OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [arch/] [i386/] [math-emu/] [poly_sin.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1623 jcastillo
/*---------------------------------------------------------------------------+
2
 |  poly_sin.c                                                               |
3
 |                                                                           |
4
 |  Computation of an approximation of the sin function and the cosine       |
5
 |  function by a polynomial.                                                |
6
 |                                                                           |
7
 | Copyright (C) 1992,1993,1994                                              |
8
 |                       W. Metzenthen, 22 Parker St, Ormond, Vic 3163,      |
9
 |                       Australia.  E-mail   billm@vaxc.cc.monash.edu.au    |
10
 |                                                                           |
11
 |                                                                           |
12
 +---------------------------------------------------------------------------*/
13
 
14
 
15
#include "exception.h"
16
#include "reg_constant.h"
17
#include "fpu_emu.h"
18
#include "control_w.h"
19
#include "poly.h"
20
 
21
 
22
#define N_COEFF_P       4
23
#define N_COEFF_N       4
24
 
25
static const unsigned long long pos_terms_l[N_COEFF_P] =
26
{
27
  0xaaaaaaaaaaaaaaabLL,
28
  0x00d00d00d00cf906LL,
29
  0x000006b99159a8bbLL,
30
  0x000000000d7392e6LL
31
};
32
 
33
static const unsigned long long neg_terms_l[N_COEFF_N] =
34
{
35
  0x2222222222222167LL,
36
  0x0002e3bc74aab624LL,
37
  0x0000000b09229062LL,
38
  0x00000000000c7973LL
39
};
40
 
41
 
42
 
43
#define N_COEFF_PH      4
44
#define N_COEFF_NH      4
45
static const unsigned long long pos_terms_h[N_COEFF_PH] =
46
{
47
  0x0000000000000000LL,
48
  0x05b05b05b05b0406LL,
49
  0x000049f93edd91a9LL,
50
  0x00000000c9c9ed62LL
51
};
52
 
53
static const unsigned long long neg_terms_h[N_COEFF_NH] =
54
{
55
  0xaaaaaaaaaaaaaa98LL,
56
  0x001a01a01a019064LL,
57
  0x0000008f76c68a77LL,
58
  0x0000000000d58f5eLL
59
};
60
 
61
 
62
/*--- poly_sine() -----------------------------------------------------------+
63
 |                                                                           |
64
 +---------------------------------------------------------------------------*/
65
void    poly_sine(FPU_REG const *arg, FPU_REG *result)
66
{
67
  int                 exponent, echange;
68
  Xsig                accumulator, argSqrd, argTo4;
69
  unsigned long       fix_up, adj;
70
  unsigned long long  fixed_arg;
71
 
72
 
73
#ifdef PARANOID
74
  if ( arg->tag == TW_Zero )
75
    {
76
      /* Return 0.0 */
77
      reg_move(&CONST_Z, result);
78
      return;
79
    }
80
#endif PARANOID
81
 
82
  exponent = arg->exp - EXP_BIAS;
83
 
84
  accumulator.lsw = accumulator.midw = accumulator.msw = 0;
85
 
86
  /* Split into two ranges, for arguments below and above 1.0 */
87
  /* The boundary between upper and lower is approx 0.88309101259 */
88
  if ( (exponent < -1) || ((exponent == -1) && (arg->sigh <= 0xe21240aa)) )
89
    {
90
      /* The argument is <= 0.88309101259 */
91
 
92
      argSqrd.msw = arg->sigh; argSqrd.midw = arg->sigl; argSqrd.lsw = 0;
93
      mul64_Xsig(&argSqrd, &significand(arg));
94
      shr_Xsig(&argSqrd, 2*(-1-exponent));
95
      argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw;
96
      argTo4.lsw = argSqrd.lsw;
97
      mul_Xsig_Xsig(&argTo4, &argTo4);
98
 
99
      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
100
                      N_COEFF_N-1);
101
      mul_Xsig_Xsig(&accumulator, &argSqrd);
102
      negate_Xsig(&accumulator);
103
 
104
      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
105
                      N_COEFF_P-1);
106
 
107
      shr_Xsig(&accumulator, 2);    /* Divide by four */
108
      accumulator.msw |= 0x80000000;  /* Add 1.0 */
109
 
110
      mul64_Xsig(&accumulator, &significand(arg));
111
      mul64_Xsig(&accumulator, &significand(arg));
112
      mul64_Xsig(&accumulator, &significand(arg));
113
 
114
      /* Divide by four, FPU_REG compatible, etc */
115
      exponent = 3*exponent + EXP_BIAS;
116
 
117
      /* The minimum exponent difference is 3 */
118
      shr_Xsig(&accumulator, arg->exp - exponent);
119
 
120
      negate_Xsig(&accumulator);
121
      XSIG_LL(accumulator) += significand(arg);
122
 
123
      echange = round_Xsig(&accumulator);
124
 
125
      result->exp = arg->exp + echange;
126
    }
127
  else
128
    {
129
      /* The argument is > 0.88309101259 */
130
      /* We use sin(arg) = cos(pi/2-arg) */
131
 
