OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [orp/] [orp_soc/] [sw.old/] [mad-xess/] [libmad/] [synth.c] - Blame information for rev 1780

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 782 lampret
/*
2
 * mad - MPEG audio decoder
3
 * Copyright (C) 2000-2001 Robert Leslie
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18
 *
19
 * $Id: synth.c,v 1.1 2002-03-28 20:38:51 lampret Exp $
20
 */
21
 
22
# ifdef HAVE_CONFIG_H
23
#  include "config.h"
24
# endif
25
 
26
# include "global.h"
27
 
28
# include "fixed.h"
29
# include "frame.h"
30
# include "synth.h"
31
# include "../audio.h"
32
 
33
#ifndef EMBED
34
# include <stdio.h>
35
#endif
36
 
37
/*
38
 * NAME:        synth->mute()
39
 * DESCRIPTION: zero all polyphase filterbank values, resetting synthesis
40
 */
41
void mad_synth_mute(struct mad_synth *synth)
42
{
43
  unsigned int ch, s, v;
44
 
45
  for (ch = 0; ch < 2; ++ch) {
46
    for (s = 0; s < 16; ++s) {
47
      for (v = 0; v < 8; ++v) {
48
        synth->filter[ch][0][0][s][v] = synth->filter[ch][0][1][s][v] =
49
        synth->filter[ch][1][0][s][v] = synth->filter[ch][1][1][s][v] = 0;
50
      }
51
    }
52
  }
53
}
54
 
55
/*
56
 * NAME:        synth->init()
57
 * DESCRIPTION: initialize synth struct
58
 */
59
inline void mad_synth_init(struct mad_synth *synth)
60
{
61
  mad_synth_mute(synth);
62
 
63
  synth->phase = 0;
64
 
65
  synth->pcm.samplerate = 0;
66
  synth->pcm.channels   = 0;
67
  synth->pcm.length     = 0;
68
}
69
 
70
/*
71
 * An optional optimization called here the Subband Synthesis Optimization
72
 * (SSO) improves the performance of subband synthesis at the expense of
73
 * accuracy.
74
 *
75
 * The idea is to simplify 32x32->64-bit multiplication to 32x32->32 such
76
 * that extra scaling and rounding are not necessary. This often allows the
77
 * compiler to use faster 32-bit multiply-accumulate instructions instead of
78
 * explicit 64-bit multiply, shift, and add instructions.
79
 *
80
 * SSO works like this: a full 32x32->64-bit multiply of two mad_fixed_t
81
 * values requires the result to be right-shifted 28 bits to be properly
82
 * scaled to the same fixed-point format. Right shifts can be applied at any
83
 * time to either operand or to the result, so the optimization involves
84
 * careful placement of these shifts to minimize the loss of accuracy.
85
 *
86
 * First, a 14-bit shift is applied with rounding at compile-time to the D[]
87
 * table of coefficients for the subband synthesis window. This only loses 2
88
 * bits of accuracy because the lower 12 bits are always zero. A second
89
 * 12-bit shift occurs after the DCT calculation. This loses 12 bits of
90
 * accuracy. Finally, a third 2-bit shift occurs just before the sample is
91
 * saved in the PCM buffer. 14 + 12 + 2 == 28 bits.
92
 */
93
 
94
/* FPM_DEFAULT without OPT_SSO will actually lose accuracy and performance */
95
 
96
# if defined(FPM_DEFAULT) && !defined(OPT_SSO)
97
#  define OPT_SSO
98
# endif
99
 
100
/* second SSO shift, with rounding */
101
 
102
# if defined(OPT_SSO)
103
#  define SHIFT(x)  (((x) + (1L << 11)) >> 12)
104
# else
105
#  define SHIFT(x)  (x)
106
# endif
107
 
108
/* possible DCT speed optimization */
109
 
110
# if defined(OPT_SPEED) && defined(MAD_F_MLX)
111
#  define OPT_DCTO
112
#  define MUL(x, y)  \
113
    ({ mad_fixed64hi_t hi;  \
114
       mad_fixed64lo_t lo;  \
115
       MAD_F_MLX(hi, lo, (x), (y));  \
116
       hi << (32 - MAD_F_SCALEBITS - 3);  \
117
    })
118
# else
119
#  undef OPT_DCTO
120
#  define MUL(x, y)  mad_f_mul((x), (y))
121
# endif
122
 
