OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [newlib/] [newlib/] [libm/] [math/] [s_log1p.c] - Blame information for rev 39

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 39 lampret
 
2
/* @(#)s_log1p.c 5.1 93/09/24 */
3
/*
4
 * ====================================================
5
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6
 *
7
 * Developed at SunPro, a Sun Microsystems, Inc. business.
8
 * Permission to use, copy, modify, and distribute this
9
 * software is freely granted, provided that this notice
10
 * is preserved.
11
 * ====================================================
12
 */
13
 
14
/*
15
FUNCTION
16
<<log1p>>, <<log1pf>>---log of <<1 + <[x]>>>
17
 
18
INDEX
19
        log1p
20
INDEX
21
        log1pf
22
 
23
ANSI_SYNOPSIS
24
        #include <math.h>
25
        double log1p(double <[x]>);
26
        float log1pf(float <[x]>);
27
 
28
TRAD_SYNOPSIS
29
        #include <math.h>
30
        double log1p(<[x]>)
31
        double <[x]>;
32
 
33
        float log1pf(<[x]>)
34
        float <[x]>;
35
 
36
DESCRIPTION
37
<<log1p>> calculates
38
@tex
39
$ln(1+x)$,
40
@end tex
41
the natural logarithm of <<1+<[x]>>>.  You can use <<log1p>> rather
42
than `<<log(1+<[x]>)>>' for greater precision when <[x]> is very
43
small.
44
 
45
<<log1pf>> calculates the same thing, but accepts and returns
46
<<float>> values rather than <<double>>.
47
 
48
RETURNS
49
<<log1p>> returns a <<double>>, the natural log of <<1+<[x]>>>.
50
<<log1pf>> returns a <<float>>, the natural log of <<1+<[x]>>>.
51
 
52
PORTABILITY
53
Neither <<log1p>> nor <<log1pf>> is required by ANSI C or by the System V
54
Interface Definition (Issue 2).
55
 
56
*/
57
 
58
/* double log1p(double x)
59
 *
60
 * Method :
61
 *   1. Argument Reduction: find k and f such that
62
 *                      1+x = 2^k * (1+f),
63
 *         where  sqrt(2)/2 < 1+f < sqrt(2) .
64
 *
65
 *      Note. If k=0, then f=x is exact. However, if k!=0, then f
66
 *      may not be representable exactly. In that case, a correction
67
 *      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
68
 *      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
69
 *      and add back the correction term c/u.
70
 *      (Note: when x > 2**53, one can simply return log(x))
71
 *
72
 *   2. Approximation of log1p(f).
73
 *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
74
 *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
75
 *               = 2s + s*R
76
 *      We use a special Reme algorithm on [0,0.1716] to generate
77
 *      a polynomial of degree 14 to approximate R The maximum error
78
 *      of this polynomial approximation is bounded by 2**-58.45. In
79
 *      other words,
80
 *                      2      4      6      8      10      12      14
81
 *          R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
82
 *      (the values of Lp1 to Lp7 are listed in the program)
83
 *      and
84
 *          |      2          14          |     -58.45
85
 *          | Lp1*s +...+Lp7*s    -  R(z) | <= 2
86
 *          |                             |
87
 *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
88
 *      In order to guarantee error in log below 1ulp, we compute log
89
 *      by
90
 *              log1p(f) = f - (hfsq - s*(hfsq+R)).
91
 *
92
 *      3. Finally, log1p(x) = k*ln2 + log1p(f).
93
 *                           = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
94
 *         Here ln2 is split into two floating point number:
95
 *                      ln2_hi + ln2_lo,
96
 *         where n*ln2_hi is always exact for |n| < 2000.
97
 *
98
 * Special cases:
99
 *      log1p(x) is NaN with signal if x < -1 (including -INF) ;
100
 *      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
101
 *      log1p(NaN) is that NaN with no signal.
102
 *
103
 * Accuracy:
104
 *      according to an error analysis, the error is always less than
105
 *      1 ulp (unit in the last place).
106
 *
107
 * Constants:
108
 * The hexadecimal values are the intended ones for the following
109
 * constants. The decimal values may be used, provided that the
110
 * compiler will convert from decimal to binary accurately enough
111
 * to produce the hexadecimal values shown.
112
 *
113
 * Note: Assuming log() return accurate answer, the following
114
 *       algorithm can be used to compute log1p(x) to within a few ULP:
115
 *
116
 *              u = 1+x;
117
 *              if(u==1.0) return x ; else
118
 *                         return log(u)*(x/(u-1.0));
119
 *
120
 *       See HP-15C Advanced Functions Handbook, p.193.
121
 */
122
 