132
      fixed_arg = significand(arg);
133
 
134
      if ( exponent == 0 )
135
        {
136
          /* The argument is >= 1.0 */
137
 
138
          /* Put the binary point at the left. */
139
          fixed_arg <<= 1;
140
        }
141
      /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
142
      fixed_arg = 0x921fb54442d18469LL - fixed_arg;
143
 
144
      XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0;
145
      mul64_Xsig(&argSqrd, &fixed_arg);
146
 
147
      XSIG_LL(argTo4) = XSIG_LL(argSqrd); argTo4.lsw = argSqrd.lsw;
148
      mul_Xsig_Xsig(&argTo4, &argTo4);
149
 
150
      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
151
                      N_COEFF_NH-1);
152
      mul_Xsig_Xsig(&accumulator, &argSqrd);
153
      negate_Xsig(&accumulator);
154
 
155
      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
156
                      N_COEFF_PH-1);
157
      negate_Xsig(&accumulator);
158
 
159
      mul64_Xsig(&accumulator, &fixed_arg);
160
      mul64_Xsig(&accumulator, &fixed_arg);
161
 
162
      shr_Xsig(&accumulator, 3);
163
      negate_Xsig(&accumulator);
164
 
165
      add_Xsig_Xsig(&accumulator, &argSqrd);
166
 
167
      shr_Xsig(&accumulator, 1);
168
 
169
      accumulator.lsw |= 1;  /* A zero accumulator here would cause problems */
170
      negate_Xsig(&accumulator);
171
 
172
      /* The basic computation is complete. Now fix the answer to
173
         compensate for the error due to the approximation used for
174
         pi/2
175
         */
176
 
177
      /* This has an exponent of -65 */
178
      fix_up = 0x898cc517;
179
      /* The fix-up needs to be improved for larger args */
180
      if ( argSqrd.msw & 0xffc00000 )
181
        {
182
          /* Get about 32 bit precision in these: */
183
          mul_32_32(0x898cc517, argSqrd.msw, &adj);
184
          fix_up -= adj/6;
185
        }
186
      mul_32_32(fix_up, LL_MSW(fixed_arg), &fix_up);
187
 
188
      adj = accumulator.lsw;    /* temp save */
189
      accumulator.lsw -= fix_up;
190
      if ( accumulator.lsw > adj )
191
        XSIG_LL(accumulator) --;
192
 
193
      echange = round_Xsig(&accumulator);
194
 
195
      result->exp = EXP_BIAS - 1 + echange;
196
    }
197
 
198
  significand(result) = XSIG_LL(accumulator);
199
  result->tag = TW_Valid;
200
  result->sign = arg->sign;
201
 
202
#ifdef PARANOID
203
  if ( (result->exp >= EXP_BIAS)
204
      && (significand(result) > 0x8000000000000000LL) )
205
    {
206
      EXCEPTION(EX_INTERNAL|0x150);
207
    }
208
#endif PARANOID
209
 
210
}
211
 
212
 
213
 
214
/*--- poly_cos() ------------------------------------------------------------+
215
 |                                                                           |
216
 +---------------------------------------------------------------------------*/
217
void    poly_cos(FPU_REG const *arg, FPU_REG *result)
218
{
219
  long int            exponent, exp2, echange;
220
  Xsig                accumulator, argSqrd, fix_up, argTo4;
221
  unsigned long       adj;
222
  unsigned long long  fixed_arg;
223
 
224
 
225
#ifdef PARANOID
226
  if ( arg->tag == TW_Zero )
227
    {
228
      /* Return 1.0 */
229
      reg_move(&CONST_1, result);
230
      return;
231
    }
232
 
233
  if ( (arg->exp > EXP_BIAS)
234
      || ((arg->exp == EXP_BIAS)
235
          && (significand(arg) > 0xc90fdaa22168c234LL)) )
236
    {
237
      EXCEPTION(EX_Invalid);
238
      reg_move(&CONST_QNaN, result);
239
      return;
240
    }
241
#endif PARANOID
242
 
243
  exponent = arg->exp - EXP_BIAS;
244
 
245
  accumulator.lsw = accumulator.midw = accumulator.msw = 0;
246
 
247
  if ( (exponent < -1) || ((exponent == -1) && (arg->sigh <= 0xb00d6f54)) )
248
    {
249
      /* arg is < 0.687705 */
250
 
251
      argSqrd.msw = arg->sigh; argSqrd.midw = arg->sigl; argSqrd.lsw = 0;
252
      mul64_Xsig(&argSqrd, &significand(arg));
253
 
254
      if ( exponent < -1 )
255
        {
256
          /* shift the argument right by the required places */
257
          shr_Xsig(&argSqrd, 2*(-1-exponent));
258
        }
259
 
260
      argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw;
261
      argTo4.lsw = argSqrd.lsw;
262
      mul_Xsig_Xsig(&argTo4, &argTo4);
263
 
264
      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
265
                      N_COEFF_NH-1);
266
      mul_Xsig_Xsig(&accumulator, &argSqrd);
267
      negate_Xsig(&accumulator);
268
 
