OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [newlib-1.10.0/] [newlib/] [libm/] [math/] [e_pow.c] - Blame information for rev 1773

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1010 ivang
 
2
/* @(#)e_pow.c 5.1 93/09/24 */
3
/*
4
 * ====================================================
5
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6
 *
7
 * Developed at SunPro, a Sun Microsystems, Inc. business.
8
 * Permission to use, copy, modify, and distribute this
9
 * software is freely granted, provided that this notice
10
 * is preserved.
11
 * ====================================================
12
 */
13
 
14
/* __ieee754_pow(x,y) return x**y
15
 *
16
 *                    n
17
 * Method:  Let x =  2   * (1+f)
18
 *      1. Compute and return log2(x) in two pieces:
19
 *              log2(x) = w1 + w2,
20
 *         where w1 has 53-24 = 29 bit trailing zeros.
21
 *      2. Perform y*log2(x) = n+y' by simulating muti-precision
22
 *         arithmetic, where |y'|<=0.5.
23
 *      3. Return x**y = 2**n*exp(y'*log2)
24
 *
25
 * Special cases:
26
 *      1.  (anything) ** 0  is 1
27
 *      2.  (anything) ** 1  is itself
28
 *      3.  (anything) ** NAN is NAN
29
 *      4.  NAN ** (anything except 0) is NAN
30
 *      5.  +-(|x| > 1) **  +INF is +INF
31
 *      6.  +-(|x| > 1) **  -INF is +0
32
 *      7.  +-(|x| < 1) **  +INF is +0
33
 *      8.  +-(|x| < 1) **  -INF is +INF
34
 *      9.  +-1         ** +-INF is NAN
35
 *      10. +0 ** (+anything except 0, NAN)               is +0
36
 *      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
37
 *      12. +0 ** (-anything except 0, NAN)               is +INF
38
 *      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
39
 *      14. -0 ** (odd integer) = -( +0 ** (odd integer) )
40
 *      15. +INF ** (+anything except 0,NAN) is +INF
41
 *      16. +INF ** (-anything except 0,NAN) is +0
42
 *      17. -INF ** (anything)  = -0 ** (-anything)
43
 *      18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
44
 *      19. (-anything except 0 and inf) ** (non-integer) is NAN
45
 *
46
 * Accuracy:
47
 *      pow(x,y) returns x**y nearly rounded. In particular
48
 *                      pow(integer,integer)
49
 *      always returns the correct integer provided it is
50
 *      representable.
51
 *
52
 * Constants :
53
 * The hexadecimal values are the intended ones for the following
54
 * constants. The decimal values may be used, provided that the
55
 * compiler will convert from decimal to binary accurately enough
56
 * to produce the hexadecimal values shown.
57
 */
58
 
59
#include "fdlibm.h"
60
 
61
#ifndef _DOUBLE_IS_32BITS
62
 
63
#ifdef __STDC__
64
static const double
65
#else
66
static double
67
#endif
68
bp[] = {1.0, 1.5,},
69
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
70
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
71
zero    =  0.0,
72
one     =  1.0,
73
two     =  2.0,
74
two53   =  9007199254740992.0,  /* 0x43400000, 0x00000000 */
75
huge    =  1.0e300,
76
tiny    =  1.0e-300,
77
        /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
78
L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
79
L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
80
L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
81
L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
82
L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
83
L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
84
P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
85
P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
86
P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
87
P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
88
P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
89
lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
90
lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
91
lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
92
ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
93
cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
94
cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
95
cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
96
ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
97
ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
98
ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
99
 
100
#ifdef __STDC__
101
        double __ieee754_pow(double x, double y)
102
#else
103
        double __ieee754_pow(x,y)
104
        double x, y;
105
#endif
106
{
107
        double z,ax,z_h,z_l,p_h,p_l;
108
        double y1,t1,t2,r,s,t,u,v,w;
109
        __int32_t i,j,k,yisint,n;
110
        __int32_t hx,hy,ix,iy;
111
        __uint32_t lx,ly;
112
 
113
        EXTRACT_WORDS(hx,lx,x);
114
        EXTRACT_WORDS(hy,ly,y);
115
        ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
116
 
