OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [mw/] [src/] [mwin/] [winlib/] [graph3d.c] - Blame information for rev 1780

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 673 markom
/*
2
 * Copyright (c) 1999 Greg Haerr <greg@censoft.com>
3
 *
4
 * 3D Graphics Library for Micro-Windows
5
 */
6
#define MWINCLUDECOLORS
7
#include "windows.h"
8
#include "device.h"
9
#include "graph3d.h"
10
#define USEBLIT         1       /* =1 to use memDC's*/
11
 
12
static int      nxpix;
13
static int      nypix;
14
static vec1     xscale;
15
static vec1     yscale;
16
static vec3     eye;
17
static vec3     direct;
18
static double   Q[5][5];
19
static HDC      hdc;
20
static HDC      hdcMem;
21
static HBITMAP  hbmp, hbmpOrg;
22
 
23
/* setup eye, direction, calc observation matrix Q*/
24
void
25
look3(vec1 x, vec1 y, vec1 z)
26
{
27
        eye.x = x;
28
        eye.y = y;
29
        eye.z = z;
30
        direct.x = -eye.x;
31
        direct.y = -eye.y;
32
        direct.z = -eye.z;
33
        findQ();
34
}
35
 
36
void
37
init3(HDC hDC, HWND memhwnd)
38
{
39
        HBRUSH  hbr;
40
 
41
        hdc = hDC;
42
        if(hdc) {
43
                nxpix = hdc->hwnd->clirect.right - hdc->hwnd->clirect.left;
44
                nypix = hdc->hwnd->clirect.bottom - hdc->hwnd->clirect.top;
45
                xscale = (vec1)(nxpix-1) / nxpix * nxpix/2;
46
                yscale = (vec1)(nypix-1) / nypix * nypix/2;
47
 
48
                if(memhwnd) {
49
                        hdcMem = CreateCompatibleDC(NULL);
50
                        if(hdcMem) {
51
                                hbmp = CreateCompatibleBitmap(hdcMem,
52
                                        nxpix, nypix);
53
                                hbmpOrg = SelectObject(hdcMem, hbmp);
54
                                hdc = hdcMem;
55
                        }
56
                        hbr = (HBRUSH)GetClassLong(memhwnd, GCL_HBRBACKGROUND);
57
                        FillRect(hdc, NULL, hbr);
58
                }
59
                /* create pen for setcolor3() color override*/
60
                SelectObject(hdc, CreatePen(PS_SOLID, 1, BLACK));
61
        }
62
}
63
 
64
void
65
paint3(HDC hDC)
66
{
67
        if(hdcMem) {
68
                BitBlt(hDC, 0, 0, nxpix, nypix, hdcMem, 0, 0, SRCCOPY);
69
                DeleteObject(SelectObject(hdcMem, hbmpOrg));
70
                DeleteDC(hdcMem);
71
        }
72
        hdcMem = NULL;
73
}
74
 
75
int
76
fx(vec1 x)
77
{
78
        return (int)(x * xscale + nxpix*0.5 - 0.5);
79
}
80
 
81
int
82
fy(vec1 y)
83
{
84
        return (int)(y * yscale + nypix*0.5 - 0.5);
85
}
86
 
87
void
88
moveto3(vec2 pt)
89
{
90
        MoveToEx(hdc, fx(pt.x), fy(pt.y), NULL);
91
}
92
 
93
void
94
setcolor3(MWCOLORVAL c)
95
{
96
        if(hdc)
97
                hdc->pen->color = c;
98
}
99
 
100
void
101
lineto3(vec2 pt)
102
{
103
        LineTo(hdc, fx(pt.x), fy(pt.y));
104
}
105
 
106
void
107
polyfill(int n, vec2 points[])
108
{
109
        int     i;
110
        int     xoff, yoff;
111
        MWPOINT pv[MAXPOLY];
112
 