269
      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
270
                      N_COEFF_PH-1);
271
      negate_Xsig(&accumulator);
272
 
273
      mul64_Xsig(&accumulator, &significand(arg));
274
      mul64_Xsig(&accumulator, &significand(arg));
275
      shr_Xsig(&accumulator, -2*(1+exponent));
276
 
277
      shr_Xsig(&accumulator, 3);
278
      negate_Xsig(&accumulator);
279
 
280
      add_Xsig_Xsig(&accumulator, &argSqrd);
281
 
282
      shr_Xsig(&accumulator, 1);
283
 
284
      /* It doesn't matter if accumulator is all zero here, the
285
         following code will work ok */
286
      negate_Xsig(&accumulator);
287
 
288
      if ( accumulator.lsw & 0x80000000 )
289
        XSIG_LL(accumulator) ++;
290
      if ( accumulator.msw == 0 )
291
        {
292
          /* The result is 1.0 */
293
          reg_move(&CONST_1, result);
294
        }
295
      else
296
        {
297
          significand(result) = XSIG_LL(accumulator);
298
 
299
          /* will be a valid positive nr with expon = -1 */
300
          *(short *)&(result->sign) = 0;
301
          result->exp = EXP_BIAS - 1;
302
        }
303
    }
304
  else
305
    {
306
      fixed_arg = significand(arg);
307
 
308
      if ( exponent == 0 )
309
        {
310
          /* The argument is >= 1.0 */
311
 
312
          /* Put the binary point at the left. */
313
          fixed_arg <<= 1;
314
        }
315
      /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
316
      fixed_arg = 0x921fb54442d18469LL - fixed_arg;
317
 
318
      exponent = -1;
319
      exp2 = -1;
320
 
321
      /* A shift is needed here only for a narrow range of arguments,
322
         i.e. for fixed_arg approx 2^-32, but we pick up more... */
323
      if ( !(LL_MSW(fixed_arg) & 0xffff0000) )
324
        {
325
          fixed_arg <<= 16;
326
          exponent -= 16;
327
          exp2 -= 16;
328
        }
329
 
330
      XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0;
331
      mul64_Xsig(&argSqrd, &fixed_arg);
332
 
333
      if ( exponent < -1 )
334
        {
335
          /* shift the argument right by the required places */
336
          shr_Xsig(&argSqrd, 2*(-1-exponent));
337
        }
338
 
339
      argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw;
340
      argTo4.lsw = argSqrd.lsw;
341
      mul_Xsig_Xsig(&argTo4, &argTo4);
342
 
343
      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
344
                      N_COEFF_N-1);
345
      mul_Xsig_Xsig(&accumulator, &argSqrd);
346
      negate_Xsig(&accumulator);
347
 
348
      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
349
                      N_COEFF_P-1);
350
 
351
      shr_Xsig(&accumulator, 2);    /* Divide by four */
352
      accumulator.msw |= 0x80000000;  /* Add 1.0 */
353
 
354
      mul64_Xsig(&accumulator, &fixed_arg);
355
      mul64_Xsig(&accumulator, &fixed_arg);
356
      mul64_Xsig(&accumulator, &fixed_arg);
357
 
358
      /* Divide by four, FPU_REG compatible, etc */
359
      exponent = 3*exponent;
360
 
361
      /* The minimum exponent difference is 3 */
362
      shr_Xsig(&accumulator, exp2 - exponent);
363
 
364
      negate_Xsig(&accumulator);
365
      XSIG_LL(accumulator) += fixed_arg;
366
 
367
      /* The basic computation is complete. Now fix the answer to
368
         compensate for the error due to the approximation used for
369
         pi/2
370
         */
371
 
372
      /* This has an exponent of -65 */
373
      XSIG_LL(fix_up) = 0x898cc51701b839a2ll;
374
      fix_up.lsw = 0;
375
 
376
      /* The fix-up needs to be improved for larger args */
377
      if ( argSqrd.msw & 0xffc00000 )
378
        {
379
          /* Get about 32 bit precision in these: */
380
          mul_32_32(0x898cc517, argSqrd.msw, &adj);
381
          fix_up.msw -= adj/2;
382
          mul_32_32(0x898cc517, argTo4.msw, &adj);
383
          fix_up.msw += adj/24;
384
        }
385
 
386
      exp2 += norm_Xsig(&accumulator);
387
      shr_Xsig(&accumulator, 1); /* Prevent overflow */
388
      exp2++;
389
      shr_Xsig(&fix_up, 65 + exp2);
390
 
391
      add_Xsig_Xsig(&accumulator, &fix_up);
392
 
393
      echange = round_Xsig(&accumulator);
394
 
395
      result->exp = exp2 + EXP_BIAS + echange;
396
      *(short *)&(result->sign) = 0;      /* Is a valid positive nr */
397
      significand(result) = XSIG_LL(accumulator);
398
    }
399
 
400
#ifdef PARANOID
401
  if ( (result->exp >= EXP_BIAS)
402
      && (significand(result) > 0x8000000000000000LL) )
403
    {
404
      EXCEPTION(EX_INTERNAL|0x151);
405
    }
406
#endif PARANOID
407
 
408
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.