117
    /* y==zero: x**0 = 1 */
118
        if((iy|ly)==0) return one;
119
 
120
    /* +-NaN return x+y */
121
        if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
122
           iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
123
                return x+y;
124
 
125
    /* determine if y is an odd int when x < 0
126
     * yisint = 0       ... y is not an integer
127
     * yisint = 1       ... y is an odd int
128
     * yisint = 2       ... y is an even int
129
     */
130
        yisint  = 0;
131
        if(hx<0) {
132
            if(iy>=0x43400000) yisint = 2; /* even integer y */
133
            else if(iy>=0x3ff00000) {
134
                k = (iy>>20)-0x3ff;        /* exponent */
135
                if(k>20) {
136
                    j = ly>>(52-k);
137
                    if((j<<(52-k))==ly) yisint = 2-(j&1);
138
                } else if(ly==0) {
139
                    j = iy>>(20-k);
140
                    if((j<<(20-k))==iy) yisint = 2-(j&1);
141
                }
142
            }
143
        }
144
 
145
    /* special value of y */
146
        if(ly==0) {
147
            if (iy==0x7ff00000) {       /* y is +-inf */
148
                if(((ix-0x3ff00000)|lx)==0)
149
                    return  y - y;      /* inf**+-1 is NaN */
150
                else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
151
                    return (hy>=0)? y: zero;
152
                else                    /* (|x|<1)**-,+inf = inf,0 */
153
                    return (hy<0)?-y: zero;
154
            }
155
            if(iy==0x3ff00000) {        /* y is  +-1 */
156
                if(hy<0) return one/x; else return x;
157
            }
158
            if(hy==0x40000000) return x*x; /* y is  2 */
159
            if(hy==0x3fe00000) {        /* y is  0.5 */
160
                if(hx>=0)        /* x >= +0 */
161
                return __ieee754_sqrt(x);
162
            }
163
        }
164
 
165
        ax   = fabs(x);
166
    /* special value of x */
167
        if(lx==0) {
168
            if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
169
                z = ax;                 /*x is +-0,+-inf,+-1*/
170
                if(hy<0) z = one/z;      /* z = (1/|x|) */
171
                if(hx<0) {
172
                    if(((ix-0x3ff00000)|yisint)==0) {
173
                        z = (z-z)/(z-z); /* (-1)**non-int is NaN */
174
                    } else if(yisint==1)
175
                        z = -z;         /* (x<0)**odd = -(|x|**odd) */
176
                }
177
                return z;
178
            }
179
        }
180
 
181
    /* (x<0)**(non-int) is NaN */
182
    /* CYGNUS LOCAL: This used to be
183
        if((((hx>>31)+1)|yisint)==0) return (x-x)/(x-x);
184
       but ANSI C says a right shift of a signed negative quantity is
185
       implementation defined.  */
186
        if(((((__uint32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
187
 
188
    /* |y| is huge */
189
        if(iy>0x41e00000) { /* if |y| > 2**31 */
190
            if(iy>0x43f00000){  /* if |y| > 2**64, must o/uflow */
191
                if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
192
                if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
193
            }
194
        /* over/underflow if x is not close to one */
195
            if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
196
            if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
197
        /* now |1-x| is tiny <= 2**-20, suffice to compute
198
           log(x) by x-x^2/2+x^3/3-x^4/4 */
199
            t = x-1;            /* t has 20 trailing zeros */
200
            w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
201
            u = ivln2_h*t;      /* ivln2_h has 21 sig. bits */
202
            v = t*ivln2_l-w*ivln2;
203
            t1 = u+v;
204
            SET_LOW_WORD(t1,0);
205
            t2 = v-(t1-u);
206
        } else {
207
            double s2,s_h,s_l,t_h,t_l;
208
            n = 0;
209
        /* take care subnormal number */
210
            if(ix<0x00100000)
211
                {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
212
            n  += ((ix)>>20)-0x3ff;
213
            j  = ix&0x000fffff;
214
        /* determine interval */
215
            ix = j|0x3ff00000;          /* normalize ix */
216
            if(j<=0x3988E) k=0;          /* |x|<sqrt(3/2) */
217
            else if(j<0xBB67A) k=1;     /* |x|<sqrt(3)   */
218
            else {k=0;n+=1;ix -= 0x00100000;}
219
            SET_HIGH_WORD(ax,ix);
220
 