113
        if(!hdc)
114
                return;
115
 
116
        /* calc window offset*/
117
        xoff = hdc->hwnd->clirect.left;
118
        yoff = hdc->hwnd->clirect.top;
119
 
120
        /* only plot non-trivial polygons*/
121
        if(n > 2) {
122
                for(i=0; i<n; ++i) {
123
                        pv[i].x = fx(points[i].x) + xoff;
124
                        pv[i].y = fy(points[i].y) + yoff;
125
                        /* fix: floating round error, y intercept difference
126
                         * with GdLine
127
                         */
128
                        /*pv[i].x = fx(points[i].x + xoff);*/
129
                        /*pv[i].y = fy(points[i].y + yoff);*/
130
                }
131
                GdSetForeground(GdFindColor(hdc->pen->color));
132
                GdFillPoly(hdc->psd, n, pv);
133
        }
134
}
135
 
136
void
137
square(void)
138
{
139
        vec2    pt0, pt1, pt2, pt3;
140
 
141
        pt0.x = -1; pt0.y = 1;
142
        pt1.x = -1; pt1.y = -1;
143
        pt2.x = 1; pt2.y = -1;
144
        pt3.x = 1; pt3.y = 1;
145
        moveto3(pt0);
146
        lineto3(pt1);
147
        lineto3(pt2);
148
        lineto3(pt3);
149
        lineto3(pt0);
150
}
151
 
152
void
153
circle3(vec1 r)
154
{
155
        vec1    theta = 0;
156
        vec1    thinc = 2*pi/100;
157
        int     i;
158
        vec2    pt;
159
 
160
        pt.x = r;
161
        pt.y = 0.0;
162
        moveto3(pt);
163
 
164
        for(i=0; i<100; ++i) {
165
                theta = theta + thinc;
166
                pt.x = r*cos(theta);
167
                pt.y = r*sin(theta);
168
                lineto3(pt);
169
        }
170
}
171
 
172
void
173
daisy(vec1 r,int points)
174
{
175
        int     i, j;
176
        vec1    theta = 0;
177
        vec1    thinc;
178
        vec2    pt[100];
179
 
180
        /* calculate n points on a circle*/
181
        thinc = 2*pi/points;
182
        for(i=0; i<points; ++i) {
183
                pt[i].x = r*cos(theta);
184
                pt[i].y = r*sin(theta);
185
                theta += thinc;
186
        }
187
 
188
        /* join point i to point j for all 0 <= i < j < n */
189
        for(i=0; i<points-1; ++i) {
190
                for(j=i+1; j<points; ++j) {
191
                        moveto3(pt[i]);
192
                        lineto3(pt[j]);
193
                }
194
        }
195
}
196
 
197
void
198
rose(vec1 r,int levels,int points)
199
{
200
        int     i, j, m, n;
201
        vec1    r1, theta, thinc;
202
        vec2    inner[100];
203
        vec2    outer[100];
204
        vec2    triangle[3];
205
 
206
        m = levels;
207
        n = points;
208
        thinc = 2*pi/n;
209
 
210
        /* initial inner circle*/
211
        for(i=0; i<n; ++i) {
212
                inner[i].x = 0.0;
213
                inner[i].y = 0.0;
214
        }
215
 
216
        /* loop thru m levels*/
217
        for(j=1; j<=m; ++j) {
218
                theta = -j*pi/n;
219
                r1 = r * (vec1)j/m;
220
 
221
                /* calc n points on outer circle*/
222
                for(i=0; i<n; ++i) {
223
                        theta += thinc;
224
                        outer[i].x = r1*cos(theta);
225
                        outer[i].y = r1*sin(theta);
226
                }
227
 
228
                /* construct/draw triangles with vertices on
229
                 * inner and outer circles
230
                 */
231
                for(i=0; i<n; ++i) {
232
                        triangle[0] = outer[i];
233
                        triangle[1] = outer[(i+1) % n];
234
                        triangle[2] = inner[i];
235
 
