1 |
1626 |
jcastillo |
/*
|
2 |
|
|
* in2000.c - Linux device driver for the
|
3 |
|
|
* Always IN2000 ISA SCSI card.
|
4 |
|
|
*
|
5 |
|
|
* Copyright (c) 1996 John Shifflett, GeoLog Consulting
|
6 |
|
|
* john@geolog.com
|
7 |
|
|
* jshiffle@netcom.com
|
8 |
|
|
*
|
9 |
|
|
* This program is free software; you can redistribute it and/or modify
|
10 |
|
|
* it under the terms of the GNU General Public License as published by
|
11 |
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
12 |
|
|
* any later version.
|
13 |
|
|
*
|
14 |
|
|
* This program is distributed in the hope that it will be useful,
|
15 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
* GNU General Public License for more details.
|
18 |
|
|
*
|
19 |
|
|
*
|
20 |
|
|
* Drew Eckhardt's excellent 'Generic NCR5380' sources provided
|
21 |
|
|
* much of the inspiration and some of the code for this driver.
|
22 |
|
|
* The Linux IN2000 driver distributed in the Linux kernels through
|
23 |
|
|
* version 1.2.13 was an extremely valuable reference on the arcane
|
24 |
|
|
* (and still mysterious) workings of the IN2000's fifo. It also
|
25 |
|
|
* is where I lifted in2000_biosparam(), the gist of the card
|
26 |
|
|
* detection scheme, and other bits of code. Many thanks to the
|
27 |
|
|
* talented and courageous people who wrote, contributed to, and
|
28 |
|
|
* maintained that driver (including Brad McLean, Shaun Savage,
|
29 |
|
|
* Bill Earnest, Larry Doolittle, Roger Sunshine, John Luckey,
|
30 |
|
|
* Matt Postiff, Peter Lu, zerucha@shell.portal.com, and Eric
|
31 |
|
|
* Youngdale). I should also mention the driver written by
|
32 |
|
|
* Hamish Macdonald for the (GASP!) Amiga A2091 card, included
|
33 |
|
|
* in the Linux-m68k distribution; it gave me a good initial
|
34 |
|
|
* understanding of the proper way to run a WD33c93 chip, and I
|
35 |
|
|
* ended up stealing lots of code from it.
|
36 |
|
|
*
|
37 |
|
|
* _This_ driver is (I feel) an improvement over the old one in
|
38 |
|
|
* several respects:
|
39 |
|
|
* - All problems relating to the data size of a SCSI request are
|
40 |
|
|
* gone (as far as I know). The old driver couldn't handle
|
41 |
|
|
* swapping to partitions because that involved 4k blocks, nor
|
42 |
|
|
* could it deal with the st.c tape driver unmodified, because
|
43 |
|
|
* that usually involved 4k - 32k blocks. The old driver never
|
44 |
|
|
* quite got away from a morbid dependence on 2k block sizes -
|
45 |
|
|
* which of course is the size of the card's fifo.
|
46 |
|
|
*
|
47 |
|
|
* - Target Disconnection/Reconnection is now supported. Any
|
48 |
|
|
* system with more than one device active on the SCSI bus
|
49 |
|
|
* will benefit from this. The driver defaults to what I'm
|
50 |
|
|
* calling 'adaptive disconnect' - meaning that each command
|
51 |
|
|
* is evaluated individually as to whether or not it should
|
52 |
|
|
* be run with the option to disconnect/reselect (if the
|
53 |
|
|
* device chooses), or as a "SCSI-bus-hog".
|
54 |
|
|
*
|
55 |
|
|
* - Synchronous data transfers are now supported. Because there
|
56 |
|
|
* are a few devices (and many improperly terminated systems)
|
57 |
|
|
* that choke when doing sync, the default is sync DISABLED
|
58 |
|
|
* for all devices. This faster protocol can (and should!)
|
59 |
|
|
* be enabled on selected devices via the command-line.
|
60 |
|
|
*
|
61 |
|
|
* - Runtime operating parameters can now be specified through
|
62 |
|
|
* either the LILO or the 'insmod' command line. For LILO do:
|
63 |
|
|
* "in2000=blah,blah,blah"
|
64 |
|
|
* and with insmod go like:
|
65 |
|
|
* "insmod /usr/src/linux/modules/in2000.o setup_strings=blah,blah"
|
66 |
|
|
* The defaults should be good for most people. See the comment
|
67 |
|
|
* for 'setup_strings' below for more details.
|
68 |
|
|
*
|
69 |
|
|
* - The old driver relied exclusively on what the Western Digital
|
70 |
|
|
* docs call "Combination Level 2 Commands", which are a great
|
71 |
|
|
* idea in that the CPU is relieved of a lot of interrupt
|
72 |
|
|
* overhead. However, by accepting a certain (user-settable)
|
73 |
|
|
* amount of additional interrupts, this driver achieves
|
74 |
|
|
* better control over the SCSI bus, and data transfers are
|
75 |
|
|
* almost as fast while being much easier to define, track,
|
76 |
|
|
* and debug.
|
77 |
|
|
*
|
78 |
|
|
* - You can force detection of a card whose BIOS has been disabled.
|
79 |
|
|
*
|
80 |
|
|
* - Multiple IN2000 cards might almost be supported. I've tried to
|
81 |
|
|
* keep it in mind, but have no way to test...
|
82 |
|
|
*
|
83 |
|
|
*
|
84 |
|
|
* TODO:
|
85 |
|
|
* tagged queuing. multiple cards.
|
86 |
|
|
*
|
87 |
|
|
*
|
88 |
|
|
* NOTE:
|
89 |
|
|
* When using this or any other SCSI driver as a module, you'll
|
90 |
|
|
* find that with the stock kernel, at most _two_ SCSI hard
|
91 |
|
|
* drives will be linked into the device list (ie, usable).
|
92 |
|
|
* If your IN2000 card has more than 2 disks on its bus, you
|
93 |
|
|
* might want to change the define of 'SD_EXTRA_DEVS' in the
|
94 |
|
|
* 'hosts.h' file from 2 to whatever is appropriate. It took
|
95 |
|
|
* me a while to track down this surprisingly obscure and
|
96 |
|
|
* undocumented little "feature".
|
97 |
|
|
*
|
98 |
|
|
*
|
99 |
|
|
* People with bug reports, wish-lists, complaints, comments,
|
100 |
|
|
* or improvements are asked to pah-leeez email me (John Shifflett)
|
101 |
|
|
* at john@geolog.com or jshiffle@netcom.com! I'm anxious to get
|
102 |
|
|
* this thing into as good a shape as possible, and I'm positive
|
103 |
|
|
* there are lots of lurking bugs and "Stupid Places".
|
104 |
|
|
*
|
105 |
|
|
*/
|
106 |
|
|
|
107 |
|
|
#include <linux/module.h>
|
108 |
|
|
|
109 |
|
|
#include <asm/system.h>
|
110 |
|
|
#include <linux/sched.h>
|
111 |
|
|
#include <linux/string.h>
|
112 |
|
|
#include <linux/delay.h>
|
113 |
|
|
#include <linux/proc_fs.h>
|
114 |
|
|
#include <asm/io.h>
|
115 |
|
|
#include <linux/ioport.h>
|
116 |
|
|
#include <linux/blkdev.h>
|
117 |
|
|
|
118 |
|
|
#include <linux/blk.h>
|
119 |
|
|
#include <linux/stat.h>
|
120 |
|
|
|
121 |
|
|
#include "scsi.h"
|
122 |
|
|
#include "sd.h"
|
123 |
|
|
#include "hosts.h"
|
124 |
|
|
|
125 |
|
|
#define IN2000_VERSION "1.33"
|
126 |
|
|
#define IN2000_DATE "26/August/1998"
|
127 |
|
|
|
128 |
|
|
#include "in2000.h"
|
129 |
|
|
|
130 |
|
|
|
131 |
|
|
/*
|
132 |
|
|
* 'setup_strings' is a single string used to pass operating parameters and
|
133 |
|
|
* settings from the kernel/module command-line to the driver. 'setup_args[]'
|
134 |
|
|
* is an array of strings that define the compile-time default values for
|
135 |
|
|
* these settings. If Linux boots with a LILO or insmod command-line, those
|
136 |
|
|
* settings are combined with 'setup_args[]'. Note that LILO command-lines
|
137 |
|
|
* are prefixed with "in2000=" while insmod uses a "setup_strings=" prefix.
|
138 |
|
|
* The driver recognizes the following keywords (lower case required) and
|
139 |
|
|
* arguments:
|
140 |
|
|
*
|
141 |
|
|
* - ioport:addr -Where addr is IO address of a (usually ROM-less) card.
|
142 |
|
|
* - noreset -No optional args. Prevents SCSI bus reset at boot time.
|
143 |
|
|
* - nosync:x -x is a bitmask where the 1st 7 bits correspond with
|
144 |
|
|
* the 7 possible SCSI devices (bit 0 for device #0, etc).
|
145 |
|
|
* Set a bit to PREVENT sync negotiation on that device.
|
146 |
|
|
* The driver default is sync DISABLED on all devices.
|
147 |
|
|
* - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer
|
148 |
|
|
* period. Default is 500; acceptable values are 250 - 1000.
|
149 |
|
|
* - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them.
|
150 |
|
|
* x = 1 does 'adaptive' disconnects, which is the default
|
151 |
|
|
* and generally the best choice.
|
152 |
|
|
* - debug:x -If 'DEBUGGING_ON' is defined, x is a bitmask that causes
|
153 |
|
|
* various types of debug output to printed - see the DB_xxx
|
154 |
|
|
* defines in in2000.h
|
155 |
|
|
* - proc:x -If 'PROC_INTERFACE' is defined, x is a bitmask that
|
156 |
|
|
* determines how the /proc interface works and what it
|
157 |
|
|
* does - see the PR_xxx defines in in2000.h
|
158 |
|
|
*
|
159 |
|
|
* Syntax Notes:
|
160 |
|
|
* - Numeric arguments can be decimal or the '0x' form of hex notation. There
|
161 |
|
|
* _must_ be a colon between a keyword and its numeric argument, with no
|
162 |
|
|
* spaces.
|
163 |
|
|
* - Keywords are separated by commas, no spaces, in the standard kernel
|
164 |
|
|
* command-line manner.
|
165 |
|
|
* - A keyword in the 'nth' comma-separated command-line member will overwrite
|
166 |
|
|
* the 'nth' element of setup_args[]. A blank command-line member (in
|
167 |
|
|
* other words, a comma with no preceding keyword) will _not_ overwrite
|
168 |
|
|
* the corresponding setup_args[] element.
