1 |
39 |
lampret |
|
2 |
|
|
/* @(#)s_erf.c 5.1 93/09/24 */
|
3 |
|
|
/*
|
4 |
|
|
* ====================================================
|
5 |
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
6 |
|
|
*
|
7 |
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
8 |
|
|
* Permission to use, copy, modify, and distribute this
|
9 |
|
|
* software is freely granted, provided that this notice
|
10 |
|
|
* is preserved.
|
11 |
|
|
* ====================================================
|
12 |
|
|
*/
|
13 |
|
|
|
14 |
|
|
/*
|
15 |
|
|
FUNCTION
|
16 |
|
|
<<erf>>, <<erff>>, <<erfc>>, <<erfcf>>---error function
|
17 |
|
|
INDEX
|
18 |
|
|
erf
|
19 |
|
|
INDEX
|
20 |
|
|
erff
|
21 |
|
|
INDEX
|
22 |
|
|
erfc
|
23 |
|
|
INDEX
|
24 |
|
|
erfcf
|
25 |
|
|
|
26 |
|
|
ANSI_SYNOPSIS
|
27 |
|
|
#include <math.h>
|
28 |
|
|
double erf(double <[x]>);
|
29 |
|
|
float erff(float <[x]>);
|
30 |
|
|
double erfc(double <[x]>);
|
31 |
|
|
float erfcf(float <[x]>);
|
32 |
|
|
TRAD_SYNOPSIS
|
33 |
|
|
#include <math.h>
|
34 |
|
|
|
35 |
|
|
double erf(<[x]>)
|
36 |
|
|
double <[x]>;
|
37 |
|
|
|
38 |
|
|
float erff(<[x]>)
|
39 |
|
|
float <[x]>;
|
40 |
|
|
|
41 |
|
|
double erfc(<[x]>)
|
42 |
|
|
double <[x]>;
|
43 |
|
|
|
44 |
|
|
float erfcf(<[x]>)
|
45 |
|
|
float <[x]>;
|
46 |
|
|
|
47 |
|
|
DESCRIPTION
|
48 |
|
|
<<erf>> calculates an approximation to the ``error function'',
|
49 |
|
|
which estimates the probability that an observation will fall within
|
50 |
|
|
<[x]> standard deviations of the mean (assuming a normal
|
51 |
|
|
distribution).
|
52 |
|
|
@tex
|
53 |
|
|
The error function is defined as
|
54 |
|
|
$${2\over\sqrt\pi}\times\int_0^x e^{-t^2}dt$$
|
55 |
|
|
@end tex
|
56 |
|
|
|
57 |
|
|
<<erfc>> calculates the complementary probability; that is,
|
58 |
|
|
<<erfc(<[x]>)>> is <<1 - erf(<[x]>)>>. <<erfc>> is computed directly,
|
59 |
|
|
so that you can use it to avoid the loss of precision that would
|
60 |
|
|
result from subtracting large probabilities (on large <[x]>) from 1.
|
61 |
|
|
|
62 |
|
|
<<erff>> and <<erfcf>> differ from <<erf>> and <<erfc>> only in the
|
63 |
|
|
argument and result types.
|
64 |
|
|
|
65 |
|
|
RETURNS
|
66 |
|
|
For positive arguments, <<erf>> and all its variants return a
|
67 |
|
|
probability---a number between 0 and 1.
|
68 |
|
|
|
69 |
|
|
PORTABILITY
|
70 |
|
|
None of the variants of <<erf>> are ANSI C.
|
71 |
|
|
*/
|
72 |
|
|
|
73 |
|
|
/* double erf(double x)
|
74 |
|
|
* double erfc(double x)
|
75 |
|
|
* x
|
76 |
|
|
* 2 |\
|
77 |
|
|
* erf(x) = --------- | exp(-t*t)dt
|
78 |
|
|
* sqrt(pi) \|
|
79 |
|
|
* 0
|
80 |
|
|
*
|
81 |
|
|
* erfc(x) = 1-erf(x)
|
82 |
|
|
* Note that
|
83 |
|
|
* erf(-x) = -erf(x)
|
84 |
|
|
* erfc(-x) = 2 - erfc(x)
|
85 |
|
|
*
|
86 |
|
|
* Method:
|
87 |
|
|
* 1. For |x| in [0, 0.84375]
|
88 |
|
|
* erf(x) = x + x*R(x^2)
|
89 |
|
|
* erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
|
90 |
|
|
* = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
|
91 |
|
|
* where R = P/Q where P is an odd poly of degree 8 and
|
92 |
|
|
* Q is an odd poly of degree 10.