236
                        /* fill triangle in red*/
237
                        setcolor3(RED);
238
                        polyfill(3, triangle);
239
 
240
#if 1
241
                        /* outline triangle in white*/
242
                        setcolor3(WHITE);
243
                        moveto3(triangle[0]);
244
                        lineto3(triangle[1]);
245
                        lineto3(triangle[2]);
246
                        lineto3(triangle[0]);
247
#endif
248
                }
249
 
250
                /* copy points on outer circle to inner arrays*/
251
                for(i=0; i<n; ++i)
252
                        inner[i] = outer[i];
253
        }
254
}
255
 
256
/* draw a triangle with cordners v0, v1, v2*/
257
void
258
triangle(vec2 v0, vec2 v1, vec2 v2)
259
{
260
        vec2    poly[3];
261
 
262
        poly[0] = v0;
263
        poly[1] = v1;
264
        poly[2] = v2;
265
 
266
        setcolor3(GREEN);
267
        polyfill(3, poly);
268
        setcolor3(BLACK);
269
        moveto3(poly[2]);
270
        lineto3(poly[0]);
271
        lineto3(poly[1]);
272
        lineto3(poly[2]);
273
}
274
 
275
/* draw a quadrilateral with corners v0, v1, v2, v3*/
276
void
277
quadrilateral(vec2 v0, vec2 v1, vec2 v2, vec2 v3)
278
{
279
        vec2    poly[4];
280
 
281
        poly[0] = v0;
282
        poly[1] = v1;
283
        poly[2] = v2;
284
        poly[3] = v3;
285
        setcolor3(GREEN);
286
        polyfill(4, poly);
287
        setcolor3(BLACK);
288
        moveto3(poly[3]);
289
        lineto3(poly[0]);
290
        lineto3(poly[1]);
291
        lineto3(poly[2]);
292
        lineto3(poly[3]);
293
}
294
 
295
/* find intersection of lines v0 to v1 and v2 to v3*/
296
static int
297
patch(vec2 v0, vec2 v1, vec2 v2, vec2 v3)
298
{
299
        vec1    denom;
300
        vec1    mu;
301
        vec2    v4;
302
 
303
        denom = (v1.x-v0.x)*(v3.y-v2.y) - (v1.y-v0.y)*(v3.x-v2.x);
304
        if(fabs(denom) > epsilon) {
305
                mu = ((v2.x-v0.x)*(v3.y-v2.y) - (v2.y-v0.y)*(v3.x-v2.x))/denom;
306
 
307
                /* if intersection between lines v0 to v1 and v2 to v3,
308
                 * call it v4 and form triangles v0,v2,v4 and v1,v3,v4
309
                 */
310
                if(mu >= 0 && mu <= 1) {
311
                        v4.x = (1-mu)*v0.x + mu*v1.x;
312
                        v4.y = (1-mu)*v0.y + mu*v1.y;
313
                        triangle(v0, v2, v4);
314
                        triangle(v1, v3, v4);
315
                        return 0;
316
                }
317
        }
318
 
319
        /* else find intersection of lines v0 to v2 and v1 to v3*/
320
        denom = (v2.x-v0.x)*(v3.y-v1.y) - (v2.y-v0.y)*(v3.x-v1.x);
321
        if(fabs(denom) > epsilon) {
322
                mu = ((v1.x-v0.x)*(v3.y-v1.y) - (v1.y-v0.y)*(v3.x-v1.x))/denom;
323
 
324
                /* if intersection between v0 and v1, call it v4
325
                 * and form triangles v0,v1,v4 and v2,v3,v4
326
                 */
327
                if(mu >= 0 && mu <= 1) {
328
                        v4.x = (1-mu)*v0.x + mu*v2.x;
329
                        v4.y = (1-mu)*v0.y + mu*v2.y;
330
                        triangle(v0, v1, v4);
331
                        triangle(v2, v3, v4);
332
                        return 0;
333
                }
334
        }
335
 