|
169 |
|
|
*
|
170 |
|
|
* A few LILO examples (for insmod, use 'setup_strings' instead of 'in2000'):
|
171 |
|
|
* - in2000=ioport:0x220,noreset
|
172 |
|
|
* - in2000=period:250,disconnect:2,nosync:0x03
|
173 |
|
|
* - in2000=debug:0x1e
|
174 |
|
|
* - in2000=proc:3
|
175 |
|
|
*/
|
176 |
|
|
|
177 |
|
|
/* Normally, no defaults are specified... */
|
178 |
|
|
static char *setup_args[] =
|
179 |
|
|
{"","","","","","","","",""};
|
180 |
|
|
|
181 |
|
|
/* filled in by 'insmod' */
|
182 |
|
|
static char *setup_strings = 0;
|
183 |
|
|
|
184 |
|
|
#ifdef MODULE_PARM
|
185 |
|
|
MODULE_PARM(setup_strings, "s");
|
186 |
|
|
#endif
|
187 |
|
|
|
188 |
|
|
|
189 |
|
|
static struct Scsi_Host *instance_list = 0;
|
190 |
|
|
|
191 |
|
|
|
192 |
|
|
|
193 |
|
|
static inline uchar read_3393(struct IN2000_hostdata *hostdata, uchar reg_num)
|
194 |
|
|
{
|
195 |
|
|
write1_io(reg_num,IO_WD_ADDR);
|
196 |
|
|
return read1_io(IO_WD_DATA);
|
197 |
|
|
}
|
198 |
|
|
|
199 |
|
|
|
200 |
|
|
#define READ_AUX_STAT() read1_io(IO_WD_ASR)
|
201 |
|
|
|
202 |
|
|
|
203 |
|
|
static inline void write_3393(struct IN2000_hostdata *hostdata, uchar reg_num, uchar value)
|
204 |
|
|
{
|
205 |
|
|
write1_io(reg_num,IO_WD_ADDR);
|
206 |
|
|
write1_io(value,IO_WD_DATA);
|
207 |
|
|
}
|
208 |
|
|
|
209 |
|
|
|
210 |
|
|
static inline void write_3393_cmd(struct IN2000_hostdata *hostdata, uchar cmd)
|
211 |
|
|
{
|
212 |
|
|
/* while (READ_AUX_STAT() & ASR_CIP)
|
213 |
|
|
printk("|");*/
|
214 |
|
|
write1_io(WD_COMMAND,IO_WD_ADDR);
|
215 |
|
|
write1_io(cmd,IO_WD_DATA);
|
216 |
|
|
}
|
217 |
|
|
|
218 |
|
|
|
219 |
|
|
static uchar read_1_byte(struct IN2000_hostdata *hostdata)
|
220 |
|
|
{
|
221 |
|
|
uchar asr, x = 0;
|
222 |
|
|
|
223 |
|
|
write_3393(hostdata,WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
|
224 |
|
|
write_3393_cmd(hostdata,WD_CMD_TRANS_INFO|0x80);
|
225 |
|
|
do {
|
226 |
|
|
asr = READ_AUX_STAT();
|
227 |
|
|
if (asr & ASR_DBR)
|
228 |
|
|
x = read_3393(hostdata,WD_DATA);
|
229 |
|
|
} while (!(asr & ASR_INT));
|
230 |
|
|
return x;
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
|
234 |
|
|
static void write_3393_count(struct IN2000_hostdata *hostdata, unsigned long value)
|
235 |
|
|
{
|
236 |
|
|
write1_io(WD_TRANSFER_COUNT_MSB,IO_WD_ADDR);
|
237 |
|
|
write1_io((value >> 16),IO_WD_DATA);
|
238 |
|
|
write1_io((value >> 8),IO_WD_DATA);
|
239 |
|
|
write1_io(value,IO_WD_DATA);
|
240 |
|
|
}
|
241 |
|
|
|
242 |
|
|
|
243 |
|
|
static unsigned long read_3393_count(struct IN2000_hostdata *hostdata)
|
244 |
|
|
{
|
245 |
|
|
unsigned long value;
|
246 |
|
|
|
247 |
|
|
write1_io(WD_TRANSFER_COUNT_MSB,IO_WD_ADDR);
|
248 |
|
|
value = read1_io(IO_WD_DATA) << 16;
|
249 |
|
|
value |= read1_io(IO_WD_DATA) << 8;
|
250 |
|
|
value |= read1_io(IO_WD_DATA);
|
251 |
|
|
return value;
|
252 |
|
|
}
|
253 |
|
|
|
254 |
|
|
|
255 |
|
|
/* The 33c93 needs to be told which direction a command transfers its
|
256 |
|
|
* data; we use this function to figure it out. Returns true if there
|
257 |
|
|
* will be a DATA_OUT phase with this command, false otherwise.
|
258 |
|
|
* (Thanks to Joerg Dorchain for the research and suggestion.)
|
259 |
|
|
*/
|
260 |
|
|
static int is_dir_out(Scsi_Cmnd *cmd)
|
261 |
|
|
{
|
262 |
|
|
switch (cmd->cmnd[0]) {
|
263 |
|
|
case WRITE_6: case WRITE_10: case WRITE_12:
|
264 |
|
|
case WRITE_LONG: case WRITE_SAME: case WRITE_BUFFER:
|
265 |
|
|
case WRITE_VERIFY: case WRITE_VERIFY_12:
|
266 |
|
|
case COMPARE: case COPY: case COPY_VERIFY:
|
267 |
|
|
case SEARCH_EQUAL: case SEARCH_HIGH: case SEARCH_LOW:
|
268 |
|
|
case SEARCH_EQUAL_12: case SEARCH_HIGH_12: case SEARCH_LOW_12:
|
269 |
|
|
case FORMAT_UNIT: case REASSIGN_BLOCKS: case RESERVE:
|
270 |
|
|
case MODE_SELECT: case MODE_SELECT_10: case LOG_SELECT:
|
271 |
|
|
case SEND_DIAGNOSTIC: case CHANGE_DEFINITION: case UPDATE_BLOCK:
|
272 |
|
|
case SET_WINDOW: case MEDIUM_SCAN: case SEND_VOLUME_TAG:
|
273 |
|
|
case 0xea:
|
274 |
|
|
return 1;
|
275 |
|
|
default:
|
276 |
|
|
return 0;
|
277 |
|
|
}
|
278 |
|
|
}
|
279 |
|
|
|
280 |
|
|
|
281 |
|
|
|
282 |
|
|
static struct sx_period sx_table[] = {
|
283 |
|
|
{ 1, 0x20},
|
284 |
|
|
{252, 0x20},
|
285 |
|
|
{376, 0x30},
|
286 |
|
|
{500, 0x40},
|
287 |
|
|
{624, 0x50},
|
288 |
|
|
{752, 0x60},
|
289 |
|
|
{876, 0x70},
|
290 |
|
|
{1000,0x00},
|
291 |
|
|
{0, 0} };
|
292 |
|
|
|
293 |
|
|
static int round_period(unsigned int period)
|
294 |
|
|
{
|
295 |
|
|
int x;
|
296 |
|
|
|
297 |
|
|
for (x=1; sx_table[x].period_ns; x++) {
|
298 |
|
|
if ((period <= sx_table[x-0].period_ns) &&
|
299 |
|
|
(period > sx_table[x-1].period_ns)) {
|
300 |
|
|
return x;
|
301 |
|
|
}
|
302 |
|
|
}
|
303 |
|
|
return 7;
|
304 |
|
|
}
|
305 |
|
|
|
306 |
|
|
static uchar calc_sync_xfer(unsigned int period, unsigned int offset)
|
307 |
|
|
{
|
308 |
|
|
uchar result;
|
309 |
|
|
|
310 |
|
|
period *= 4; /* convert SDTR code to ns */
|
311 |
|
|
result = sx_table[round_period(period)].reg_value;
|
312 |
|
|
result |= (offset < OPTIMUM_SX_OFF)?offset:OPTIMUM_SX_OFF;
|
313 |
|
|
return result;
|
314 |
|
|
}
|
315 |
|
|
|
316 |
|
|
|
317 |
|
|
|
318 |
|
|
static void in2000_execute(struct Scsi_Host *instance);
|
319 |
|
|
|
320 |
|
|
int in2000_queuecommand (Scsi_Cmnd *cmd, void (*done)(Scsi_Cmnd *))
|
321 |
|
|
{
|
322 |
|
|
struct IN2000_hostdata *hostdata;
|
323 |
|
|
Scsi_Cmnd *tmp;
|
324 |
|
|
unsigned long flags;
|
325 |
|
|
|
326 |
|
|
hostdata = (struct IN2000_hostdata *)cmd->host->hostdata;
|
327 |
|
|
|
328 |
|
|
DB(DB_QUEUE_COMMAND,printk("Q-%d-%02x-%ld(",cmd->target,cmd->cmnd[0],cmd->pid))
|
329 |
|
|
|
330 |
|
|
/* Set up a few fields in the Scsi_Cmnd structure for our own use:
|
331 |
|
|
* - host_scribble is the pointer to the next cmd in the input queue
|
332 |
|
|
* - scsi_done points to the routine we call when a cmd is finished
|
333 |
|
|
* - result is what you'd expect
|
334 |
|
|
*/
|
335 |
|
|
|
336 |
|
|
cmd->host_scribble = NULL;
|
337 |
|
|
cmd->scsi_done = done;
|
338 |
|
|
cmd->result = 0;
|
339 |
|
|
|
340 |
|
|
/* We use the Scsi_Pointer structure that's included with each command
|
341 |
|
|
* as a scratchpad (as it's intended to be used!). The handy thing about
|
342 |
|
|
* the SCp.xxx fields is that they're always associated with a given
|
343 |
|
|
* cmd, and are preserved across disconnect-reselect. This means we
|
344 |
|
|
* can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages
|
345 |
|
|
* if we keep all the critical pointers and counters in SCp:
|
346 |
|
|
* - SCp.ptr is the pointer into the RAM buffer
|
347 |
|
|
* - SCp.this_residual is the size of that buffer
|
348 |
|
|
* - SCp.buffer points to the current scatter-gather buffer
|
349 |
|
|
* - SCp.buffers_residual tells us how many S.G. buffers there are
|
350 |
|
|
* - SCp.have_data_in helps keep track of >2048 byte transfers
|
351 |
|
|
* - SCp.sent_command is not used
|
352 |
|
|
* - SCp.phase records this command's SRCID_ER bit setting
|
353 |
|
|
*/
|
354 |
|
|
|
355 |
|
|
if (cmd->use_sg) {
|
356 |
|
|
cmd->SCp.buffer = (struct scatterlist *)cmd->buffer;
|
357 |
|
|
cmd->SCp.buffers_residual = cmd->use_sg - 1;
|
358 |
|
|
cmd->SCp.ptr = (char *)cmd->SCp.buffer->address;
|
359 |
|
|
cmd->SCp.this_residual = cmd->SCp.buffer->length;
|
360 |
|
|
}
|
361 |
|
|
else {
|
362 |
|
|
cmd->SCp.buffer = NULL;
|
363 |
|
|
cmd->SCp.buffers_residual = 0;
|
364 |
|
|
cmd->SCp.ptr = (char *)cmd->request_buffer;
|
365 |
|
|
cmd->SCp.this_residual = cmd->request_bufflen;
|
366 |
|
|
}
|
367 |
|
|
cmd->SCp.have_data_in = 0;
|
368 |
|
|
|
369 |
|
|
/* We don't set SCp.phase here - that's done in in2000_execute() */
|
370 |
|
|
|
371 |
|
|
/* WD docs state that at the conclusion of a "LEVEL2" command, the
|
372 |
|
|
* status byte can be retrieved from the LUN register. Apparently,
|
373 |
|
|
* this is the case only for *uninterrupted* LEVEL2 commands! If
|
374 |
|
|
* there are any unexpected phases entered, even if they are 100%
|
375 |
|
|
* legal (different devices may choose to do things differently),
|
376 |
|
|
* the LEVEL2 command sequence is exited. This often occurs prior
|
377 |
|
|
* to receiving the status byte, in which case the driver does a
|
378 |
|
|
* status phase interrupt and gets the status byte on its own.