|
93 |
|
|
* -57.90
|
94 |
|
|
* | R - (erf(x)-x)/x | <= 2
|
95 |
|
|
*
|
96 |
|
|
*
|
97 |
|
|
* Remark. The formula is derived by noting
|
98 |
|
|
* erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
|
99 |
|
|
* and that
|
100 |
|
|
* 2/sqrt(pi) = 1.128379167095512573896158903121545171688
|
101 |
|
|
* is close to one. The interval is chosen because the fix
|
102 |
|
|
* point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
|
103 |
|
|
* near 0.6174), and by some experiment, 0.84375 is chosen to
|
104 |
|
|
* guarantee the error is less than one ulp for erf.
|
105 |
|
|
*
|
106 |
|
|
* 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
|
107 |
|
|
* c = 0.84506291151 rounded to single (24 bits)
|
108 |
|
|
* erf(x) = sign(x) * (c + P1(s)/Q1(s))
|
109 |
|
|
* erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
|
110 |
|
|
* 1+(c+P1(s)/Q1(s)) if x < 0
|
111 |
|
|
* |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
|
112 |
|
|
* Remark: here we use the taylor series expansion at x=1.
|
113 |
|
|
* erf(1+s) = erf(1) + s*Poly(s)
|
114 |
|
|
* = 0.845.. + P1(s)/Q1(s)
|
115 |
|
|
* That is, we use rational approximation to approximate
|
116 |
|
|
* erf(1+s) - (c = (single)0.84506291151)
|
117 |
|
|
* Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
|
118 |
|
|
* where
|
119 |
|
|
* P1(s) = degree 6 poly in s
|
120 |
|
|
* Q1(s) = degree 6 poly in s
|
121 |
|
|
*
|
122 |
|
|
* 3. For x in [1.25,1/0.35(~2.857143)],
|
123 |
|
|
* erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
|
124 |
|
|
* erf(x) = 1 - erfc(x)
|
125 |
|
|
* where
|
126 |
|
|
* R1(z) = degree 7 poly in z, (z=1/x^2)
|
127 |
|
|
* S1(z) = degree 8 poly in z
|
128 |
|
|
*
|
129 |
|
|
* 4. For x in [1/0.35,28]
|
130 |
|
|
* erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
|
131 |
|
|
* = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
|
132 |
|
|
* = 2.0 - tiny (if x <= -6)
|
133 |
|
|
* erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
|
134 |
|
|
* erf(x) = sign(x)*(1.0 - tiny)
|
135 |
|
|
* where
|
136 |
|
|
* R2(z) = degree 6 poly in z, (z=1/x^2)
|
137 |
|
|
* S2(z) = degree 7 poly in z
|
138 |
|
|
*
|
139 |
|
|
* Note1:
|
140 |
|
|
* To compute exp(-x*x-0.5625+R/S), let s be a single
|
141 |
|
|
* precision number and s := x; then
|
142 |
|
|
* -x*x = -s*s + (s-x)*(s+x)
|
143 |
|
|
* exp(-x*x-0.5626+R/S) =
|
144 |
|
|
* exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
|
145 |
|
|
* Note2:
|
146 |
|
|
* Here 4 and 5 make use of the asymptotic series
|
147 |
|
|
* exp(-x*x)
|
148 |
|
|
* erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
|
149 |
|
|
* x*sqrt(pi)
|
150 |
|
|
* We use rational approximation to approximate
|
151 |
|
|
* g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
|
152 |
|
|
* Here is the error bound for R1/S1 and R2/S2
|
153 |
|
|
* |R1/S1 - f(x)| < 2**(-62.57)
|
154 |
|
|
* |R2/S2 - f(x)| < 2**(-61.52)
|
155 |
|
|
*
|
156 |
|
|
* 5. For inf > x >= 28
|
157 |
|
|
* erf(x) = sign(x) *(1 - tiny) (raise inexact)
|
158 |
|
|
* erfc(x) = tiny*tiny (raise underflow) if x > 0
|
159 |
|
|
* = 2 - tiny if x<0
|
160 |
|
|
*
|
161 |
|
|
* 7. Special case:
|
162 |
|
|
* erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
|
163 |
|
|
* erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
|
164 |
|
|
* erfc/erf(NaN) is NaN
|
165 |
|
|
*/
|
166 |
|
|
|
167 |
|
|
|
168 |
|
|
#include "fdlibm.h"
|
169 |
|
|
|
170 |
|
|
#ifndef _DOUBLE_IS_32BITS
|
171 |
|
|
|
172 |
|
|
#ifdef __STDC__
|
173 |
|
|
static const double
|
174 |
|
|
#else
|
175 |
|
|
static double
|
176 |
|
|
#endif
|
177 |
|
|
tiny = 1e-300,
|
178 |
|
|
half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
179 |
|
|
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
180 |
|
|
two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
|
181 |
|
|
/* c = (float)0.84506291151 */
|
182 |
|
|
erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
|
183 |
|
|
/*
|
184 |
|
|
* Coefficients for approximation to erf on [0,0.84375]
|
185 |
|
|
*/
|
186 |
|
|
efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
|
187 |
|
|
efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
|
188 |
|
|
pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