336
        /* there are no proper intersections so form quadrilateral v0,v1,v3,v2*/
337
        quadrilateral(v0, v1, v3, v2);
338
        return 1;
339
}
340
 
341
/* plotted function*/
342
static vec1
343
plotfn(vec1 x, vec1 z)
344
{
345
        vec1    t;
346
 
347
        /* y = 4sin(sqrt(x*x+z*z))/sqrt(x*x+z*z) */
348
        t = sqrt(x*x + z*z);
349
        if(fabs(t) < epsilon)
350
                return 4.0;
351
        return 4.0 * sin(t) / t;
352
}
353
 
354
/* draw mathematical function plotfn*/
355
void
356
drawgrid(vec1 xmin, vec1 xmax, int nx, vec1 zmin, vec1 zmax, int nz)
357
{
358
        int     i, j;
359
        vec1    xi, xstep, yij;
360
        vec1    zj, zstep;
361
        vec2    v[2][100];
362
        double  S[5][5];
363
 
364
        /* scale it down*/
365
        scale3(1.0/(xmax-xmin)*2, 1.0/(xmax-xmin)*2, 1.0/(zmax-zmin), S);
366
        mult3(Q, S, Q);
367
 
368
        /* grid from xmin to xmax in nx steps and zmin to xmax in nz steps*/
369
        xstep = (xmax-xmin)/nx;
370
        zstep = (zmax-zmin)/nz;
371
        xi = xmin;
372
        zj = zmin;
373
 
374
        /* calc grid points on first fixed-z line, fine the y-height
375
         * and transfrorm the points (xi,yij,zj) into observed
376
         * position.  Observed first set stored in v[0,1..nx]
377
         */
378
        for(i=0; i<=nx; ++i) {
379
                yij = plotfn(xi, zj);
380
                v[0][i].x = Q[1][1]*xi + Q[1][2]*yij + Q[1][3]*zj;
381
                v[0][i].y = Q[2][1]*xi + Q[2][2]*yij + Q[2][3]*zj;
382
                xi += xstep;
383
        }
384
 
385
        /* run thru consecutive fixed-z lines (the second set)*/
386
        for(j=0; j<nz; ++j) {
387
                xi = xmin;
388
                zj += zstep;
389
 
390
                /* calc grid points on this second set, find the
391
                 * y-height and transform the points (xi,yij,zj)
392
                 * into observed position.  Observed second set
393
                 * stored in v[1,0..nx]
394
                 */
395
                for(i=0; i<=nx; ++i) {
396
                        yij = plotfn(xi, zj);
397
                        v[1][i].x = Q[1][1]*xi + Q[1][2]*yij + Q[1][3]*zj;
398
                        v[1][i].y = Q[2][1]*xi + Q[2][2]*yij + Q[2][3]*zj;
399
                        xi += xstep;
400
                }
401
 
402
                /* run thru the nx patches formed by these two sets*/
403
                for(i=0; i<nx; ++i)
404
                        patch(v[0][i], v[0][i+1], v[1][i], v[1][i+1]);
405
 
406
                /* copy second set into first set*/
407
                for(i=0; i<=nx; ++i)
408
                        v[0][i] = v[1][i];
409
        }
410
}
411
 
412
/* returns the angle whose tangent is y/x.
413
 * all anomalies such as x=0 are also checked
414
 */
415
vec1
416
angle(vec1 x, vec1 y)
417
{
418
        if(fabs(x) < epsilon)
419
                if(fabs(y) < epsilon)
420
                        return 0.0;
421
                else
422
                        if(y > 0.0)
423
                                return pi*0.5;
424
                        else return pi*1.5;
425
        else
426
                if(x < 0.0)
427
                        return atan(y/x) + pi;
428
                else return atan(y/x);
429
}
430
 