|
379 |
|
|
* While such a command can then be "resumed" (ie restarted to
|
380 |
|
|
* finish up as a LEVEL2 command), the LUN register will NOT be
|
381 |
|
|
* a valid status byte at the command's conclusion, and we must
|
382 |
|
|
* use the byte obtained during the earlier interrupt. Here, we
|
383 |
|
|
* preset SCp.Status to an illegal value (0xff) so that when
|
384 |
|
|
* this command finally completes, we can tell where the actual
|
385 |
|
|
* status byte is stored.
|
386 |
|
|
*/
|
387 |
|
|
|
388 |
|
|
cmd->SCp.Status = ILLEGAL_STATUS_BYTE;
|
389 |
|
|
|
390 |
|
|
/* We need to disable interrupts before messing with the input
|
391 |
|
|
* queue and calling in2000_execute().
|
392 |
|
|
*/
|
393 |
|
|
|
394 |
|
|
save_flags(flags);
|
395 |
|
|
cli();
|
396 |
|
|
|
397 |
|
|
/*
|
398 |
|
|
* Add the cmd to the end of 'input_Q'. Note that REQUEST_SENSE
|
399 |
|
|
* commands are added to the head of the queue so that the desired
|
400 |
|
|
* sense data is not lost before REQUEST_SENSE executes.
|
401 |
|
|
*/
|
402 |
|
|
|
403 |
|
|
if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) {
|
404 |
|
|
cmd->host_scribble = (uchar *)hostdata->input_Q;
|
405 |
|
|
hostdata->input_Q = cmd;
|
406 |
|
|
}
|
407 |
|
|
else { /* find the end of the queue */
|
408 |
|
|
for (tmp=(Scsi_Cmnd *)hostdata->input_Q; tmp->host_scribble;
|
409 |
|
|
tmp=(Scsi_Cmnd *)tmp->host_scribble)
|
410 |
|
|
;
|
411 |
|
|
tmp->host_scribble = (uchar *)cmd;
|
412 |
|
|
}
|
413 |
|
|
|
414 |
|
|
/* We know that there's at least one command in 'input_Q' now.
|
415 |
|
|
* Go see if any of them are runnable!
|
416 |
|
|
*/
|
417 |
|
|
|
418 |
|
|
in2000_execute(cmd->host);
|
419 |
|
|
|
420 |
|
|
DB(DB_QUEUE_COMMAND,printk(")Q-%ld ",cmd->pid))
|
421 |
|
|
|
422 |
|
|
restore_flags(flags);
|
423 |
|
|
return 0;
|
424 |
|
|
}
|
425 |
|
|
|
426 |
|
|
|
427 |
|
|
|
428 |
|
|
/*
|
429 |
|
|
* This routine attempts to start a scsi command. If the host_card is
|
430 |
|
|
* already connected, we give up immediately. Otherwise, look through
|
431 |
|
|
* the input_Q, using the first command we find that's intended
|
432 |
|
|
* for a currently non-busy target/lun.
|
433 |
|
|
* Note that this function is always called with interrupts already
|
434 |
|
|
* disabled (either from in2000_queuecommand() or in2000_intr()).
|
435 |
|
|
*/
|
436 |
|
|
static void in2000_execute (struct Scsi_Host *instance)
|
437 |
|
|
{
|
438 |
|
|
struct IN2000_hostdata *hostdata;
|
439 |
|
|
Scsi_Cmnd *cmd, *prev;
|
440 |
|
|
int i;
|
441 |
|
|
unsigned short *sp;
|
442 |
|
|
unsigned short f;
|
443 |
|
|
unsigned short flushbuf[16];
|
444 |
|
|
|
445 |
|
|
|
446 |
|
|
hostdata = (struct IN2000_hostdata *)instance->hostdata;
|
447 |
|
|
|
448 |
|
|
DB(DB_EXECUTE,printk("EX("))
|
449 |
|
|
|
450 |
|
|
if (hostdata->selecting || hostdata->connected) {
|
451 |
|
|
|
452 |
|
|
DB(DB_EXECUTE,printk(")EX-0 "))
|
453 |
|
|
|
454 |
|
|
return;
|
455 |
|
|
}
|
456 |
|
|
|
457 |
|
|
/*
|
458 |
|
|
* Search through the input_Q for a command destined
|
459 |
|
|
* for an idle target/lun.
|
460 |
|
|
*/
|
461 |
|
|
|
462 |
|
|
cmd = (Scsi_Cmnd *)hostdata->input_Q;
|
463 |
|
|
prev = 0;
|
464 |
|
|
while (cmd) {
|
465 |
|
|
if (!(hostdata->busy[cmd->target] & (1 << cmd->lun)))
|
466 |
|
|
break;
|
467 |
|
|
prev = cmd;
|
468 |
|
|
cmd = (Scsi_Cmnd *)cmd->host_scribble;
|
469 |
|
|
}
|
470 |
|
|
|
471 |
|
|
/* quit if queue empty or all possible targets are busy */
|
472 |
|
|
|
473 |
|
|
if (!cmd) {
|
474 |
|
|
|
475 |
|
|
DB(DB_EXECUTE,printk(")EX-1 "))
|
476 |
|
|
|
477 |
|
|
return;
|
478 |
|
|
}
|
479 |
|
|
|
480 |
|
|
/* remove command from queue */
|
481 |
|
|
|
482 |
|
|
if (prev)
|
483 |
|
|
prev->host_scribble = cmd->host_scribble;
|
484 |
|
|
else
|
485 |
|
|
hostdata->input_Q = (Scsi_Cmnd *)cmd->host_scribble;
|
486 |
|
|
|
487 |
|
|
#ifdef PROC_STATISTICS
|
488 |
|
|
hostdata->cmd_cnt[cmd->target]++;
|
489 |
|
|
#endif
|
490 |
|
|
|
491 |
|
|
/*
|
492 |
|
|
* Start the selection process
|
493 |
|
|
*/
|
494 |
|
|
|
495 |
|
|
if (is_dir_out(cmd))
|
496 |
|
|
write_3393(hostdata,WD_DESTINATION_ID, cmd->target);
|
497 |
|
|
else
|
498 |
|
|
write_3393(hostdata,WD_DESTINATION_ID, cmd->target | DSTID_DPD);
|
499 |
|
|
|
500 |
|
|
/* Now we need to figure out whether or not this command is a good
|
501 |
|
|
* candidate for disconnect/reselect. We guess to the best of our
|
502 |
|
|
* ability, based on a set of hierarchical rules. When several
|
503 |
|
|
* devices are operating simultaneously, disconnects are usually
|
504 |
|
|
* an advantage. In a single device system, or if only 1 device
|
505 |
|
|
* is being accessed, transfers usually go faster if disconnects
|
506 |
|
|
* are not allowed:
|
507 |
|
|
*
|
508 |
|
|
* + Commands should NEVER disconnect if hostdata->disconnect =
|
509 |
|
|
* DIS_NEVER (this holds for tape drives also), and ALWAYS
|
510 |
|
|
* disconnect if hostdata->disconnect = DIS_ALWAYS.
|
511 |
|
|
* + Tape drive commands should always be allowed to disconnect.
|
512 |
|
|
* + Disconnect should be allowed if disconnected_Q isn't empty.
|
513 |
|
|
* + Commands should NOT disconnect if input_Q is empty.
|
514 |
|
|
* + Disconnect should be allowed if there are commands in input_Q
|
515 |
|
|
* for a different target/lun. In this case, the other commands
|
516 |
|
|
* should be made disconnect-able, if not already.
|
517 |
|
|
*
|
518 |
|
|
* I know, I know - this code would flunk me out of any
|
519 |
|
|
* "C Programming 101" class ever offered. But it's easy
|
520 |
|
|
* to change around and experiment with for now.
|
521 |
|
|
*/
|
522 |
|
|
|
523 |
|
|
cmd->SCp.phase = 0; /* assume no disconnect */
|
524 |
|
|
if (hostdata->disconnect == DIS_NEVER)
|
525 |
|
|
goto no;
|
526 |
|
|
if (hostdata->disconnect == DIS_ALWAYS)
|
527 |
|
|
goto yes;
|
528 |
|
|
if (cmd->device->type == 1) /* tape drive? */
|
529 |
|
|
goto yes;
|
530 |
|
|
if (hostdata->disconnected_Q) /* other commands disconnected? */
|
531 |
|
|
goto yes;
|
532 |
|
|
if (!(hostdata->input_Q)) /* input_Q empty? */
|
533 |
|
|
goto no;
|
534 |
|
|
for (prev=(Scsi_Cmnd *)hostdata->input_Q; prev;
|
535 |
|
|
prev=(Scsi_Cmnd *)prev->host_scribble) {
|
536 |
|
|
if ((prev->target != cmd->target) || (prev->lun != cmd->lun)) {
|
537 |
|
|
for (prev=(Scsi_Cmnd *)hostdata->input_Q; prev;
|
538 |
|
|
prev=(Scsi_Cmnd *)prev->host_scribble)
|
539 |
|
|
prev->SCp.phase = 1;
|
540 |
|
|
goto yes;
|
541 |
|
|
}
|
542 |
|
|
}
|
543 |
|
|
goto no;
|
544 |
|
|
|
545 |
|
|
yes:
|
546 |
|
|
cmd->SCp.phase = 1;
|
547 |
|
|
|
548 |
|
|
#ifdef PROC_STATISTICS
|
549 |
|
|
hostdata->disc_allowed_cnt[cmd->target]++;
|
550 |
|
|
#endif
|
551 |
|
|
|
552 |
|
|
no:
|
553 |
|
|
write_3393(hostdata,WD_SOURCE_ID,((cmd->SCp.phase)?SRCID_ER:0));
|
554 |
|
|
|
555 |
|
|
write_3393(hostdata,WD_TARGET_LUN, cmd->lun);
|
556 |
|
|
write_3393(hostdata,WD_SYNCHRONOUS_TRANSFER,hostdata->sync_xfer[cmd->target]);
|
557 |
|
|
hostdata->busy[cmd->target] |= (1 << cmd->lun);
|
558 |
|
|
|
559 |
|
|
if ((hostdata->level2 <= L2_NONE) ||
|
560 |
|
|
(hostdata->sync_stat[cmd->target] == SS_UNSET)) {
|
561 |
|
|
|
562 |
|
|
/*
|
563 |
|
|
* Do a 'Select-With-ATN' command. This will end with
|
564 |
|
|
* one of the following interrupts:
|
565 |
|
|
* CSR_RESEL_AM: failure - can try again later.
|
566 |
|
|
* CSR_TIMEOUT: failure - give up.
|
567 |
|
|
* CSR_SELECT: success - proceed.
|
568 |
|
|
*/
|
569 |
|
|
|
570 |
|
|
hostdata->selecting = cmd;
|
571 |
|
|
|
572 |
|
|
/* Every target has its own synchronous transfer setting, kept in
|
573 |
|
|
* the sync_xfer array, and a corresponding status byte in sync_stat[].
|
574 |
|
|
* Each target's sync_stat[] entry is initialized to SS_UNSET, and its
|
575 |
|
|
* sync_xfer[] entry is initialized to the default/safe value. SS_UNSET
|
576 |
|
|
* means that the parameters are undetermined as yet, and that we
|
577 |
|
|
* need to send an SDTR message to this device after selection is
|
578 |
|
|
* complete. We set SS_FIRST to tell the interrupt routine to do so,
|
579 |
|
|
* unless we don't want to even _try_ synchronous transfers: In this
|
580 |
|
|
* case we set SS_SET to make the defaults final.
