. */
|
582 |
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
583 |
|
|
if (!__pthread_has_cas)
|
584 |
|
|
#endif
|
585 |
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
586 |
|
|
*pp_node = p_node->next;
|
587 |
|
|
#endif
|
588 |
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
589 |
|
|
else
|
590 |
|
|
#endif
|
591 |
|
|
#if defined HAS_COMPARE_AND_SWAP
|
592 |
|
|
wait_node_dequeue(pp_head, pp_node, p_node);
|
593 |
|
|
#endif
|
594 |
|
|
wait_node_free(p_node);
|
595 |
|
|
/* Note that the next assignment may take us to the beginning
|
596 |
|
|
of the queue, to newly inserted nodes, if pp_node == pp_head.
|
597 |
|
|
In that case we need a memory barrier to stabilize the first of
|
598 |
|
|
these new nodes. */
|
599 |
|
|
p_node = *pp_node;
|
600 |
|
|
if (pp_node == pp_head)
|
601 |
|
|
READ_MEMORY_BARRIER(); /* No stale reads through p_node */
|
602 |
|
|
continue;
|
603 |
|
|
} else if ((prio = p_node->thr->p_priority) >= maxprio) {
|
604 |
|
|
/* Otherwise remember it if its thread has a higher or equal priority
|
605 |
|
|
compared to that of any node seen thus far. */
|
606 |
|
|
maxprio = prio;
|
607 |
|
|
pp_max_prio = pp_node;
|
608 |
|
|
p_max_prio = p_node;
|
609 |
|
|
}
|
610 |
|
|
|
611 |
|
|
/* This canno6 jump backward in the list, so no further read
|
612 |
|
|
barrier is needed. */
|
613 |
|
|
pp_node = &p_node->next;
|
614 |
|
|
p_node = *pp_node;
|
615 |
|
|
}
|
616 |
|
|
|
617 |
|
|
/* If all threads abandoned, go back to top */
|
618 |
|
|
if (maxprio == INT_MIN)
|
619 |
|
|
continue;
|
620 |
|
|
|
621 |
|
|
ASSERT (p_max_prio != (struct wait_node *) 1);
|
622 |
|
|
|
623 |
|
|
/* Now we want to to remove the max priority thread's wait node from
|
624 |
|
|
the list. Before we can do this, we must atomically try to change the
|
625 |
|
|
node's abandon state from zero to nonzero. If we succeed, that means we
|
626 |
|
|
have the node that we will wake up. If we failed, then it means the
|
627 |
|
|
thread timed out and abandoned the node in which case we repeat the
|
628 |
|
|
whole unlock operation. */
|
629 |
|
|
|
630 |
|
|
if (!testandset(&p_max_prio->abandoned)) {
|
631 |
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
632 |
|
|
if (!__pthread_has_cas)
|
633 |
|
|
#endif
|
634 |
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
635 |
|
|
*pp_max_prio = p_max_prio->next;
|
636 |
|
|
#endif
|
637 |
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
638 |
|
|
else
|
639 |
|
|
#endif
|
640 |
|
|
#if defined HAS_COMPARE_AND_SWAP
|
641 |
|
|
wait_node_dequeue(pp_head, pp_max_prio, p_max_prio);
|
642 |
|
|
#endif
|
643 |
|
|
restart(p_max_prio->thr);
|
644 |
|
|
break;
|
645 |
|
|
}
|
646 |
|
|
}
|
647 |
|
|
|
648 |
|
|
#if defined TEST_FOR_COMPARE_AND_SWAP
|
649 |
|
|
if (!__pthread_has_cas)
|
650 |
|
|
#endif
|
651 |
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
652 |
|
|
{
|
653 |
|
|
__pthread_release(&lock->__spinlock);
|
654 |
|
|
}
|
655 |
|
|
#endif
|
656 |
|
|
}
|
657 |
|
|
|
658 |
|
|
|
659 |
|
|
/* Compare-and-swap emulation with a spinlock */
|
660 |
|
|
|
661 |
|
|
#ifdef TEST_FOR_COMPARE_AND_SWAP
|
662 |
|
|
int __pthread_has_cas = 0;
|
663 |
|
|
#endif
|
664 |
|
|
|
665 |
|
|
#if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP
|
666 |
|
|
|
667 |
|
|
int __pthread_compare_and_swap(long * ptr, long oldval, long newval,
|
668 |
|
|
int * spinlock)
|
669 |
|
|
{
|
670 |
|
|
int res;
|
671 |
|
|
|
672 |
|
|
__pthread_acquire(spinlock);
|
673 |
|
|
|
674 |
|
|
if (*ptr == oldval) {
|
675 |
|
|
*ptr = newval; res = 1;
|
676 |
|
|
} else {
|
677 |
|
|
res = 0;
|
678 |
|
|
}
|
679 |
|
|
|
680 |
|
|
__pthread_release(spinlock);
|
681 |
|
|
|
682 |
|
|
return res;
|
683 |
|
|
}
|
684 |
|
|
|
685 |
|
|
#endif
|
686 |
|
|
|
687 |
|
|
/* The retry strategy is as follows:
|
688 |
|
|
- We test and set the spinlock MAX_SPIN_COUNT times, calling
|
689 |
|
|
sched_yield() each time. This gives ample opportunity for other
|
690 |
|
|
threads with priority >= our priority to make progress and
|
691 |
|
|
release the spinlock.
|
692 |
|
|
- If a thread with priority < our priority owns the spinlock,
|
693 |
|
|
calling sched_yield() repeatedly is useless, since we're preventing
|
694 |
|
|
the owning thread from making progress and releasing the spinlock.
|
695 |
|
|
So, after MAX_SPIN_LOCK attemps, we suspend the calling thread
|
696 |
|
|
using nanosleep(). This again should give time to the owning thread
|
697 |
|
|
for releasing the spinlock.
|
698 |
|
|
Notice that the nanosleep() interval must not be too small,
|
699 |
|
|
since the kernel does busy-waiting for short intervals in a realtime
|
700 |
|
|
process (!). The smallest duration that guarantees thread
|
701 |
|
|
suspension is currently 2ms.
|
702 |
|
|
- When nanosleep() returns, we try again, doing MAX_SPIN_COUNT
|
703 |
|
|
sched_yield(), then sleeping again if needed. */
|
704 |
|
|
|
705 |
|
|
static void __pthread_acquire(int * spinlock)
|
706 |
|
|
{
|
707 |
|
|
int cnt = 0;
|
708 |
|
|
struct timespec tm;
|
709 |
|
|
|
710 |
|
|
READ_MEMORY_BARRIER();
|
711 |
|
|
|
712 |
|
|
while (testandset(spinlock)) {
|
713 |
|
|
if (cnt < MAX_SPIN_COUNT) {
|
714 |
|
|
sched_yield();
|
715 |
|
|
cnt++;
|
716 |
|
|
} else {
|
717 |
|
|
tm.tv_sec = 0;
|
718 |
|
|
tm.tv_nsec = SPIN_SLEEP_DURATION;
|
719 |
|
|
nanosleep(&tm, NULL);
|
720 |
|
|
cnt = 0;
|
721 |
|
|
}
|
722 |
|
|
}
|
723 |
|
|
}
|