1 |
39 |
lampret |
|
2 |
|
|
/* @(#)e_acos.c 5.1 93/09/24 */
|
3 |
|
|
/*
|
4 |
|
|
* ====================================================
|
5 |
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
6 |
|
|
*
|
7 |
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
8 |
|
|
* Permission to use, copy, modify, and distribute this
|
9 |
|
|
* software is freely granted, provided that this notice
|
10 |
|
|
* is preserved.
|
11 |
|
|
* ====================================================
|
12 |
|
|
*/
|
13 |
|
|
|
14 |
|
|
/* __ieee754_acos(x)
|
15 |
|
|
* Method :
|
16 |
|
|
* acos(x) = pi/2 - asin(x)
|
17 |
|
|
* acos(-x) = pi/2 + asin(x)
|
18 |
|
|
* For |x|<=0.5
|
19 |
|
|
* acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
|
20 |
|
|
* For x>0.5
|
21 |
|
|
* acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
|
22 |
|
|
* = 2asin(sqrt((1-x)/2))
|
23 |
|
|
* = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
|
24 |
|
|
* = 2f + (2c + 2s*z*R(z))
|
25 |
|
|
* where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
|
26 |
|
|
* for f so that f+c ~ sqrt(z).
|
27 |
|
|
* For x<-0.5
|
28 |
|
|
* acos(x) = pi - 2asin(sqrt((1-|x|)/2))
|
29 |
|
|
* = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
|
30 |
|
|
*
|
31 |
|
|
* Special cases:
|
32 |
|
|
* if x is NaN, return x itself;
|
33 |
|
|
* if |x|>1, return NaN with invalid signal.
|
34 |
|
|
*
|
35 |
|
|
* Function needed: sqrt
|
36 |
|
|
*/
|
37 |
|
|
|
38 |
|
|
#include "fdlibm.h"
|
39 |
|
|
|
40 |
|
|
#ifndef _DOUBLE_IS_32BITS
|
41 |
|
|
|
42 |
|
|
#ifdef __STDC__
|
43 |
|
|
static const double
|
44 |
|
|
#else
|
45 |
|
|
static double
|
46 |
|
|
#endif
|
47 |
|
|
one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
48 |
|
|
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
|
49 |
|
|
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
|
50 |
|
|
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
|
51 |
|
|
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
|
52 |
|
|
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
|
53 |
|
|
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
|
54 |
|
|
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
|
55 |
|
|
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
|
56 |
|
|
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
|
57 |
|
|
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
|
58 |
|
|
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
|
59 |
|
|
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
|
60 |
|
|
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
|
61 |
|
|
|
62 |
|
|
#ifdef __STDC__
|
63 |
|
|
double __ieee754_acos(double x)
|
64 |
|
|
#else
|
65 |
|
|
double __ieee754_acos(x)
|
66 |
|
|
double x;
|
67 |
|
|
#endif
|
68 |
|
|
{
|
69 |
|
|
double z,p,q,r,w,s,c,df;
|
70 |
|
|
__int32_t hx,ix;
|
71 |
|
|
GET_HIGH_WORD(hx,x);
|
72 |
|
|
ix = hx&0x7fffffff;
|
73 |
|
|
if(ix>=0x3ff00000) { /* |x| >= 1 */
|
74 |
|
|
__uint32_t lx;
|
75 |
|
|
GET_LOW_WORD(lx,x);
|
76 |
|
|
if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */
|
77 |
|
|
if(hx>0) return 0.0; /* acos(1) = 0 */
|
78 |
|
|
else return pi+2.0*pio2_lo; /* acos(-1)= pi */
|
79 |
|
|
}
|
80 |
|
|
return (x-x)/(x-x); /* acos(|x|>1) is NaN */
|
81 |
|
|
}
|
82 |
|
|
if(ix<0x3fe00000) { /* |x| < 0.5 */
|
83 |
|
|
if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
|
84 |
|
|
z = x*x;
|
85 |
|
|
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
86 |
|
|
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
87 |
|
|
r = p/q;
|
88 |
|
|
return pio2_hi - (x - (pio2_lo-x*r));
|
89 |
|
|
} else if (hx<0) { /* x < -0.5 */
|
90 |
|
|
z = (one+x)*0.5;
|
91 |
|
|
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
92 |
|
|
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
93 |
|
|
s = __ieee754_sqrt(z);
|
94 |
|
|
r = p/q;
|
95 |
|
|
w = r*s-pio2_lo;
|
96 |
|
|
return pi - 2.0*(s+w);
|
97 |
|
|
} else { /* x > 0.5 */
|
98 |
|
|
z = (one-x)*0.5;
|
99 |
|
|
s = __ieee754_sqrt(z);
|
100 |
|
|
df = s;
|
101 |
|
|
SET_LOW_WORD(df,0);
|
102 |
|
|
c = (z-df*df)/(s+df);
|
103 |
|
|
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
104 |
|
|
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
105 |
|
|
r = p/q;
|
106 |
|
|
w = r*s+c;
|
107 |
|
|
return 2.0*(df+w);
|
108 |
|
|
}
|
109 |
|
|
}
|
110 |
|
|
|
111 |
|
|
#endif /* defined(_DOUBLE_IS_32BITS) */
|