|
581 |
|
|
*/
|
582 |
|
|
if (hostdata->sync_stat[cmd->target] == SS_UNSET) {
|
583 |
|
|
if (hostdata->sync_off & (1 << cmd->target))
|
584 |
|
|
hostdata->sync_stat[cmd->target] = SS_SET;
|
585 |
|
|
else
|
586 |
|
|
hostdata->sync_stat[cmd->target] = SS_FIRST;
|
587 |
|
|
}
|
588 |
|
|
hostdata->state = S_SELECTING;
|
589 |
|
|
write_3393_count(hostdata,0); /* this guarantees a DATA_PHASE interrupt */
|
590 |
|
|
write_3393_cmd(hostdata,WD_CMD_SEL_ATN);
|
591 |
|
|
}
|
592 |
|
|
|
593 |
|
|
else {
|
594 |
|
|
|
595 |
|
|
/*
|
596 |
|
|
* Do a 'Select-With-ATN-Xfer' command. This will end with
|
597 |
|
|
* one of the following interrupts:
|
598 |
|
|
* CSR_RESEL_AM: failure - can try again later.
|
599 |
|
|
* CSR_TIMEOUT: failure - give up.
|
600 |
|
|
* anything else: success - proceed.
|
601 |
|
|
*/
|
602 |
|
|
|
603 |
|
|
hostdata->connected = cmd;
|
604 |
|
|
write_3393(hostdata,WD_COMMAND_PHASE, 0);
|
605 |
|
|
|
606 |
|
|
/* copy command_descriptor_block into WD chip
|
607 |
|
|
* (take advantage of auto-incrementing)
|
608 |
|
|
*/
|
609 |
|
|
|
610 |
|
|
write1_io(WD_CDB_1, IO_WD_ADDR);
|
611 |
|
|
for (i=0; i<cmd->cmd_len; i++)
|
612 |
|
|
write1_io(cmd->cmnd[i], IO_WD_DATA);
|
613 |
|
|
|
614 |
|
|
/* The wd33c93 only knows about Group 0, 1, and 5 commands when
|
615 |
|
|
* it's doing a 'select-and-transfer'. To be safe, we write the
|
616 |
|
|
* size of the CDB into the OWN_ID register for every case. This
|
617 |
|
|
* way there won't be problems with vendor-unique, audio, etc.
|
618 |
|
|
*/
|
619 |
|
|
|
620 |
|
|
write_3393(hostdata, WD_OWN_ID, cmd->cmd_len);
|
621 |
|
|
|
622 |
|
|
/* When doing a non-disconnect command, we can save ourselves a DATA
|
623 |
|
|
* phase interrupt later by setting everything up now. With writes we
|
624 |
|
|
* need to pre-fill the fifo; if there's room for the 32 flush bytes,
|
625 |
|
|
* put them in there too - that'll avoid a fifo interrupt. Reads are
|
626 |
|
|
* somewhat simpler.
|
627 |
|
|
* KLUDGE NOTE: It seems that you can't completely fill the fifo here:
|
628 |
|
|
* This results in the IO_FIFO_COUNT register rolling over to zero,
|
629 |
|
|
* and apparently the gate array logic sees this as empty, not full,
|
630 |
|
|
* so the 3393 chip is never signalled to start reading from the
|
631 |
|
|
* fifo. Or maybe it's seen as a permanent fifo interrupt condition.
|
632 |
|
|
* Regardless, we fix this by temporarily pretending that the fifo
|
633 |
|
|
* is 16 bytes smaller. (I see now that the old driver has a comment
|
634 |
|
|
* about "don't fill completely" in an analogous place - must be the
|
635 |
|
|
* same deal.) This results in CDROM, swap partitions, and tape drives
|
636 |
|
|
* needing an extra interrupt per write command - I think we can live
|
637 |
|
|
* with that!
|
638 |
|
|
*/
|
639 |
|
|
|
640 |
|
|
if (!(cmd->SCp.phase)) {
|
641 |
|
|
write_3393_count(hostdata, cmd->SCp.this_residual);
|
642 |
|
|
write_3393(hostdata,WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS);
|
643 |
|
|
write1_io(0, IO_FIFO_WRITE); /* clear fifo counter, write mode */
|
644 |
|
|
|
645 |
|
|
if (is_dir_out(cmd)) {
|
646 |
|
|
hostdata->fifo = FI_FIFO_WRITING;
|
647 |
|
|
if ((i = cmd->SCp.this_residual) > (IN2000_FIFO_SIZE - 16) )
|
648 |
|
|
i = IN2000_FIFO_SIZE - 16;
|
649 |
|
|
cmd->SCp.have_data_in = i; /* this much data in fifo */
|
650 |
|
|
i >>= 1; /* Gulp. Assuming modulo 2. */
|
651 |
|
|
sp = (unsigned short *)cmd->SCp.ptr;
|
652 |
|
|
f = hostdata->io_base + IO_FIFO;
|
653 |
|
|
|
654 |
|
|
#ifdef FAST_WRITE_IO
|
655 |
|
|
|
656 |
|
|
FAST_WRITE2_IO();
|
657 |
|
|
#else
|
658 |
|
|
while (i--)
|
659 |
|
|
write2_io(*sp++,IO_FIFO);
|
660 |
|
|
|
661 |
|
|
#endif
|
662 |
|
|
|
663 |
|
|
/* Is there room for the flush bytes? */
|
664 |
|
|
|
665 |
|
|
if (cmd->SCp.have_data_in <= ((IN2000_FIFO_SIZE - 16) - 32)) {
|
666 |
|
|
sp = flushbuf;
|
667 |
|
|
i = 16;
|
668 |
|
|
|
669 |
|
|
#ifdef FAST_WRITE_IO
|
670 |
|
|
|
671 |
|
|
FAST_WRITE2_IO();
|
672 |
|
|
#else
|
673 |
|
|
while (i--)
|
674 |
|
|
write2_io(0,IO_FIFO);
|
675 |
|
|
|
676 |
|
|
#endif
|
677 |
|
|
|
678 |
|
|
}
|
679 |
|
|
}
|
680 |
|
|
|
681 |
|
|
else {
|
682 |
|
|
write1_io(0, IO_FIFO_READ); /* put fifo in read mode */
|
683 |
|
|
hostdata->fifo = FI_FIFO_READING;
|
684 |
|
|
cmd->SCp.have_data_in = 0; /* nothing transfered yet */
|
685 |
|
|
}
|
686 |
|
|
|
687 |
|
|
}
|
688 |
|
|
else {
|
689 |
|
|
write_3393_count(hostdata,0); /* this guarantees a DATA_PHASE interrupt */
|
690 |
|
|
}
|
691 |
|
|
hostdata->state = S_RUNNING_LEVEL2;
|
692 |
|
|
write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER);
|
693 |
|
|
}
|
694 |
|
|
|
695 |
|
|
/*
|
696 |
|
|
* Since the SCSI bus can handle only 1 connection at a time,
|
697 |
|
|
* we get out of here now. If the selection fails, or when
|
698 |
|
|
* the command disconnects, we'll come back to this routine
|
699 |
|
|
* to search the input_Q again...
|
700 |
|
|
*/
|
701 |
|
|
|
702 |
|
|
DB(DB_EXECUTE,printk("%s%ld)EX-2 ",(cmd->SCp.phase)?"d:":"",cmd->pid))
|
703 |
|
|
|
704 |
|
|
}
|
705 |
|
|
|
706 |
|
|
|
707 |
|
|
|
708 |
|
|
static void transfer_pio(uchar *buf, int cnt,
|
709 |
|
|
int data_in_dir, struct IN2000_hostdata *hostdata)
|
710 |
|
|
{
|
711 |
|
|
uchar asr;
|
712 |
|
|
|
713 |
|
|
DB(DB_TRANSFER,printk("(%p,%d,%s)",buf,cnt,data_in_dir?"in":"out"))
|
714 |
|
|
|
715 |
|
|
write_3393(hostdata,WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
|
716 |
|
|
write_3393_count(hostdata,cnt);
|
717 |
|
|
write_3393_cmd(hostdata,WD_CMD_TRANS_INFO);
|
718 |
|
|
if (data_in_dir) {
|
719 |
|
|
do {
|
720 |
|
|
asr = READ_AUX_STAT();
|
721 |
|
|
if (asr & ASR_DBR)
|
722 |
|
|
*buf++ = read_3393(hostdata,WD_DATA);
|
723 |
|
|
} while (!(asr & ASR_INT));
|
724 |
|
|
}
|
725 |
|
|
else {
|
726 |
|
|
do {
|
727 |
|
|
asr = READ_AUX_STAT();
|
728 |
|
|
if (asr & ASR_DBR)
|
729 |
|
|
write_3393(hostdata,WD_DATA, *buf++);
|
730 |
|
|
} while (!(asr & ASR_INT));
|
731 |
|
|
}
|
732 |
|
|
|
733 |
|
|
/* Note: we are returning with the interrupt UN-cleared.
|
734 |
|
|
* Since (presumably) an entire I/O operation has
|
735 |
|
|
* completed, the bus phase is probably different, and
|
736 |
|
|
* the interrupt routine will discover this when it
|
737 |
|
|
* responds to the uncleared int.
|
738 |
|
|
*/
|
739 |
|
|
|
740 |
|
|
}
|
741 |
|
|
|
742 |
|
|
|
743 |
|
|
|
744 |
|
|
static void transfer_bytes(Scsi_Cmnd *cmd, int data_in_dir)
|
745 |
|
|
{
|
746 |
|
|
struct IN2000_hostdata *hostdata;
|
747 |
|
|
unsigned short *sp;
|
748 |
|
|
unsigned short f;
|
749 |
|
|
int i;
|
750 |
|
|
|
751 |
|
|
hostdata = (struct IN2000_hostdata *)cmd->host->hostdata;
|
752 |
|
|
|
753 |
|
|
/* Normally, you'd expect 'this_residual' to be non-zero here.
|
754 |
|
|
* In a series of scatter-gather transfers, however, this
|
755 |
|
|
* routine will usually be called with 'this_residual' equal
|
756 |
|
|
* to 0 and 'buffers_residual' non-zero. This means that a
|
757 |
|
|
* previous transfer completed, clearing 'this_residual', and
|
758 |
|
|
* now we need to setup the next scatter-gather buffer as the
|
759 |
|
|
* source or destination for THIS transfer.
|
760 |
|
|
*/
|
761 |
|
|
if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) {
|
762 |
|
|
++cmd->SCp.buffer;
|
763 |
|
|
--cmd->SCp.buffers_residual;
|
764 |
|
|
cmd->SCp.this_residual = cmd->SCp.buffer->length;
|
765 |
|
|
cmd->SCp.ptr = cmd->SCp.buffer->address;
|
766 |
|
|
}
|
767 |
|
|
|
768 |
|
|
/* Set up hardware registers */
|
769 |
|
|
|
770 |
|
|
write_3393(hostdata,WD_SYNCHRONOUS_TRANSFER,hostdata->sync_xfer[cmd->target]);
|
771 |
|
|
write_3393_count(hostdata,cmd->SCp.this_residual);
|
772 |
|
|
write_3393(hostdata,WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS);
|
773 |
|
|
write1_io(0,IO_FIFO_WRITE); /* zero counter, assume write */
|
774 |
|
|
|
775 |
|
|
/* Reading is easy. Just issue the command and return - we'll
|
776 |
|
|
* get an interrupt later when we have actual data to worry about.