123
/*
124
 * NAME:        dct32()
125
 * DESCRIPTION: perform fast in[32]->out[32] DCT
126
 */
127
static
128
void dct32(mad_fixed_t const in[32], unsigned int slot,
129
           mad_fixed_t lo[16][8], mad_fixed_t hi[16][8])
130
{
131
  mad_fixed_t t0,   t1,   t2,   t3,   t4,   t5,   t6,   t7;
132
  mad_fixed_t t8,   t9,   t10,  t11,  t12,  t13,  t14,  t15;
133
  mad_fixed_t t16,  t17,  t18,  t19,  t20,  t21,  t22,  t23;
134
  mad_fixed_t t24,  t25,  t26,  t27,  t28,  t29,  t30,  t31;
135
  mad_fixed_t t32,  t33,  t34,  t35,  t36,  t37,  t38,  t39;
136
  mad_fixed_t t40,  t41,  t42,  t43,  t44,  t45,  t46,  t47;
137
  mad_fixed_t t48,  t49,  t50,  t51,  t52,  t53,  t54,  t55;
138
  mad_fixed_t t56,  t57,  t58,  t59,  t60,  t61,  t62,  t63;
139
  mad_fixed_t t64,  t65,  t66,  t67,  t68,  t69,  t70,  t71;
140
  mad_fixed_t t72,  t73,  t74,  t75,  t76,  t77,  t78,  t79;
141
  mad_fixed_t t80,  t81,  t82,  t83,  t84,  t85,  t86,  t87;
142
  mad_fixed_t t88,  t89,  t90,  t91,  t92,  t93,  t94,  t95;
143
  mad_fixed_t t96,  t97,  t98,  t99,  t100, t101, t102, t103;
144
  mad_fixed_t t104, t105, t106, t107, t108, t109, t110, t111;
145
  mad_fixed_t t112, t113, t114, t115, t116, t117, t118, t119;
146
  mad_fixed_t t120, t121, t122, t123, t124, t125, t126, t127;
147
  mad_fixed_t t128, t129, t130, t131, t132, t133, t134, t135;
148
  mad_fixed_t t136, t137, t138, t139, t140, t141, t142, t143;
149
  mad_fixed_t t144, t145, t146, t147, t148, t149, t150, t151;
150
  mad_fixed_t t152, t153, t154, t155, t156, t157, t158, t159;
151
  mad_fixed_t t160, t161, t162, t163, t164, t165, t166, t167;
152
  mad_fixed_t t168, t169, t170, t171, t172, t173, t174, t175;
153
  mad_fixed_t t176;
154
 