|
189 |
|
|
pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
|
190 |
|
|
pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
|
191 |
|
|
pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
|
192 |
|
|
pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
|
193 |
|
|
qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
|
194 |
|
|
qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
|
195 |
|
|
qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
|
196 |
|
|
qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
|
197 |
|
|
qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
|
198 |
|
|
/*
|
199 |
|
|
* Coefficients for approximation to erf in [0.84375,1.25]
|
200 |
|
|
*/
|
201 |
|
|
pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
|
202 |
|
|
pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
|
203 |
|
|
pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
|
204 |
|
|
pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
|
205 |
|
|
pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
|
206 |
|
|
pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
|
207 |
|
|
pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
|
208 |
|
|
qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
|
209 |
|
|
qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
|
210 |
|
|
qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
|
211 |
|
|
qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
|
212 |
|
|
qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
|
213 |
|
|
qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
|
214 |
|
|
/*
|
215 |
|
|
* Coefficients for approximation to erfc in [1.25,1/0.35]
|
216 |
|
|
*/
|
217 |
|
|
ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
|
218 |
|
|
ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
|
219 |
|
|
ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
|
220 |
|
|
ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
|
221 |
|
|
ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
|
222 |
|
|
ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
|
223 |
|
|
ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
|
224 |
|
|
ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
|
225 |
|
|
sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
|
226 |
|
|
sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
|
227 |
|
|
sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
|
228 |
|
|
sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
|
229 |
|
|
sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
|
230 |
|
|
sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
|
231 |
|
|
sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
|
232 |
|
|
sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
|
233 |
|
|
/*
|
234 |
|
|
* Coefficients for approximation to erfc in [1/.35,28]
|
235 |
|
|
*/
|
236 |
|
|
rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
|
237 |
|
|
rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
|
238 |
|
|
rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
|
239 |
|
|
rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
|
240 |
|
|
rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
|
241 |
|
|
rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
|
242 |
|
|
rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
|
243 |
|
|
sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
|
244 |
|
|
sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
|
245 |
|
|
sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
|
246 |
|
|
sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
|
247 |
|
|
sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
|
248 |
|
|
sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
|
249 |
|
|
sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
|
250 |
|
|
|
251 |
|
|
#ifdef __STDC__
|
252 |
|
|
double erf(double x)
|
253 |
|
|
#else
|
254 |
|
|
double erf(x)
|
255 |
|
|
double x;
|
256 |
|
|
#endif
|
257 |
|
|
{
|
258 |
|
|
__int32_t hx,ix,i;
|
259 |
|
|
double R,S,P,Q,s,y,z,r;
|
260 |
|
|
GET_HIGH_WORD(hx,x);
|
261 |
|
|
ix = hx&0x7fffffff;
|
262 |
|
|
if(ix>=0x7ff00000) { /* erf(nan)=nan */
|
263 |
|
|
i = ((__uint32_t)hx>>31)<<1;