|
777 |
|
|
*/
|
778 |
|
|
|
779 |
|
|
if (data_in_dir) {
|
780 |
|
|
write1_io(0,IO_FIFO_READ);
|
781 |
|
|
if ((hostdata->level2 >= L2_DATA) ||
|
782 |
|
|
(hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
|
783 |
|
|
write_3393(hostdata,WD_COMMAND_PHASE,0x45);
|
784 |
|
|
write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER);
|
785 |
|
|
hostdata->state = S_RUNNING_LEVEL2;
|
786 |
|
|
}
|
787 |
|
|
else
|
788 |
|
|
write_3393_cmd(hostdata,WD_CMD_TRANS_INFO);
|
789 |
|
|
hostdata->fifo = FI_FIFO_READING;
|
790 |
|
|
cmd->SCp.have_data_in = 0;
|
791 |
|
|
return;
|
792 |
|
|
}
|
793 |
|
|
|
794 |
|
|
/* Writing is more involved - we'll start the WD chip and write as
|
795 |
|
|
* much data to the fifo as we can right now. Later interrupts will
|
796 |
|
|
* write any bytes that don't make it at this stage.
|
797 |
|
|
*/
|
798 |
|
|
|
799 |
|
|
if ((hostdata->level2 >= L2_DATA) ||
|
800 |
|
|
(hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
|
801 |
|
|
write_3393(hostdata,WD_COMMAND_PHASE,0x45);
|
802 |
|
|
write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER);
|
803 |
|
|
hostdata->state = S_RUNNING_LEVEL2;
|
804 |
|
|
}
|
805 |
|
|
else
|
806 |
|
|
write_3393_cmd(hostdata,WD_CMD_TRANS_INFO);
|
807 |
|
|
hostdata->fifo = FI_FIFO_WRITING;
|
808 |
|
|
sp = (unsigned short *)cmd->SCp.ptr;
|
809 |
|
|
|
810 |
|
|
if ((i = cmd->SCp.this_residual) > IN2000_FIFO_SIZE)
|
811 |
|
|
i = IN2000_FIFO_SIZE;
|
812 |
|
|
cmd->SCp.have_data_in = i;
|
813 |
|
|
i >>= 1; /* Gulp. We assume this_residual is modulo 2 */
|
814 |
|
|
f = hostdata->io_base + IO_FIFO;
|
815 |
|
|
|
816 |
|
|
#ifdef FAST_WRITE_IO
|
817 |
|
|
|
818 |
|
|
FAST_WRITE2_IO();
|
819 |
|
|
#else
|
820 |
|
|
while (i--)
|
821 |
|
|
write2_io(*sp++,IO_FIFO);
|
822 |
|
|
|
823 |
|
|
#endif
|
824 |
|
|
|
825 |
|
|
}
|
826 |
|
|
|
827 |
|
|
|
828 |
|
|
/* We need to use spin_lock_irqsave() & spin_unlock_irqrestore() in this
|
829 |
|
|
* function in order to work in an SMP environment. (I'd be surprised
|
830 |
|
|
* if the driver is ever used by anyone on a real multi-CPU motherboard,
|
831 |
|
|
* but it _does_ need to be able to compile and run in an SMP kernel.)
|
832 |
|
|
*/
|
833 |
|
|
|
834 |
|
|
static void in2000_intr (int irqnum, void * dev_id, struct pt_regs *ptregs)
|
835 |
|
|
{
|
836 |
|
|
struct Scsi_Host *instance;
|
837 |
|
|
struct IN2000_hostdata *hostdata;
|
838 |
|
|
Scsi_Cmnd *patch, *cmd;
|
839 |
|
|
uchar asr, sr, phs, id, lun, *ucp, msg;
|
840 |
|
|
int i,j;
|
841 |
|
|
unsigned long length;
|
842 |
|
|
unsigned short *sp;
|
843 |
|
|
unsigned short f;
|
844 |
|
|
unsigned long flags;
|
845 |
|
|
|
846 |
|
|
for (instance = instance_list; instance; instance = instance->next) {
|
847 |
|
|
if (instance->irq == irqnum)
|
848 |
|
|
break;
|
849 |
|
|
}
|
850 |
|
|
if (!instance) {
|
851 |
|
|
printk("*** Hmm... interrupts are screwed up! ***\n");
|
852 |
|
|
return;
|
853 |
|
|
}
|
854 |
|
|
hostdata = (struct IN2000_hostdata *)instance->hostdata;
|
855 |
|
|
|
856 |
|
|
/* Get the spin_lock and disable further ints, for SMP */
|
857 |
|
|
|
858 |
|
|
CLISPIN_LOCK(flags);
|
859 |
|
|
|
860 |
|
|
#ifdef PROC_STATISTICS
|
861 |
|
|
hostdata->int_cnt++;
|
862 |
|
|
#endif
|
863 |
|
|
|
864 |
|
|
/* The IN2000 card has 2 interrupt sources OR'ed onto its IRQ line - the
|
865 |
|
|
* WD3393 chip and the 2k fifo (which is actually a dual-port RAM combined
|
866 |
|
|
* with a big logic array, so it's a little different than what you might
|
867 |
|
|
* expect). As far as I know, there's no reason that BOTH can't be active
|
868 |
|
|
* at the same time, but there's a problem: while we can read the 3393
|
869 |
|
|
* to tell if _it_ wants an interrupt, I don't know of a way to ask the
|
870 |
|
|
* fifo the same question. The best we can do is check the 3393 and if
|
871 |
|
|
* it _isn't_ the source of the interrupt, then we can be pretty sure
|
872 |
|
|
* that the fifo is the culprit.
|
873 |
|
|
* UPDATE: I have it on good authority (Bill Earnest) that bit 0 of the
|
874 |
|
|
* IO_FIFO_COUNT register mirrors the fifo interrupt state. I
|
875 |
|
|
* assume that bit clear means interrupt active. As it turns
|
876 |
|
|
* out, the driver really doesn't need to check for this after
|
877 |
|
|
* all, so my remarks above about a 'problem' can safely be
|
878 |
|
|
* ignored. The way the logic is set up, there's no advantage
|
879 |
|
|
* (that I can see) to worrying about it.
|
880 |
|
|
*
|
881 |
|
|
* It seems that the fifo interrupt signal is negated when we extract
|
882 |
|
|
* bytes during read or write bytes during write.
|
883 |
|
|
* - fifo will interrupt when data is moving from it to the 3393, and
|
884 |
|
|
* there are 31 (or less?) bytes left to go. This is sort of short-
|
885 |
|
|
* sighted: what if you don't WANT to do more? In any case, our
|
886 |
|
|
* response is to push more into the fifo - either actual data or
|
887 |
|
|
* dummy bytes if need be. Note that we apparently have to write at
|
888 |
|
|
* least 32 additional bytes to the fifo after an interrupt in order
|
889 |
|
|
* to get it to release the ones it was holding on to - writing fewer
|
890 |
|
|
* than 32 will result in another fifo int.
|
891 |
|
|
* UPDATE: Again, info from Bill Earnest makes this more understandable:
|
892 |
|
|
* 32 bytes = two counts of the fifo counter register. He tells
|
893 |
|
|
* me that the fifo interrupt is a non-latching signal derived
|
894 |
|
|
* from a straightforward boolean interpretation of the 7
|
895 |
|
|
* highest bits of the fifo counter and the fifo-read/fifo-write
|
896 |
|
|
* state. Who'd a thought?
|
897 |
|
|
*/
|
898 |
|
|
|
899 |
|
|
write1_io(0, IO_LED_ON);
|
900 |
|
|
asr = READ_AUX_STAT();
|
901 |
|
|
if (!(asr & ASR_INT)) { /* no WD33c93 interrupt? */
|
902 |
|
|
|
903 |
|
|
/* Ok. This is definitely a FIFO-only interrupt.
|
904 |
|
|
*
|
905 |
|
|
* If FI_FIFO_READING is set, there are up to 2048 bytes waiting to be read,
|
906 |
|
|
* maybe more to come from the SCSI bus. Read as many as we can out of the
|
907 |
|
|
* fifo and into memory at the location of SCp.ptr[SCp.have_data_in], and
|
908 |
|
|
* update have_data_in afterwards.
|
909 |
|
|
*
|
910 |
|
|
* If we have FI_FIFO_WRITING, the FIFO has almost run out of bytes to move
|
911 |
|
|
* into the WD3393 chip (I think the interrupt happens when there are 31
|
912 |
|
|
* bytes left, but it may be fewer...). The 3393 is still waiting, so we
|
913 |
|
|
* shove some more into the fifo, which gets things moving again. If the
|
914 |
|
|
* original SCSI command specified more than 2048 bytes, there may still
|
915 |
|
|
* be some of that data left: fine - use it (from SCp.ptr[SCp.have_data_in]).
|
916 |
|
|
* Don't forget to update have_data_in. If we've already written out the
|
917 |
|
|
* entire buffer, feed 32 dummy bytes to the fifo - they're needed to
|
918 |
|
|
* push out the remaining real data.
|
919 |
|
|
* (Big thanks to Bill Earnest for getting me out of the mud in here.)
|
920 |
|
|
*/
|
921 |
|
|
|
922 |
|
|
cmd = (Scsi_Cmnd *)hostdata->connected; /* assume we're connected */
|
923 |
|
|
CHECK_NULL(cmd,"fifo_int")
|
924 |
|
|
|
925 |
|
|
if (hostdata->fifo == FI_FIFO_READING) {
|
926 |
|
|
|
927 |
|
|
DB(DB_FIFO,printk("{R:%02x} ",read1_io(IO_FIFO_COUNT)))
|
928 |
|
|
|
929 |
|
|
sp = (unsigned short *)(cmd->SCp.ptr + cmd->SCp.have_data_in);
|
930 |
|
|
i = read1_io(IO_FIFO_COUNT) & 0xfe;
|
931 |
|
|
i <<= 2; /* # of words waiting in the fifo */
|
932 |
|
|
f = hostdata->io_base + IO_FIFO;
|
933 |
|
|
|
934 |
|
|
#ifdef FAST_READ_IO
|
935 |
|
|
|
936 |
|
|
FAST_READ2_IO();
|
937 |
|
|
#else
|
938 |
|
|
while (i--)
|
939 |
|
|
*sp++ = read2_io(IO_FIFO);
|
940 |
|
|
|
941 |
|
|
#endif
|
942 |
|
|
|
943 |
|
|
i = sp - (unsigned short *)(cmd->SCp.ptr + cmd->SCp.have_data_in);
|
944 |
|
|
i <<= 1;
|
945 |
|
|
cmd->SCp.have_data_in += i;
|
946 |
|
|
}
|
947 |
|
|
|
948 |
|
|
else if (hostdata->fifo == FI_FIFO_WRITING) {
|
949 |
|
|
|
950 |
|
|
DB(DB_FIFO,printk("{W:%02x} ",read1_io(IO_FIFO_COUNT)))
|
951 |
|
|
|
952 |
|
|
/* If all bytes have been written to the fifo, flush out the stragglers.
|
953 |
|
|
* Note that while writing 16 dummy words seems arbitrary, we don't
|
954 |
|
|
* have another choice that I can see. What we really want is to read
|
955 |
|
|
* the 3393 transfer count register (that would tell us how many bytes
|
956 |
|
|
* needed flushing), but the TRANSFER_INFO command hasn't completed
|
957 |
|
|
* yet (not enough bytes!) and that register won't be accessible. So,
|
958 |
|
|
* we use 16 words - a number obtained through trial and error.