155
  /* costab[i] = cos(PI / (2 * 32) * i) */
156
 
157
# if defined(OPT_DCTO)
158
  enum {
159
    costab1  = MAD_F(0x7fd8878e),
160
    costab2  = MAD_F(0x7f62368f),
161
    costab3  = MAD_F(0x7e9d55fc),
162
    costab4  = MAD_F(0x7d8a5f40),
163
    costab5  = MAD_F(0x7c29fbee),
164
    costab6  = MAD_F(0x7a7d055b),
165
    costab7  = MAD_F(0x78848414),
166
    costab8  = MAD_F(0x7641af3d),
167
    costab9  = MAD_F(0x73b5ebd1),
168
    costab10 = MAD_F(0x70e2cbc6),
169
    costab11 = MAD_F(0x6dca0d14),
170
    costab12 = MAD_F(0x6a6d98a4),
171
    costab13 = MAD_F(0x66cf8120),
172
    costab14 = MAD_F(0x62f201ac),
173
    costab15 = MAD_F(0x5ed77c8a),
174
    costab16 = MAD_F(0x5a82799a),
175
    costab17 = MAD_F(0x55f5a4d2),
176
    costab18 = MAD_F(0x5133cc94),
177
    costab19 = MAD_F(0x4c3fdff4),
178
    costab20 = MAD_F(0x471cece7),
179
    costab21 = MAD_F(0x41ce1e65),
180
    costab22 = MAD_F(0x3c56ba70),
181
    costab23 = MAD_F(0x36ba2014),
182
    costab24 = MAD_F(0x30fbc54d),
183
    costab25 = MAD_F(0x2b1f34eb),
184
    costab26 = MAD_F(0x25280c5e),
185
    costab27 = MAD_F(0x1f19f97b),
186
    costab28 = MAD_F(0x18f8b83c),
187
    costab29 = MAD_F(0x12c8106f),
188
    costab30 = MAD_F(0x0c8bd35e),
189
    costab31 = MAD_F(0x0647d97c)
190
  };
191
# else
192
  enum {
193
    costab1  = MAD_F(0x0ffb10f2),  /* 0.998795456 */
194
    costab2  = MAD_F(0x0fec46d2),  /* 0.995184727 */
195
    costab3  = MAD_F(0x0fd3aac0),  /* 0.989176510 */
196
    costab4  = MAD_F(0x0fb14be8),  /* 0.980785280 */
197
    costab5  = MAD_F(0x0f853f7e),  /* 0.970031253 */
198
    costab6  = MAD_F(0x0f4fa0ab),  /* 0.956940336 */
199
    costab7  = MAD_F(0x0f109082),  /* 0.941544065 */
200
    costab8  = MAD_F(0x0ec835e8),  /* 0.923879533 */
201
    costab9  = MAD_F(0x0e76bd7a),  /* 0.903989293 */
202
    costab10 = MAD_F(0x0e1c5979),  /* 0.881921264 */
203
    costab11 = MAD_F(0x0db941a3),  /* 0.857728610 */
204
    costab12 = MAD_F(0x0d4db315),  /* 0.831469612 */
205
    costab13 = MAD_F(0x0cd9f024),  /* 0.803207531 */
206
    costab14 = MAD_F(0x0c5e4036),  /* 0.773010453 */
207
    costab15 = MAD_F(0x0bdaef91),  /* 0.740951125 */
208
    costab16 = MAD_F(0x0b504f33),  /* 0.707106781 */
209
    costab17 = MAD_F(0x0abeb49a),  /* 0.671558955 */
210
    costab18 = MAD_F(0x0a267993),  /* 0.634393284 */
211
    costab19 = MAD_F(0x0987fbfe),  /* 0.595699304 */
212
    costab20 = MAD_F(0x08e39d9d),  /* 0.555570233 */
213
    costab21 = MAD_F(0x0839c3cd),  /* 0.514102744 */
214
    costab22 = MAD_F(0x078ad74e),  /* 0.471396737 */
215
    costab23 = MAD_F(0x06d74402),  /* 0.427555093 */
216
    costab24 = MAD_F(0x061f78aa),  /* 0.382683432 */
217
    costab25 = MAD_F(0x0563e69d),  /* 0.336889853 */
218
    costab26 = MAD_F(0x04a5018c),  /* 0.290284677 */
219
    costab27 = MAD_F(0x03e33f2f),  /* 0.242980180 */
220
    costab28 = MAD_F(0x031f1708),  /* 0.195090322 */
221
    costab29 = MAD_F(0x0259020e),  /* 0.146730474 */
222
    costab30 = MAD_F(0x01917a6c),  /* 0.098017140 */
223
    costab31 = MAD_F(0x00c8fb30)   /* 0.049067674 */
224
  };
225
# endif
226
 
227
  t0   = in[0]  + in[31];  t16  = MUL(in[0]  - in[31], costab1);
228
  t1   = in[15] + in[16];  t17  = MUL(in[15] - in[16], costab31);
229
 
230
  t41  = t16 + t17;
231
  t59  = MUL(t16 - t17, costab2);
232
  t33  = t0  + t1;
233
  t50  = MUL(t0  - t1,  costab2);
234
 
235
  t2   = in[7]  + in[24];  t18  = MUL(in[7]  - in[24], costab15);
236
  t3   = in[8]  + in[23];  t19  = MUL(in[8]  - in[23], costab17);
237
 
238
  t42  = t18 + t19;
239
  t60  = MUL(t18 - t19, costab30);
240
  t34  = t2  + t3;
241
  t51  = MUL(t2  - t3,  costab30);
242
 
243
  t4   = in[3]  + in[28];  t20  = MUL(in[3]  - in[28], costab7);
244
  t5   = in[12] + in[19];  t21  = MUL(in[12] - in[19], costab25);
245
 
246
  t43  = t20 + t21;
247
  t61  = MUL(t20 - t21, costab14);
248
  t35  = t4  + t5;
249
  t52  = MUL(t4  - t5,  costab14);
250
 
251
  t6   = in[4]  + in[27];  t22  = MUL(in[4]  - in[27], costab9);
252
  t7   = in[11] + in[20];  t23  = MUL(in[11] - in[20], costab23);
253
 
254
  t44  = t22 + t23;
255
  t62  = MUL(t22 - t23, costab18);
256
  t36  = t6  + t7;
257
  t53  = MUL(t6  - t7,  costab18);
258
 