431
/* calc 3d scaling matrix A giving scaling vector sx,sy,sz.
432
 * one unit on the x axis becomes sx units, one unit on y, sy,
433
 * and one unit on the z axis becomes sz units
434
 */
435
void
436
scale3(vec1 sx, vec1 sy, vec1 sz, double A[][5])
437
{
438
        int     i, j;
439
 
440
        for(i=1; i<5; ++i)
441
                for(j=1; j<5; ++j)
442
                        A[i][j] = 0.0;
443
        A[1][1] = sx;
444
        A[2][2] = sy;
445
        A[3][3] = sz;
446
        A[4][4] = 1.0;
447
}
448
 
449
/* calc 3d axes translation matrix A
450
 * origin translated by vectdor tx,ty,tz
451
 */
452
void
453
tran3(vec1 tx, vec1 ty, vec1 tz, double A[][5])
454
{
455
        int     i, j;
456
 
457
        for(i=1; i<5; ++i) {
458
                for(j=1; j<5; ++j)
459
                        A[i][j] = 0.0;
460
                A[i][i] = 1.0;
461
        }
462
        A[1][4] = -tx;
463
        A[2][4] = -ty;
464
        A[3][4] = -tz;
465
}
466
 
467
/* calc 3d axes rotation matrix A.  The axes are
468
 * rotated anti-clockwise through an angle theta radians
469
 * about an axis specified by m: m=1 means x, m=2 y, m=3 z axis
470
 */
471
void
472
rot3(int m, vec1 theta, double A[][5])
473
{
474
        int     i, j, m1, m2;
475
        vec1    c, s;
476
 
477
        for(i=1; i<5; ++i)
478
                for(j=1; j<5; ++j)
479
                        A[i][j] = 0.0;
480
        A[m][m] = 1.0;
481
        A[4][4] = 1.0;
482
        m1 = (m % 3) + 1;
483
        m2 = (m1 % 3) + 1;
484
        c = cos(theta);
485
        s = sin(theta);
486
        A[m1][m1] = c;
487
        A[m2][m2] = c;
488
        A[m1][m2] = s;
489
        A[m2][m1] = s;
490
}
491
 
492
/* calc the matrix product C of two matrices A and B*/
493
void
494
mult3(double A[][5], double B[][5], double C[][5])
495
{
496
        int     i, j, k;
497
        vec1    ab;
498
 
499
        for(i=1; i<5; ++i)
500
                for(j=1; j<5; ++j) {
501
                        ab = 0;
502
                        for(k=1; k<5; ++k)
503
                                ab += A[i][k] * B[k][j];
504
                        C[i][j] = ab;
505
                }
506
}
507
 
508
/* calc observation matrix Q for given observer*/
509
void
510
findQ(void)
511
{
512
        vec1    alpha, beta, gamma, v, w;
513
        double  E[5][5];
514
        double  F[5][5];
515
        double  G[5][5];
516
        double  H[5][5];
517
        double  U[5][5];
518
 
519
        /* calc translation matrix F*/
520
        tran3(eye.x, eye.y, eye.z, F);
521
 
522
        /* calc rotation matrix G*/
523
        alpha = angle(-direct.x, -direct.y);
524
        rot3(3, alpha, G);
525
 
526
        /* calc rotation matrix H*/
527
        v = sqrt(direct.x*direct.x + direct.y*direct.y);
528
        beta = angle(-direct.z, v);
529
        rot3(2, beta, H);
530
 
531
        /* calc rotation matrix U*/
532
        w = sqrt(v*v + direct.z*direct.z);
533
        gamma = angle(-direct.x*w, direct.y*direct.z);
534
        rot3(3, -gamma, U);
535
 
536
        /* combine the transformations to find Q*/
537
        mult3(G, F, Q);
538
        mult3(H, Q, E);
539
        mult3(U, E, Q);
540
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.