|
959 |
|
|
* UPDATE: Bill says this is exactly what Always does, so there.
|
960 |
|
|
* More thanks due him for help in this section.
|
961 |
|
|
*/
|
962 |
|
|
|
963 |
|
|
if (cmd->SCp.this_residual == cmd->SCp.have_data_in) {
|
964 |
|
|
i = 16;
|
965 |
|
|
while (i--) /* write 32 dummy bytes */
|
966 |
|
|
write2_io(0,IO_FIFO);
|
967 |
|
|
}
|
968 |
|
|
|
969 |
|
|
/* If there are still bytes left in the SCSI buffer, write as many as we
|
970 |
|
|
* can out to the fifo.
|
971 |
|
|
*/
|
972 |
|
|
|
973 |
|
|
else {
|
974 |
|
|
sp = (unsigned short *)(cmd->SCp.ptr + cmd->SCp.have_data_in);
|
975 |
|
|
i = cmd->SCp.this_residual - cmd->SCp.have_data_in; /* bytes yet to go */
|
976 |
|
|
j = read1_io(IO_FIFO_COUNT) & 0xfe;
|
977 |
|
|
j <<= 2; /* how many words the fifo has room for */
|
978 |
|
|
if ((j << 1) > i)
|
979 |
|
|
j = (i >> 1);
|
980 |
|
|
while (j--)
|
981 |
|
|
write2_io(*sp++,IO_FIFO);
|
982 |
|
|
|
983 |
|
|
i = sp - (unsigned short *)(cmd->SCp.ptr + cmd->SCp.have_data_in);
|
984 |
|
|
i <<= 1;
|
985 |
|
|
cmd->SCp.have_data_in += i;
|
986 |
|
|
}
|
987 |
|
|
}
|
988 |
|
|
|
989 |
|
|
else {
|
990 |
|
|
printk("*** Spurious FIFO interrupt ***");
|
991 |
|
|
}
|
992 |
|
|
|
993 |
|
|
write1_io(0, IO_LED_OFF);
|
994 |
|
|
|
995 |
|
|
/* release the SMP spin_lock and restore irq state */
|
996 |
|
|
CLISPIN_UNLOCK(flags);
|
997 |
|
|
return;
|
998 |
|
|
}
|
999 |
|
|
|
1000 |
|
|
/* This interrupt was triggered by the WD33c93 chip. The fifo interrupt
|
1001 |
|
|
* may also be asserted, but we don't bother to check it: we get more
|
1002 |
|
|
* detailed info from FIFO_READING and FIFO_WRITING (see below).
|
1003 |
|
|
*/
|
1004 |
|
|
|
1005 |
|
|
cmd = (Scsi_Cmnd *)hostdata->connected; /* assume we're connected */
|
1006 |
|
|
sr = read_3393(hostdata,WD_SCSI_STATUS); /* clear the interrupt */
|
1007 |
|
|
phs = read_3393(hostdata,WD_COMMAND_PHASE);
|
1008 |
|
|
|
1009 |
|
|
if (!cmd && (sr != CSR_RESEL_AM && sr != CSR_TIMEOUT && sr != CSR_SELECT)) {
|
1010 |
|
|
printk("\nNR:wd-intr-1\n");
|
1011 |
|
|
write1_io(0, IO_LED_OFF);
|
1012 |
|
|
|
1013 |
|
|
/* release the SMP spin_lock and restore irq state */
|
1014 |
|
|
CLISPIN_UNLOCK(flags);
|
1015 |
|
|
return;
|
1016 |
|
|
}
|
1017 |
|
|
|
1018 |
|
|
DB(DB_INTR,printk("{%02x:%02x-",asr,sr))
|
1019 |
|
|
|
1020 |
|
|
/* After starting a FIFO-based transfer, the next _WD3393_ interrupt is
|
1021 |
|
|
* guaranteed to be in response to the completion of the transfer.
|
1022 |
|
|
* If we were reading, there's probably data in the fifo that needs
|
1023 |
|
|
* to be copied into RAM - do that here. Also, we have to update
|
1024 |
|
|
* 'this_residual' and 'ptr' based on the contents of the
|
1025 |
|
|
* TRANSFER_COUNT register, in case the device decided to do an
|
1026 |
|
|
* intermediate disconnect (a device may do this if it has to
|
1027 |
|
|
* do a seek, or just to be nice and let other devices have
|
1028 |
|
|
* some bus time during long transfers).
|
1029 |
|
|
* After doing whatever is necessary with the fifo, we go on and
|
1030 |
|
|
* service the WD3393 interrupt normally.
|
1031 |
|
|
*/
|
1032 |
|
|
|
1033 |
|
|
if (hostdata->fifo == FI_FIFO_READING) {
|
1034 |
|
|
|
1035 |
|
|
/* buffer index = start-of-buffer + #-of-bytes-already-read */
|
1036 |
|
|
|
1037 |
|
|
sp = (unsigned short *)(cmd->SCp.ptr + cmd->SCp.have_data_in);
|
1038 |
|
|
|
1039 |
|
|
/* bytes remaining in fifo = (total-wanted - #-not-got) - #-already-read */
|
1040 |
|
|
|
1041 |
|
|
i = (cmd->SCp.this_residual - read_3393_count(hostdata)) - cmd->SCp.have_data_in;
|
1042 |
|
|
i >>= 1; /* Gulp. We assume this will always be modulo 2 */
|
1043 |
|
|
f = hostdata->io_base + IO_FIFO;
|
1044 |
|
|
|
1045 |
|
|
#ifdef FAST_READ_IO
|
1046 |
|
|
|
1047 |
|
|
FAST_READ2_IO();
|
1048 |
|
|
#else
|
1049 |
|
|
while (i--)
|
1050 |
|
|
*sp++ = read2_io(IO_FIFO);
|
1051 |
|
|
|
1052 |
|
|
#endif
|
1053 |
|
|
|
1054 |
|
|
hostdata->fifo = FI_FIFO_UNUSED;
|
1055 |
|
|
length = cmd->SCp.this_residual;
|
1056 |
|
|
cmd->SCp.this_residual = read_3393_count(hostdata);
|
1057 |
|
|
cmd->SCp.ptr += (length - cmd->SCp.this_residual);
|
1058 |
|
|
|
1059 |
|
|
DB(DB_TRANSFER,printk("(%p,%d)",cmd->SCp.ptr,cmd->SCp.this_residual))
|
1060 |
|
|
|
1061 |
|
|
}
|
1062 |
|
|
|
1063 |
|
|
else if (hostdata->fifo == FI_FIFO_WRITING) {
|
1064 |
|
|
hostdata->fifo = FI_FIFO_UNUSED;
|
1065 |
|
|
length = cmd->SCp.this_residual;
|
1066 |
|
|
cmd->SCp.this_residual = read_3393_count(hostdata);
|
1067 |
|
|
cmd->SCp.ptr += (length - cmd->SCp.this_residual);
|
1068 |
|
|
|
1069 |
|
|
DB(DB_TRANSFER,printk("(%p,%d)",cmd->SCp.ptr,cmd->SCp.this_residual))
|
1070 |
|
|
|
1071 |
|
|
}
|
1072 |
|
|
|
1073 |
|
|
/* Respond to the specific WD3393 interrupt - there are quite a few! */
|
1074 |
|
|
|
1075 |
|
|
switch (sr) {
|
1076 |
|
|
|
1077 |
|
|
case CSR_TIMEOUT:
|
1078 |
|
|
DB(DB_INTR,printk("TIMEOUT"))
|
1079 |
|
|
|
1080 |
|
|
if (hostdata->state == S_RUNNING_LEVEL2)
|
1081 |
|
|
hostdata->connected = NULL;
|
1082 |
|
|
else {
|
1083 |
|
|
cmd = (Scsi_Cmnd *)hostdata->selecting; /* get a valid cmd */
|
1084 |
|
|
CHECK_NULL(cmd,"csr_timeout")
|
1085 |
|
|
hostdata->selecting = NULL;
|
1086 |
|
|
}
|
1087 |
|
|
|
1088 |
|
|
cmd->result = DID_NO_CONNECT << 16;
|
1089 |
|
|
hostdata->busy[cmd->target] &= ~(1 << cmd->lun);
|
1090 |
|
|
hostdata->state = S_UNCONNECTED;
|
1091 |
|
|
cmd->scsi_done(cmd);
|
1092 |
|
|
|
1093 |
|
|
/* We are not connected to a target - check to see if there
|
1094 |
|
|
* are commands waiting to be executed.