259
  t8   = in[1]  + in[30];  t24  = MUL(in[1]  - in[30], costab3);
260
  t9   = in[14] + in[17];  t25  = MUL(in[14] - in[17], costab29);
261
 
262
  t45  = t24 + t25;
263
  t63  = MUL(t24 - t25, costab6);
264
  t37  = t8  + t9;
265
  t54  = MUL(t8  - t9,  costab6);
266
 
267
  t10  = in[6]  + in[25];  t26  = MUL(in[6]  - in[25], costab13);
268
  t11  = in[9]  + in[22];  t27  = MUL(in[9]  - in[22], costab19);
269
 
270
  t46  = t26 + t27;
271
  t64  = MUL(t26 - t27, costab26);
272
  t38  = t10 + t11;
273
  t55  = MUL(t10 - t11, costab26);
274
 
275
  t12  = in[2]  + in[29];  t28  = MUL(in[2]  - in[29], costab5);
276
  t13  = in[13] + in[18];  t29  = MUL(in[13] - in[18], costab27);
277
 
278
  t47  = t28 + t29;
279
  t65  = MUL(t28 - t29, costab10);
280
  t39  = t12 + t13;
281
  t56  = MUL(t12 - t13, costab10);
282
 
283
  t14  = in[5]  + in[26];  t30  = MUL(in[5]  - in[26], costab11);
284
  t15  = in[10] + in[21];  t31  = MUL(in[10] - in[21], costab21);
285
 
286
  t48  = t30 + t31;
287
  t66  = MUL(t30 - t31, costab22);
288
  t40  = t14 + t15;
289
  t57  = MUL(t14 - t15, costab22);
290
 
291
  t69  = t33 + t34;  t89  = MUL(t33 - t34, costab4);
292
  t70  = t35 + t36;  t90  = MUL(t35 - t36, costab28);
293
  t71  = t37 + t38;  t91  = MUL(t37 - t38, costab12);
294
  t72  = t39 + t40;  t92  = MUL(t39 - t40, costab20);
295
  t73  = t41 + t42;  t94  = MUL(t41 - t42, costab4);
296
  t74  = t43 + t44;  t95  = MUL(t43 - t44, costab28);
297
  t75  = t45 + t46;  t96  = MUL(t45 - t46, costab12);
298
  t76  = t47 + t48;  t97  = MUL(t47 - t48, costab20);
299
 
300
  t78  = t50 + t51;  t100 = MUL(t50 - t51, costab4);
301
  t79  = t52 + t53;  t101 = MUL(t52 - t53, costab28);
302
  t80  = t54 + t55;  t102 = MUL(t54 - t55, costab12);
303
  t81  = t56 + t57;  t103 = MUL(t56 - t57, costab20);
304
 
305
  t83  = t59 + t60;  t106 = MUL(t59 - t60, costab4);
306
  t84  = t61 + t62;  t107 = MUL(t61 - t62, costab28);
307
  t85  = t63 + t64;  t108 = MUL(t63 - t64, costab12);
308
  t86  = t65 + t66;  t109 = MUL(t65 - t66, costab20);
309
 
310
  t113 = t69  + t70;
311
  t114 = t71  + t72;
312
 
313
  /*  0 */ hi[15][slot] = SHIFT(t113 + t114);
314
  /* 16 */ lo[ 0][slot] = SHIFT(MUL(t113 - t114, costab16));
315
 