123
#include "fdlibm.h"
124
 
125
#ifndef _DOUBLE_IS_32BITS
126
 
127
#ifdef __STDC__
128
static const double
129
#else
130
static double
131
#endif
132
ln2_hi  =  6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
133
ln2_lo  =  1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
134
two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
135
Lp1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
136
Lp2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
137
Lp3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
138
Lp4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
139
Lp5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
140
Lp6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
141
Lp7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
142
 
143
#ifdef __STDC__
144
static const double zero = 0.0;
145
#else
146
static double zero = 0.0;
147
#endif
148
 
149
#ifdef __STDC__
150
        double log1p(double x)
151
#else
152
        double log1p(x)
153
        double x;
154
#endif
155
{
156
        double hfsq,f,c,s,z,R,u;
157
        __int32_t k,hx,hu,ax;
158
 
159
        GET_HIGH_WORD(hx,x);
160
        ax = hx&0x7fffffff;
161
 
162
        k = 1;
163
        if (hx < 0x3FDA827A) {                  /* x < 0.41422  */
164
            if(ax>=0x3ff00000) {                /* x <= -1.0 */
165
                if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
166
                else return (x-x)/(x-x);        /* log1p(x<-1)=NaN */
167
            }
168
            if(ax<0x3e200000) {                 /* |x| < 2**-29 */
169
                if(two54+x>zero                 /* raise inexact */
170
                    &&ax<0x3c900000)            /* |x| < 2**-54 */
171
                    return x;
172
                else
173
                    return x - x*x*0.5;
174
            }
175
            if(hx>0||hx<=((__int32_t)0xbfd2bec3)) {
176
                k=0;f=x;hu=1;}   /* -0.2929<x<0.41422 */
177
        }
178
        if (hx >= 0x7ff00000) return x+x;
179
        if(k!=0) {
180
            if(hx<0x43400000) {
181
                u  = 1.0+x;
182
                GET_HIGH_WORD(hu,u);
183
                k  = (hu>>20)-1023;
184
                c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
185
                c /= u;
186
            } else {
187
                u  = x;
188
                GET_HIGH_WORD(hu,u);
189
                k  = (hu>>20)-1023;
190
                c  = 0;
191
            }
192
            hu &= 0x000fffff;
193
            if(hu<0x6a09e) {
194
                SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */
195
            } else {
196
                k += 1;
197
                SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */
198
                hu = (0x00100000-hu)>>2;
199
            }
200
            f = u-1.0;
201
        }
202
        hfsq=0.5*f*f;
203
        if(hu==0) {      /* |f| < 2**-20 */
204
            if(f==zero) if(k==0) return zero;
205
                        else {c += k*ln2_lo; return k*ln2_hi+c;}
206
            R = hfsq*(1.0-0.66666666666666666*f);
207
            if(k==0) return f-R; else
208
                     return k*ln2_hi-((R-(k*ln2_lo+c))-f);
209
        }
210
        s = f/(2.0+f);
211
        z = s*s;
212
        R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
213
        if(k==0) return f-(hfsq-s*(hfsq+R)); else
214
                 return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
215
}
216
 
217
#endif /* _DOUBLE_IS_32BITS */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.