|
1095 |
|
|
*/
|
1096 |
|
|
|
1097 |
|
|
in2000_execute(instance);
|
1098 |
|
|
break;
|
1099 |
|
|
|
1100 |
|
|
|
1101 |
|
|
/* Note: this interrupt should not occur in a LEVEL2 command */
|
1102 |
|
|
|
1103 |
|
|
case CSR_SELECT:
|
1104 |
|
|
DB(DB_INTR,printk("SELECT"))
|
1105 |
|
|
hostdata->connected = cmd = (Scsi_Cmnd *)hostdata->selecting;
|
1106 |
|
|
CHECK_NULL(cmd,"csr_select")
|
1107 |
|
|
hostdata->selecting = NULL;
|
1108 |
|
|
|
1109 |
|
|
/* construct an IDENTIFY message with correct disconnect bit */
|
1110 |
|
|
|
1111 |
|
|
hostdata->outgoing_msg[0] = (0x80 | 0x00 | cmd->lun);
|
1112 |
|
|
if (cmd->SCp.phase)
|
1113 |
|
|
hostdata->outgoing_msg[0] |= 0x40;
|
1114 |
|
|
|
1115 |
|
|
if (hostdata->sync_stat[cmd->target] == SS_FIRST) {
|
1116 |
|
|
#ifdef SYNC_DEBUG
|
1117 |
|
|
printk(" sending SDTR ");
|
1118 |
|
|
#endif
|
1119 |
|
|
|
1120 |
|
|
hostdata->sync_stat[cmd->target] = SS_WAITING;
|
1121 |
|
|
|
1122 |
|
|
/* tack on a 2nd message to ask about synchronous transfers */
|
1123 |
|
|
|
1124 |
|
|
hostdata->outgoing_msg[1] = EXTENDED_MESSAGE;
|
1125 |
|
|
hostdata->outgoing_msg[2] = 3;
|
1126 |
|
|
hostdata->outgoing_msg[3] = EXTENDED_SDTR;
|
1127 |
|
|
hostdata->outgoing_msg[4] = OPTIMUM_SX_PER/4;
|
1128 |
|
|
hostdata->outgoing_msg[5] = OPTIMUM_SX_OFF;
|
1129 |
|
|
hostdata->outgoing_len = 6;
|
1130 |
|
|
}
|
1131 |
|
|
else
|
1132 |
|
|
hostdata->outgoing_len = 1;
|
1133 |
|
|
|
1134 |
|
|
hostdata->state = S_CONNECTED;
|
1135 |
|
|
break;
|
1136 |
|
|
|
1137 |
|
|
|
1138 |
|
|
case CSR_XFER_DONE|PHS_DATA_IN:
|
1139 |
|
|
case CSR_UNEXP |PHS_DATA_IN:
|
1140 |
|
|
case CSR_SRV_REQ |PHS_DATA_IN:
|
1141 |
|
|
DB(DB_INTR,printk("IN-%d.%d",cmd->SCp.this_residual,cmd->SCp.buffers_residual))
|
1142 |
|
|
transfer_bytes(cmd, DATA_IN_DIR);
|
1143 |
|
|
if (hostdata->state != S_RUNNING_LEVEL2)
|
1144 |
|
|
hostdata->state = S_CONNECTED;
|
1145 |
|
|
break;
|
1146 |
|
|
|
1147 |
|
|
|
1148 |
|
|
case CSR_XFER_DONE|PHS_DATA_OUT:
|
1149 |
|
|
case CSR_UNEXP |PHS_DATA_OUT:
|
1150 |
|
|
case CSR_SRV_REQ |PHS_DATA_OUT:
|
1151 |
|
|
DB(DB_INTR,printk("OUT-%d.%d",cmd->SCp.this_residual,cmd->SCp.buffers_residual))
|
1152 |
|
|
transfer_bytes(cmd, DATA_OUT_DIR);
|
1153 |
|
|
if (hostdata->state != S_RUNNING_LEVEL2)
|
1154 |
|
|
hostdata->state = S_CONNECTED;
|
1155 |
|
|
break;
|
1156 |
|
|
|
1157 |
|
|
|
1158 |
|
|
/* Note: this interrupt should not occur in a LEVEL2 command */
|
1159 |
|
|
|
1160 |
|
|
case CSR_XFER_DONE|PHS_COMMAND:
|
1161 |
|
|
case CSR_UNEXP |PHS_COMMAND:
|
1162 |
|
|
case CSR_SRV_REQ |PHS_COMMAND:
|
1163 |
|
|
DB(DB_INTR,printk("CMND-%02x,%ld",cmd->cmnd[0],cmd->pid))
|
1164 |
|
|
transfer_pio(cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR, hostdata);
|
1165 |
|
|
hostdata->state = S_CONNECTED;
|
1166 |
|
|
break;
|
1167 |
|
|
|
1168 |
|
|
|
1169 |
|
|
case CSR_XFER_DONE|PHS_STATUS:
|
1170 |
|
|
case CSR_UNEXP |PHS_STATUS:
|
1171 |
|
|
case CSR_SRV_REQ |PHS_STATUS:
|
1172 |
|
|
DB(DB_INTR,printk("STATUS="))
|
1173 |
|
|
|
1174 |
|
|
cmd->SCp.Status = read_1_byte(hostdata);
|
1175 |
|
|
DB(DB_INTR,printk("%02x",cmd->SCp.Status))
|
1176 |
|
|
if (hostdata->level2 >= L2_BASIC) {
|
1177 |
|
|
sr = read_3393(hostdata,WD_SCSI_STATUS); /* clear interrupt */
|
1178 |
|
|
hostdata->state = S_RUNNING_LEVEL2;
|
1179 |
|
|
write_3393(hostdata,WD_COMMAND_PHASE, 0x50);
|
1180 |
|
|
write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER);
|
1181 |
|
|
}
|
1182 |
|
|
else {
|
1183 |
|
|
hostdata->state = S_CONNECTED;
|
1184 |
|
|
}
|
1185 |
|
|
break;
|
1186 |
|
|
|
1187 |
|
|
|
1188 |
|
|
case CSR_XFER_DONE|PHS_MESS_IN:
|
1189 |
|
|
case CSR_UNEXP |PHS_MESS_IN:
|
1190 |
|
|
case CSR_SRV_REQ |PHS_MESS_IN:
|
1191 |
|
|
DB(DB_INTR,printk("MSG_IN="))
|
1192 |
|
|
|
1193 |
|
|
msg = read_1_byte(hostdata);
|
1194 |
|
|
sr = read_3393(hostdata,WD_SCSI_STATUS); /* clear interrupt */
|
1195 |
|
|
|
1196 |
|
|
hostdata->incoming_msg[hostdata->incoming_ptr] = msg;
|
1197 |
|
|
if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE)
|
1198 |
|
|
msg = EXTENDED_MESSAGE;
|
1199 |
|
|
else
|
1200 |
|
|
hostdata->incoming_ptr = 0;
|
1201 |
|
|
|
1202 |
|
|
cmd->SCp.Message = msg;
|
1203 |
|
|
switch (msg) {
|
1204 |
|
|
|
1205 |
|
|
case COMMAND_COMPLETE:
|
1206 |
|
|
DB(DB_INTR,printk("CCMP-%ld",cmd->pid))
|
1207 |
|
|
write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
|
1208 |
|
|
hostdata->state = S_PRE_CMP_DISC;
|
1209 |
|
|
break;
|
1210 |
|
|
|
1211 |
|
|
case SAVE_POINTERS:
|
1212 |
|
|
DB(DB_INTR,printk("SDP"))
|
1213 |
|
|
write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
|
1214 |
|
|
hostdata->state = S_CONNECTED;
|
1215 |
|
|
break;
|
1216 |
|
|
|
1217 |
|
|
case RESTORE_POINTERS:
|
1218 |
|
|
DB(DB_INTR,printk("RDP"))
|
1219 |
|
|
if (hostdata->level2 >= L2_BASIC) {
|
1220 |
|
|
write_3393(hostdata,WD_COMMAND_PHASE, 0x45);
|
1221 |
|
|
write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER);
|
1222 |
|
|
hostdata->state = S_RUNNING_LEVEL2;
|
1223 |
|
|
}
|
1224 |
|
|
else {
|
1225 |
|
|
write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
|
1226 |
|
|
hostdata->state = S_CONNECTED;
|
1227 |
|
|
}
|
1228 |
|
|
break;
|
1229 |
|
|
|
1230 |
|
|
case DISCONNECT:
|
1231 |
|
|
DB(DB_INTR,printk("DIS"))
|
1232 |
|
|
cmd->device->disconnect = 1;
|
1233 |
|
|
write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
|
1234 |
|
|
hostdata->state = S_PRE_TMP_DISC;
|
1235 |
|
|
break;
|
1236 |
|
|
|
1237 |
|
|
case MESSAGE_REJECT:
|
1238 |
|
|
DB(DB_INTR,printk("REJ"))
|
1239 |
|
|
#ifdef SYNC_DEBUG
|
1240 |
|
|
printk("-REJ-");
|
1241 |
|
|
#endif
|
1242 |
|
|
if (hostdata->sync_stat[cmd->target] == SS_WAITING)
|
1243 |
|
|
hostdata->sync_stat[cmd->target] = SS_SET;
|
1244 |
|
|
write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
|
1245 |
|
|
hostdata->state = S_CONNECTED;
|
1246 |
|
|
break;
|
1247 |
|
|
|
1248 |
|
|
case EXTENDED_MESSAGE:
|
1249 |
|
|
DB(DB_INTR,printk("EXT"))
|
1250 |
|
|
|
1251 |
|
|
ucp = hostdata->incoming_msg;
|
1252 |
|
|
|
1253 |
|
|
#ifdef SYNC_DEBUG
|
1254 |
|
|
printk("%02x",ucp[hostdata->incoming_ptr]);
|
1255 |
|
|
#endif
|
1256 |
|
|
/* Is this the last byte of the extended message? */
|
1257 |
|
|
|
1258 |
|
|
if ((hostdata->incoming_ptr >= 2) &&
|
1259 |
|
|
(hostdata->incoming_ptr == (ucp[1] + 1))) {
|
1260 |
|
|
|
1261 |
|
|
switch (ucp[2]) { /* what's the EXTENDED code? */
|
1262 |
|
|
case EXTENDED_SDTR:
|
1263 |
|
|
id = calc_sync_xfer(ucp[3],ucp[4]);
|
1264 |
|
|
if (hostdata->sync_stat[cmd->target] != SS_WAITING) {
|
1265 |
|
|
|
1266 |
|
|
/* A device has sent an unsolicited SDTR message; rather than go
|
1267 |
|
|
* through the effort of decoding it and then figuring out what
|
1268 |
|
|
* our reply should be, we're just gonna say that we have a
|
1269 |
|
|
* synchronous fifo depth of 0. This will result in asynchronous
|
1270 |
|
|
* transfers - not ideal but so much easier.
|
1271 |
|
|
* Actually, this is OK because it assures us that if we don't
|
1272 |
|
|
* specifically ask for sync transfers, we won't do any.
|
1273 |
|
|
*/
|
1274 |
|
|
|
1275 |
|
|
write_3393_cmd(hostdata,WD_CMD_ASSERT_ATN); /* want MESS_OUT */
|
1276 |
|
|
hostdata->outgoing_msg[0] = EXTENDED_MESSAGE;
|
1277 |
|
|
hostdata->outgoing_msg[1] = 3;
|
1278 |
|
|
hostdata->outgoing_msg[2] = EXTENDED_SDTR;
|
1279 |
|
|
hostdata->outgoing_msg[3] = hostdata->default_sx_per/4;
|
1280 |
|
|
hostdata->outgoing_msg[4] = 0;
|
1281 |
|
|
hostdata->outgoing_len = 5;
|
1282 |
|
|
hostdata->sync_xfer[cmd->target] =
|
1283 |
|
|
calc_sync_xfer(hostdata->default_sx_per/4,0);
|
1284 |
|
|
}
|
1285 |
|
|
else {
|
1286 |
|
|
hostdata->sync_xfer[cmd->target] = id;
|
1287 |
|
|
}
|
1288 |
|
|
#ifdef SYNC_DEBUG
|
1289 |
|
|
printk("sync_xfer=%02x",hostdata->sync_xfer[cmd->target]);
|
1290 |
|
|
#endif
|
1291 |
|
|
hostdata->sync_stat[cmd->target] = SS_SET;
|
1292 |
|
|
write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
|
1293 |
|
|
hostdata->state = S_CONNECTED;
|
1294 |
|
|
break;
|
1295 |
|
|
case EXTENDED_WDTR:
|
1296 |
|
|
write_3393_cmd(hostdata,WD_CMD_ASSERT_ATN); /* want MESS_OUT */
|
1297 |
|
|
printk("sending WDTR ");
|
1298 |
|
|
hostdata->outgoing_msg[0] = EXTENDED_MESSAGE;
|
1299 |
|
|
hostdata->outgoing_msg[1] = 2;
|
1300 |
|
|
hostdata->outgoing_msg[2] = EXTENDED_WDTR;
|
1301 |
|
|
hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */
|
1302 |
|
|
hostdata->outgoing_len = 4;
|
1303 |
|
|
write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
|
1304 |
|
|
hostdata->state = S_CONNECTED;
|
1305 |
|
|
break;
|
1306 |
|
|
default:
|
1307 |
|
|
write_3393_cmd(hostdata,WD_CMD_ASSERT_ATN); /* want MESS_OUT */
|
1308 |
|
|
printk("Rejecting Unknown Extended Message(%02x). ",ucp[2]);
|
1309 |
|
|
hostdata->outgoing_msg[0] = MESSAGE_REJECT;
|
1310 |
|
|
hostdata->outgoing_len = 1;
|
1311 |
|
|
write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
|
1312 |
|
|
hostdata->state = S_CONNECTED;
|
1313 |
|
|
break;
|
1314 |
|
|
}
|
1315 |
|
|
hostdata->incoming_ptr = 0;
|
1316 |
|
|
}
|
1317 |
|
|
|
1318 |
|
|
/* We need to read more MESS_IN bytes for the extended message */
|
1319 |
|
|
|
1320 |
|
|
else {
|
1321 |
|
|
hostdata->incoming_ptr++;
|
1322 |
|
|
write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
|
1323 |
|
|
hostdata->state = S_CONNECTED;
|
1324 |
|
|
}
|
1325 |
|
|
break;
|
1326 |
|
|
|
1327 |
|
|
default:
|
1328 |
|
|
printk("Rejecting Unknown Message(%02x) ",msg);
|
1329 |
|
|
write_3393_cmd(hostdata,WD_CMD_ASSERT_ATN); /* want MESS_OUT */
|
1330 |
|
|
hostdata->outgoing_msg[0] = MESSAGE_REJECT;
|
1331 |
|
|
hostdata->outgoing_len = 1;
|
1332 |
|
|
write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
|
1333 |
|
|
hostdata->state = S_CONNECTED;
|
1334 |
|
|
}
|
1335 |
|
|
break;
|
1336 |
|
|
|
1337 |
|
|
|
1338 |
|
|
/* Note: this interrupt will occur only after a LEVEL2 command */
|
1339 |
|
|
|
1340 |
|
|
case CSR_SEL_XFER_DONE:
|
1341 |
|
|
|
1342 |
|
|
/* Make sure that reselection is enabled at this point - it may
|
1343 |
|
|
* have been turned off for the command that just completed.