316
  t115 = t73  + t74;
317
  t116 = t75  + t76;
318
 
319
  t32  = t115 + t116;
320
 
321
  /*  1 */ hi[14][slot] = SHIFT(t32);
322
 
323
  t118 = t78  + t79;
324
  t119 = t80  + t81;
325
 
326
  t58  = t118 + t119;
327
 
328
  /*  2 */ hi[13][slot] = SHIFT(t58);
329
 
330
  t121 = t83  + t84;
331
  t122 = t85  + t86;
332
 
333
  t67  = t121 + t122;
334
 
335
  t49  = (t67 << 1) - t32;
336
 
337
  /*  3 */ hi[12][slot] = SHIFT(t49);
338
 
339
  t125 = t89  + t90;
340
  t126 = t91  + t92;
341
 
342
  t93  = t125 + t126;
343
 
344
  /*  4 */ hi[11][slot] = SHIFT(t93);
345
 
346
  t128 = t94  + t95;
347
  t129 = t96  + t97;
348
 
349
  t98  = t128 + t129;
350
 
351
  t68  = (t98 << 1) - t49;
352
 
353
  /*  5 */ hi[10][slot] = SHIFT(t68);
354
 
355
  t132 = t100 + t101;
356
  t133 = t102 + t103;
357
 
358
  t104 = t132 + t133;
359
 
360
  t82  = (t104 << 1) - t58;
361
 
362
  /*  6 */ hi[ 9][slot] = SHIFT(t82);
363
 
364
  t136 = t106 + t107;
365
  t137 = t108 + t109;
366
 
367
  t110 = t136 + t137;
368
 
369
  t87  = (t110 << 1) - t67;
370
 
371
  t77  = (t87 << 1) - t68;
372
 
373
  /*  7 */ hi[ 8][slot] = SHIFT(t77);
374
 
375
  t141 = MUL(t69 - t70, costab8);
376
  t142 = MUL(t71 - t72, costab24);
377
  t143 = t141 + t142;
378
 
379
  /*  8 */ hi[ 7][slot] = SHIFT(t143);
380
  /* 24 */ lo[ 8][slot] =
381
             SHIFT((MUL(t141 - t142, costab16) << 1) - t143);
382
 
383
  t144 = MUL(t73 - t74, costab8);
384
  t145 = MUL(t75 - t76, costab24);
385
  t146 = t144 + t145;
386
 
387
  t88  = (t146 << 1) - t77;
388
 
389
  /*  9 */ hi[ 6][slot] = SHIFT(t88);
390
 
391
  t148 = MUL(t78 - t79, costab8);
392
  t149 = MUL(t80 - t81, costab24);
393
  t150 = t148 + t149;
394
 
395
  t105 = (t150 << 1) - t82;
396
 
397
  /* 10 */ hi[ 5][slot] = SHIFT(t105);
398
 
399
  t152 = MUL(t83 - t84, costab8);
400
  t153 = MUL(t85 - t86, costab24);
401
  t154 = t152 + t153;
402
 
403
  t111 = (t154 << 1) - t87;
404
 
405
  t99  = (t111 << 1) - t88;
406
 
407
  /* 11 */ hi[ 4][slot] = SHIFT(t99);
408
 
409
  t157 = MUL(t89 - t90, costab8);
410
  t158 = MUL(t91 - t92, costab24);
411
  t159 = t157 + t158;
412
 
413
  t127 = (t159 << 1) - t93;
414
 
415
  /* 12 */ hi[ 3][slot] = SHIFT(t127);
416
 
417
  t160 = (MUL(t125 - t126, costab16) << 1) - t127;
418
 
419
  /* 20 */ lo[ 4][slot] = SHIFT(t160);
420
  /* 28 */ lo[12][slot] =
421
             SHIFT((((MUL(t157 - t158, costab16) << 1) - t159) << 1) - t160);
422
 
423
  t161 = MUL(t94 - t95, costab8);
424
  t162 = MUL(t96 - t97, costab24);
425
  t163 = t161 + t162;
426
 
427
  t130 = (t163 << 1) - t98;
428
 
429
  t112 = (t130 << 1) - t99;
430
 
431
  /* 13 */ hi[ 2][slot] = SHIFT(t112);
432
 
433
  t164 = (MUL(t128 - t129, costab16) << 1) - t130;
434
 
435
  t166 = MUL(t100 - t101, costab8);
436
  t167 = MUL(t102 - t103, costab24);
437
  t168 = t166 + t167;
438
 
439
  t134 = (t168 << 1) - t104;
440
 
441
  t120 = (t134 << 1) - t105;
442
 
443
  /* 14 */ hi[ 1][slot] = SHIFT(t120);
444
 
445
  t135 = (MUL(t118 - t119, costab16) << 1) - t120;
446
 
447
  /* 18 */ lo[ 2][slot] = SHIFT(t135);
448
 
449
  t169 = (MUL(t132 - t133, costab16) << 1) - t134;
450
 
451
  t151 = (t169 << 1) - t135;
452
 
453
  /* 22 */ lo[ 6][slot] = SHIFT(t151);
454
 
455
  t170 = (((MUL(t148 - t149, costab16) << 1) - t150) << 1) - t151;
456
 
457
  /* 26 */ lo[10][slot] = SHIFT(t170);
458
  /* 30 */ lo[14][slot] =
459
             SHIFT((((((MUL(t166 - t167, costab16) << 1) -
460
                       t168) << 1) - t169) << 1) - t170);
461
 
462
  t171 = MUL(t106 - t107, costab8);
463
  t172 = MUL(t108 - t109, costab24);
464
  t173 = t171 + t172;
465
 