221
        /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
222
            u = ax-bp[k];               /* bp[0]=1.0, bp[1]=1.5 */
223
            v = one/(ax+bp[k]);
224
            s = u*v;
225
            s_h = s;
226
            SET_LOW_WORD(s_h,0);
227
        /* t_h=ax+bp[k] High */
228
            t_h = zero;
229
            SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
230
            t_l = ax - (t_h-bp[k]);
231
            s_l = v*((u-s_h*t_h)-s_h*t_l);
232
        /* compute log(ax) */
233
            s2 = s*s;
234
            r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
235
            r += s_l*(s_h+s);
236
            s2  = s_h*s_h;
237
            t_h = 3.0+s2+r;
238
            SET_LOW_WORD(t_h,0);
239
            t_l = r-((t_h-3.0)-s2);
240
        /* u+v = s*(1+...) */
241
            u = s_h*t_h;
242
            v = s_l*t_h+t_l*s;
243
        /* 2/(3log2)*(s+...) */
244
            p_h = u+v;
245
            SET_LOW_WORD(p_h,0);
246
            p_l = v-(p_h-u);
247
            z_h = cp_h*p_h;             /* cp_h+cp_l = 2/(3*log2) */
248
            z_l = cp_l*p_h+p_l*cp+dp_l[k];
249
        /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
250
            t = (double)n;
251
            t1 = (((z_h+z_l)+dp_h[k])+t);
252
            SET_LOW_WORD(t1,0);
253
            t2 = z_l-(((t1-t)-dp_h[k])-z_h);
254
        }
255
 
256
        s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
257
        if(((((__uint32_t)hx>>31)-1)|(yisint-1))==0)
258
            s = -one;/* (-ve)**(odd int) */
259
 
260
    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
261
        y1  = y;
262
        SET_LOW_WORD(y1,0);
263
        p_l = (y-y1)*t1+y*t2;
264
        p_h = y1*t1;
265
        z = p_l+p_h;
266
        EXTRACT_WORDS(j,i,z);
267
        if (j>=0x40900000) {                            /* z >= 1024 */
268
            if(((j-0x40900000)|i)!=0)                    /* if z > 1024 */
269
                return s*huge*huge;                     /* overflow */
270
            else {
271
                if(p_l+ovt>z-p_h) return s*huge*huge;   /* overflow */
272
            }
273
        } else if((j&0x7fffffff)>=0x4090cc00 ) {        /* z <= -1075 */
274
            if(((j-0xc090cc00)|i)!=0)            /* z < -1075 */
275
                return s*tiny*tiny;             /* underflow */
276
            else {
277
                if(p_l<=z-p_h) return s*tiny*tiny;      /* underflow */
278
            }
279
        }
280
    /*
281
     * compute 2**(p_h+p_l)
282
     */
283
        i = j&0x7fffffff;
284
        k = (i>>20)-0x3ff;
285
        n = 0;
286
        if(i>0x3fe00000) {              /* if |z| > 0.5, set n = [z+0.5] */
287
            n = j+(0x00100000>>(k+1));
288
            k = ((n&0x7fffffff)>>20)-0x3ff;     /* new k for n */
289
            t = zero;
290
            SET_HIGH_WORD(t,n&~(0x000fffff>>k));
291
            n = ((n&0x000fffff)|0x00100000)>>(20-k);
292
            if(j<0) n = -n;
293
            p_h -= t;
294
        }
295
        t = p_l+p_h;
296
        SET_LOW_WORD(t,0);
297
        u = t*lg2_h;
298
        v = (p_l-(t-p_h))*lg2+t*lg2_l;
299
        z = u+v;
300
        w = v-(z-u);
301
        t  = z*z;
302
        t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
303
        r  = (z*t1)/(t1-two)-(w+z*w);
304
        z  = one-(r-z);
305
        GET_HIGH_WORD(j,z);
306
        j += (n<<20);
307
        if((j>>20)<=0) z = scalbn(z,(int)n);     /* subnormal output */
308
        else SET_HIGH_WORD(z,j);
309
        return s*z;
310
}
311
 
312
#endif /* defined(_DOUBLE_IS_32BITS) */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.