|
264 |
|
|
return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
|
265 |
|
|
}
|
266 |
|
|
|
267 |
|
|
if(ix < 0x3feb0000) { /* |x|<0.84375 */
|
268 |
|
|
if(ix < 0x3e300000) { /* |x|<2**-28 */
|
269 |
|
|
if (ix < 0x00800000)
|
270 |
|
|
return 0.125*(8.0*x+efx8*x); /*avoid underflow */
|
271 |
|
|
return x + efx*x;
|
272 |
|
|
}
|
273 |
|
|
z = x*x;
|
274 |
|
|
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
|
275 |
|
|
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
|
276 |
|
|
y = r/s;
|
277 |
|
|
return x + x*y;
|
278 |
|
|
}
|
279 |
|
|
if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
|
280 |
|
|
s = fabs(x)-one;
|
281 |
|
|
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
|
282 |
|
|
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
|
283 |
|
|
if(hx>=0) return erx + P/Q; else return -erx - P/Q;
|
284 |
|
|
}
|
285 |
|
|
if (ix >= 0x40180000) { /* inf>|x|>=6 */
|
286 |
|
|
if(hx>=0) return one-tiny; else return tiny-one;
|
287 |
|
|
}
|
288 |
|
|
x = fabs(x);
|
289 |
|
|
s = one/(x*x);
|
290 |
|
|
if(ix< 0x4006DB6E) { /* |x| < 1/0.35 */
|
291 |
|
|
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
|
292 |
|
|
ra5+s*(ra6+s*ra7))))));
|
293 |
|
|
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
|
294 |
|
|
sa5+s*(sa6+s*(sa7+s*sa8)))))));
|
295 |
|
|
} else { /* |x| >= 1/0.35 */
|
296 |
|
|
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
|
297 |
|
|
rb5+s*rb6)))));
|
298 |
|
|
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
|
299 |
|
|
sb5+s*(sb6+s*sb7))))));
|
300 |
|
|
}
|
301 |
|
|
z = x;
|
302 |
|
|
SET_LOW_WORD(z,0);
|
303 |
|
|
r = __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);
|
304 |
|
|
if(hx>=0) return one-r/x; else return r/x-one;
|
305 |
|
|
}
|
306 |
|
|
|
307 |
|
|
#ifdef __STDC__
|
308 |
|
|
double erfc(double x)
|
309 |
|
|
#else
|
310 |
|
|
double erfc(x)
|
311 |
|
|
double x;
|
312 |
|
|
#endif
|
313 |
|
|
{
|
314 |
|
|
__int32_t hx,ix;
|
315 |
|
|
double R,S,P,Q,s,y,z,r;
|
316 |
|
|
GET_HIGH_WORD(hx,x);
|
317 |
|
|
ix = hx&0x7fffffff;
|
318 |
|
|
if(ix>=0x7ff00000) { /* erfc(nan)=nan */
|
319 |
|
|
/* erfc(+-inf)=0,2 */
|
320 |
|
|
return (double)(((__uint32_t)hx>>31)<<1)+one/x;
|
321 |
|
|
}
|
322 |
|
|
|
323 |
|
|
if(ix < 0x3feb0000) { /* |x|<0.84375 */
|
324 |
|
|
if(ix < 0x3c700000) /* |x|<2**-56 */
|
325 |
|
|
return one-x;
|
326 |
|
|
z = x*x;
|
327 |
|
|
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
|
328 |
|
|
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
|
329 |
|
|
y = r/s;
|
330 |
|
|
if(hx < 0x3fd00000) { /* x<1/4 */
|
331 |
|
|
return one-(x+x*y);
|
332 |
|
|
} else {
|
333 |
|
|
r = x*y;
|
334 |
|
|
r += (x-half);
|
335 |
|
|
return half - r ;
|
336 |
|
|
}
|
337 |
|
|
}
|
338 |
|
|
if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
|
339 |
|
|
s = fabs(x)-one;
|
340 |
|
|
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
|
341 |
|
|
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
|
342 |
|
|
if(hx>=0) {
|
343 |
|
|
z = one-erx; return z - P/Q;
|
344 |
|
|
} else {
|
345 |
|
|
z = erx+P/Q; return one+z;
|
346 |
|
|
}
|
347 |
|
|
}
|
348 |
|
|
if (ix < 0x403c0000) { /* |x|<28 */
|
349 |
|
|
x = fabs(x);
|
350 |
|
|
s = one/(x*x);
|
351 |
|
|
if(ix< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/
|
352 |
|
|
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
|
353 |
|
|
ra5+s*(ra6+s*ra7))))));
|
354 |
|
|
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
|
355 |
|
|
sa5+s*(sa6+s*(sa7+s*sa8)))))));
|
356 |
|
|
} else { /* |x| >= 1/.35 ~ 2.857143 */
|
357 |
|
|
if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
|
358 |
|
|
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
|
359 |
|
|
rb5+s*rb6)))));
|
360 |
|
|
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
|
361 |
|
|
sb5+s*(sb6+s*sb7))))));
|
362 |
|
|
}
|
363 |
|
|
z = x;
|
364 |
|
|
SET_LOW_WORD(z,0);
|
365 |
|
|
r = __ieee754_exp(-z*z-0.5625)*
|
366 |
|
|
__ieee754_exp((z-x)*(z+x)+R/S);
|
367 |
|
|
if(hx>0) return r/x; else return two-r/x;
|
368 |
|
|
} else {
|
369 |
|
|
if(hx>0) return tiny*tiny; else return two-tiny;
|
370 |
|
|
}
|
371 |
|
|
}
|
372 |
|
|
|
373 |
|
|
#endif /* _DOUBLE_IS_32BITS */
|