466
  t138 = (t173 << 1) - t110;
467
 
468
  t123 = (t138 << 1) - t111;
469
 
470
  t139 = (MUL(t121 - t122, costab16) << 1) - t123;
471
 
472
  t117 = (t123 << 1) - t112;
473
 
474
  /* 15 */ hi[ 0][slot] = SHIFT(t117);
475
 
476
  t124 = (MUL(t115 - t116, costab16) << 1) - t117;
477
 
478
  /* 17 */ lo[ 1][slot] = SHIFT(t124);
479
 
480
  t131 = (t139 << 1) - t124;
481
 
482
  /* 19 */ lo[ 3][slot] = SHIFT(t131);
483
 
484
  t140 = (t164 << 1) - t131;
485
 
486
  /* 21 */ lo[ 5][slot] = SHIFT(t140);
487
 
488
  t174 = (MUL(t136 - t137, costab16) << 1) - t138;
489
 
490
  t155 = (t174 << 1) - t139;
491
 
492
  t147 = (t155 << 1) - t140;
493
 
494
  /* 23 */ lo[ 7][slot] = SHIFT(t147);
495
 
496
  t156 = (((MUL(t144 - t145, costab16) << 1) - t146) << 1) - t147;
497
 
498
  /* 25 */ lo[ 9][slot] = SHIFT(t156);
499
 
500
  t175 = (((MUL(t152 - t153, costab16) << 1) - t154) << 1) - t155;
501
 
502
  t165 = (t175 << 1) - t156;
503
 
504
  /* 27 */ lo[11][slot] = SHIFT(t165);
505
 
506
  t176 = (((((MUL(t161 - t162, costab16) << 1) -
507
             t163) << 1) - t164) << 1) - t165;
508
 
509
  /* 29 */ lo[13][slot] = SHIFT(t176);
510
  /* 31 */ lo[15][slot] =
511
             SHIFT((((((((MUL(t171 - t172, costab16) << 1) -
512
                         t173) << 1) - t174) << 1) - t175) << 1) - t176);
513
 
514
  /*
515
   * Totals:
516
   *  80 multiplies
517
   *  80 additions
518
   * 119 subtractions
519
   *  49 shifts (not counting SSO)
520
   */
521
}
522
 
523
# undef MUL
524
# undef SHIFT
525
 
526
/* third SSO shift and/or D[] optimization preshift */
527
 
528
# if defined(OPT_SSO)
529
#  if MAD_F_FRACBITS != 28
530
#   error "MAD_F_FRACBITS must be 28 to use OPT_SSO"
531
#  endif
532
#  define ML0(hi, lo, x, y)     ((lo)  = (x) * (y))
533
#  define MLA(hi, lo, x, y)     ((lo) += (x) * (y))
534
#  define MLZ(hi, lo)           ((void) (hi), (mad_fixed_t) (lo))
535
#  define SHIFT(x)              ((x) >> 2)
536
#  define PRESHIFT(x)           ((MAD_F(x) + (1L << 13)) >> 14)
537
# else
538
#  define ML0(hi, lo, x, y)     MAD_F_ML0((hi), (lo), (x), (y))
539
#  define MLA(hi, lo, x, y)     MAD_F_MLA((hi), (lo), (x), (y))
540
#  define MLZ(hi, lo)           MAD_F_MLZ((hi), (lo))
541
#  define SHIFT(x)              (x)
542
#  if defined(MAD_F_SCALEBITS)
543
#   undef  MAD_F_SCALEBITS
544
#   define MAD_F_SCALEBITS      (MAD_F_FRACBITS - 12)
545
#   define PRESHIFT(x)          (MAD_F(x) >> 12)
546
#  else
547
#   define PRESHIFT(x)          MAD_F(x)
548
#  endif
549
# endif
550
 
551
static
552
mad_fixed_t const D[17][32] = {
553
# include "D.dat"
554
};
555
 
556
/* 3. called to process output */
557
 
558
int speed = 0, nchan = 0;
559
 
560
# ifndef EMBED
561
int output_s(unsigned char const *ptr, unsigned int len);
562
# endif
563
 
564
static inline void
565
output(struct mad_pcm *pcm)
566
{
567
  unsigned int nchannels;
568
  union audio_control control;
569
  mad_fixed_t *ch1, *ch2;
570
 
571
  nchannels = pcm->channels;
572
 
573
  if (nchannels != nchan || speed != pcm->samplerate)
574
    {
575
# ifndef EMBED
576
      control.command = AUDIO_COMMAND_CONFIG;
577
 
578
      control.config.channels = nchannels;
579
      control.config.speed    = pcm->samplerate;
580
 
581
      if (audio_oss(&control) == -1)
582
        return;
583
# endif 
584
      nchan = nchannels;
585
      speed = pcm->samplerate;
586
    }
587
  ch1 = &pcm->samples[0][0];
588
  ch2 = &pcm->samples[1][0];
589
 
590
  if (nchan == 1)
591
    ch2 = ch1;
592
 
593
  {
594
    unsigned char data[MAX_NSAMPLES * 4 * 2];
595
    unsigned int len;
596
 
597
    len = audio_pcm_s16le(data, pcm->length, ch1, ch2);
598
# ifndef EMBED
599
    output_s(data, len);
600
# endif
601
  }
602
  return;
603
}
604
 
605
# if defined(ASO_SYNTH)
606
void synth_full(struct mad_synth *, struct mad_frame const *,
607
                unsigned int, unsigned int);
608
# else
609
/*
610
 * NAME:        synth->full()
611
 * DESCRIPTION: perform full frequency PCM synthesis
612
 */
613
static inline
614
void synth_full(struct mad_synth *synth, struct mad_frame const *frame,
615
                unsigned int nch, unsigned int ns)
616
{
617
  unsigned int phase, ch, s, sb, pe, po;
618
  mad_fixed_t *pcm1, *pcm2, (*filter)[2][2][16][8];
619
  mad_fixed_t const (*sbsample)[36][32];
620
  register mad_fixed_t (*fe)[8], (*fx)[8], (*fo)[8];
621
  register mad_fixed_t const (*Dptr)[32], *ptr;
622
  register mad_fixed64hi_t hi;
623
  register mad_fixed64lo_t lo;
624
 
625
  phase   = synth->phase;
626
 
627
  for (s = 0; s < ns; ++s) {
628
    for (ch = 0; ch < nch; ++ch) {
629
      sbsample = &frame->sbsample[ch];
630
      filter   = &synth->filter[ch];
631
      pcm1 = synth->pcm.samples[ch];
632
 
633
      dct32((*sbsample)[s], phase >> 1,
634
            (*filter)[0][phase & 1], (*filter)[1][phase & 1]);
635
 
636
      pe = phase & ~1;
637
      po = ((phase - 1) & 0xf) | 1;
638
 
639
      /* calculate 32 samples */
640
 
641
      fe = &(*filter)[0][ phase & 1][0];
642
      fx = &(*filter)[0][~phase & 1][0];
643
      fo = &(*filter)[1][~phase & 1][0];
644
 
645
      Dptr = &D[0];
646
 
647
      ptr = *Dptr + pe;
648
      ML0(hi, lo, (*fe)[0], ptr[ 0]);
649
      MLA(hi, lo, (*fe)[1], ptr[14]);
650
      MLA(hi, lo, (*fe)[2], ptr[12]);
651
      MLA(hi, lo, (*fe)[3], ptr[10]);
652
      MLA(hi, lo, (*fe)[4], ptr[ 8]);
653
      MLA(hi, lo, (*fe)[5], ptr[ 6]);
654
      MLA(hi, lo, (*fe)[6], ptr[ 4]);
655
      MLA(hi, lo, (*fe)[7], ptr[ 2]);
656
 
657
      ptr = *Dptr + po;
658
      MLA(hi, lo, (*fx)[0], -ptr[ 0]);
659
      MLA(hi, lo, (*fx)[1], -ptr[14]);
660
      MLA(hi, lo, (*fx)[2], -ptr[12]);
661
      MLA(hi, lo, (*fx)[3], -ptr[10]);
662
      MLA(hi, lo, (*fx)[4], -ptr[ 8]);
663
      MLA(hi, lo, (*fx)[5], -ptr[ 6]);
664
      MLA(hi, lo, (*fx)[6], -ptr[ 4]);
665
      MLA(hi, lo, (*fx)[7], -ptr[ 2]);
666
 
667
      *pcm1++ = SHIFT(MLZ(hi, lo));
668
 
669
      pcm2 = pcm1 + 30;
670
 
671
      for (sb = 1; sb < 16; ++sb) {
672
        ++fe;
673
        ++Dptr;
674
 
675
        /* D[32 - sb][i] == -D[sb][31 - i] */
676
 
677
        ptr = *Dptr + pe;
678
        ML0(hi, lo, (*fe)[7], ptr[ 2]);
679
        MLA(hi, lo, (*fe)[6], ptr[ 4]);
680
        MLA(hi, lo, (*fe)[5], ptr[ 6]);
681
        MLA(hi, lo, (*fe)[4], ptr[ 8]);
682
        MLA(hi, lo, (*fe)[3], ptr[10]);
683
        MLA(hi, lo, (*fe)[2], ptr[12]);
684
        MLA(hi, lo, (*fe)[1], ptr[14]);
685
        MLA(hi, lo, (*fe)[0], ptr[ 0]);
686
 
687
        ptr = *Dptr + po;
688
        MLA(hi, lo, (*fo)[0], -ptr[ 0]);
689
        MLA(hi, lo, (*fo)[1], -ptr[14]);
690
        MLA(hi, lo, (*fo)[2], -ptr[12]);
691
        MLA(hi, lo, (*fo)[3], -ptr[10]);
692
        MLA(hi, lo, (*fo)[4], -ptr[ 8]);
693
        MLA(hi, lo, (*fo)[5], -ptr[ 6]);
694
        MLA(hi, lo, (*fo)[6], -ptr[ 4]);
695
        MLA(hi, lo, (*fo)[7], -ptr[ 2]);
696
 
697
        *pcm1++ = SHIFT(MLZ(hi, lo));
698
 
699
        ptr = *Dptr - po;
700
        ML0(hi, lo, (*fo)[7], ptr[31 -  2]);
701
        MLA(hi, lo, (*fo)[6], ptr[31 -  4]);
702
        MLA(hi, lo, (*fo)[5], ptr[31 -  6]);
703
        MLA(hi, lo, (*fo)[4], ptr[31 -  8]);
704
        MLA(hi, lo, (*fo)[3], ptr[31 - 10]);
705
        MLA(hi, lo, (*fo)[2], ptr[31 - 12]);
706
        MLA(hi, lo, (*fo)[1], ptr[31 - 14]);
707
        MLA(hi, lo, (*fo)[0], ptr[31 - 16]);
708
 
709
        ptr = *Dptr - pe;
710
        MLA(hi, lo, (*fe)[0], ptr[31 - 16]);
711
        MLA(hi, lo, (*fe)[1], ptr[31 - 14]);
712
        MLA(hi, lo, (*fe)[2], ptr[31 - 12]);
713
        MLA(hi, lo, (*fe)[3], ptr[31 - 10]);
714
        MLA(hi, lo, (*fe)[4], ptr[31 -  8]);
715
        MLA(hi, lo, (*fe)[5], ptr[31 -  6]);
716
        MLA(hi, lo, (*fe)[6], ptr[31 -  4]);
717
        MLA(hi, lo, (*fe)[7], ptr[31 -  2]);
718
 
719
        *pcm2-- = SHIFT(MLZ(hi, lo));
720
 
721
        ++fo;
722
      }
723
 
724
      ++Dptr;
725
 
726
      ptr = *Dptr + po;
727
      ML0(hi, lo, (*fo)[0], ptr[ 0]);
728
      MLA(hi, lo, (*fo)[1], ptr[14]);
729
      MLA(hi, lo, (*fo)[2], ptr[12]);
730
      MLA(hi, lo, (*fo)[3], ptr[10]);
731
      MLA(hi, lo, (*fo)[4], ptr[ 8]);
732
      MLA(hi, lo, (*fo)[5], ptr[ 6]);
733
      MLA(hi, lo, (*fo)[6], ptr[ 4]);
734
      MLA(hi, lo, (*fo)[7], ptr[ 2]);
735
 
736
      *pcm1 = SHIFT(-MLZ(hi, lo));
737
    }
738
 
739
    phase = (phase + 1) % 16;
740
 
741
    synth->pcm.length = 32;
742
    output (&synth->pcm);
743
  }
744
}
745
# endif
746
 
747
/*
748
 * NAME:        synth->frame()
749
 * DESCRIPTION: perform PCM synthesis of frame subband samples
750
 */
751
void inline mad_synth_frame(struct mad_synth *synth, struct mad_frame const *frame)
752
{
753
  unsigned int nch, ns;
754
 
755
  nch = MAD_NCHANNELS(&frame->header);
756
  ns  = MAD_NSBSAMPLES(&frame->header);
757
 
758
  synth->pcm.samplerate = frame->header.samplerate;
759
  synth->pcm.channels   = nch;
760
  synth->pcm.length     = 32 * ns;
761
 
762
  synth_full(synth, frame, nch, ns);
763
 
764
  synth->phase = (synth->phase + ns) % 16;
765
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.