|
1344 |
|
|
*/
|
1345 |
|
|
|
1346 |
|
|
write_3393(hostdata,WD_SOURCE_ID, SRCID_ER);
|
1347 |
|
|
if (phs == 0x60) {
|
1348 |
|
|
DB(DB_INTR,printk("SX-DONE-%ld",cmd->pid))
|
1349 |
|
|
cmd->SCp.Message = COMMAND_COMPLETE;
|
1350 |
|
|
lun = read_3393(hostdata,WD_TARGET_LUN);
|
1351 |
|
|
DB(DB_INTR,printk(":%d.%d",cmd->SCp.Status,lun))
|
1352 |
|
|
hostdata->connected = NULL;
|
1353 |
|
|
hostdata->busy[cmd->target] &= ~(1 << cmd->lun);
|
1354 |
|
|
hostdata->state = S_UNCONNECTED;
|
1355 |
|
|
if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE)
|
1356 |
|
|
cmd->SCp.Status = lun;
|
1357 |
|
|
if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
|
1358 |
|
|
cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
|
1359 |
|
|
else
|
1360 |
|
|
cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
|
1361 |
|
|
cmd->scsi_done(cmd);
|
1362 |
|
|
|
1363 |
|
|
/* We are no longer connected to a target - check to see if
|
1364 |
|
|
* there are commands waiting to be executed.
|
1365 |
|
|
*/
|
1366 |
|
|
|
1367 |
|
|
in2000_execute(instance);
|
1368 |
|
|
}
|
1369 |
|
|
else {
|
1370 |
|
|
printk("%02x:%02x:%02x-%ld: Unknown SEL_XFER_DONE phase!!---",asr,sr,phs,cmd->pid);
|
1371 |
|
|
}
|
1372 |
|
|
break;
|
1373 |
|
|
|
1374 |
|
|
|
1375 |
|
|
/* Note: this interrupt will occur only after a LEVEL2 command */
|
1376 |
|
|
|
1377 |
|
|
case CSR_SDP:
|
1378 |
|
|
DB(DB_INTR,printk("SDP"))
|
1379 |
|
|
hostdata->state = S_RUNNING_LEVEL2;
|
1380 |
|
|
write_3393(hostdata,WD_COMMAND_PHASE, 0x41);
|
1381 |
|
|
write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER);
|
1382 |
|
|
break;
|
1383 |
|
|
|
1384 |
|
|
|
1385 |
|
|
case CSR_XFER_DONE|PHS_MESS_OUT:
|
1386 |
|
|
case CSR_UNEXP |PHS_MESS_OUT:
|
1387 |
|
|
case CSR_SRV_REQ |PHS_MESS_OUT:
|
1388 |
|
|
DB(DB_INTR,printk("MSG_OUT="))
|
1389 |
|
|
|
1390 |
|
|
/* To get here, we've probably requested MESSAGE_OUT and have
|
1391 |
|
|
* already put the correct bytes in outgoing_msg[] and filled
|
1392 |
|
|
* in outgoing_len. We simply send them out to the SCSI bus.
|
1393 |
|
|
* Sometimes we get MESSAGE_OUT phase when we're not expecting
|
1394 |
|
|
* it - like when our SDTR message is rejected by a target. Some
|
1395 |
|
|
* targets send the REJECT before receiving all of the extended
|
1396 |
|
|
* message, and then seem to go back to MESSAGE_OUT for a byte
|
1397 |
|
|
* or two. Not sure why, or if I'm doing something wrong to
|
1398 |
|
|
* cause this to happen. Regardless, it seems that sending
|
1399 |
|
|
* NOP messages in these situations results in no harm and
|
1400 |
|
|
* makes everyone happy.
|
1401 |
|
|
*/
|
1402 |
|
|
|
1403 |
|
|
if (hostdata->outgoing_len == 0) {
|
1404 |
|
|
hostdata->outgoing_len = 1;
|
1405 |
|
|
hostdata->outgoing_msg[0] = NOP;
|
1406 |
|
|
}
|
1407 |
|
|
transfer_pio(hostdata->outgoing_msg, hostdata->outgoing_len,
|
1408 |
|
|
DATA_OUT_DIR, hostdata);
|
1409 |
|
|
DB(DB_INTR,printk("%02x",hostdata->outgoing_msg[0]))
|
1410 |
|
|
hostdata->outgoing_len = 0;
|
1411 |
|
|
hostdata->state = S_CONNECTED;
|
1412 |
|
|
break;
|
1413 |
|
|
|
1414 |
|
|
|
1415 |
|
|
case CSR_UNEXP_DISC:
|
1416 |
|
|
|
1417 |
|
|
/* I think I've seen this after a request-sense that was in response
|
1418 |
|
|
* to an error condition, but not sure. We certainly need to do
|
1419 |
|
|
* something when we get this interrupt - the question is 'what?'.
|
1420 |
|
|
* Let's think positively, and assume some command has finished
|
1421 |
|
|
* in a legal manner (like a command that provokes a request-sense),
|
1422 |
|
|
* so we treat it as a normal command-complete-disconnect.
|
1423 |
|
|
*/
|
1424 |
|
|
|
1425 |
|
|
|
1426 |
|
|
/* Make sure that reselection is enabled at this point - it may
|
1427 |
|
|
* have been turned off for the command that just completed.
|
1428 |
|
|
*/
|
1429 |
|
|
|
1430 |
|
|
write_3393(hostdata,WD_SOURCE_ID, SRCID_ER);
|
1431 |
|
|
if (cmd == NULL) {
|
1432 |
|
|
printk(" - Already disconnected! ");
|
1433 |
|
|
hostdata->state = S_UNCONNECTED;
|
1434 |
|
|
|
1435 |
|
|
/* release the SMP spin_lock and restore irq state */
|
1436 |
|
|
CLISPIN_UNLOCK(flags);
|
1437 |
|
|
return;
|
1438 |
|
|
}
|
1439 |
|
|
DB(DB_INTR,printk("UNEXP_DISC-%ld",cmd->pid))
|
1440 |
|
|
hostdata->connected = NULL;
|
1441 |
|
|
hostdata->busy[cmd->target] &= ~(1 << cmd->lun);
|
1442 |
|
|
hostdata->state = S_UNCONNECTED;
|
1443 |
|
|
if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
|
1444 |
|
|
cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
|
1445 |
|
|
else
|
1446 |
|
|
cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
|
1447 |
|
|
cmd->scsi_done(cmd);
|
1448 |
|
|
|
1449 |
|
|
/* We are no longer connected to a target - check to see if
|
1450 |
|
|
* there are commands waiting to be executed.
|
1451 |
|
|
*/
|
1452 |
|
|
|
1453 |
|
|
in2000_execute(instance);
|
1454 |
|
|
break;
|
1455 |
|
|
|
1456 |
|
|
|
1457 |
|
|
case CSR_DISC:
|
1458 |
|
|
|
1459 |
|
|
/* Make sure that reselection is enabled at this point - it may
|
1460 |
|
|
* have been turned off for the command that just completed.
|
1461 |
|
|
*/
|
1462 |
|
|
|
1463 |
|
|
write_3393(hostdata,WD_SOURCE_ID, SRCID_ER);
|
1464 |
|
|
DB(DB_INTR,printk("DISC-%ld",cmd->pid))
|
1465 |
|
|
if (cmd == NULL) {
|
1466 |
|
|
printk(" - Already disconnected! ");
|
1467 |
|
|
hostdata->state = S_UNCONNECTED;
|
1468 |
|
|
}
|
1469 |
|
|
switch (hostdata->state) {
|
1470 |
|
|
case S_PRE_CMP_DISC:
|
1471 |
|
|
hostdata->connected = NULL;
|
1472 |
|
|
hostdata->busy[cmd->target] &= ~(1 << cmd->lun);
|
1473 |
|
|
hostdata->state = S_UNCONNECTED;
|
1474 |
|
|
DB(DB_INTR,printk(":%d",cmd->SCp.Status))
|
1475 |
|
|
if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
|
1476 |
|
|
cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
|
1477 |
|
|
else
|
1478 |
|
|
cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
|
1479 |
|
|
cmd->scsi_done(cmd);
|
1480 |
|
|
break;
|
1481 |
|
|
case S_PRE_TMP_DISC:
|
1482 |
|
|
case S_RUNNING_LEVEL2:
|
1483 |
|
|
cmd->host_scribble = (uchar *)hostdata->disconnected_Q;
|
1484 |
|
|
hostdata->disconnected_Q = cmd;
|
1485 |
|
|
hostdata->connected = NULL;
|
1486 |
|
|
hostdata->state = S_UNCONNECTED;
|
1487 |
|
|
|
1488 |
|
|
#ifdef PROC_STATISTICS
|
1489 |
|
|
hostdata->disc_done_cnt[cmd->target]++;
|
1490 |
|
|
#endif
|
1491 |
|
|
|
1492 |
|
|
break;
|
1493 |
|
|
default:
|
1494 |
|
|
printk("*** Unexpected DISCONNECT interrupt! ***");
|
1495 |
|
|
hostdata->state = S_UNCONNECTED;
|
1496 |
|
|
}
|
1497 |
|
|
|
1498 |
|
|
/* We are no longer connected to a target - check to see if
|
1499 |
|
|
* there are commands waiting to be executed.
|
1500 |
|
|
*/
|
1501 |
|
|
|
1502 |
|
|
in2000_execute(instance);
|
1503 |
|
|
break;
|
1504 |
|
|
|
1505 |
|
|
|
1506 |
|
|
case CSR_RESEL_AM:
|
1507 |
|
|
DB(DB_INTR,printk("RESEL"))
|
1508 |
|
|
|
1509 |
|
|
/* First we have to make sure this reselection didn't */
|
1510 |
|
|
/* happen during Arbitration/Selection of some other device. */
|
1511 |
|
|
/* If yes, put losing command back on top of input_Q. */
|
1512 |
|
|
|
1513 |
|
|
if (hostdata->level2 <= L2_NONE) {
|
1514 |
|
|
|
1515 |
|
|
if (hostdata->selecting) {
|
1516 |
|
|
cmd = (Scsi_Cmnd *)hostdata->selecting;
|
1517 |
|
|
hostdata->selecting = NULL;
|
1518 |
|
|
hostdata->busy[cmd->target] &= ~(1 << cmd->lun);
|
1519 |
|
|
cmd->host_scribble = (uchar *)hostdata->input_Q;
|
1520 |
|
|
hostdata->input_Q = cmd;
|
1521 |
|
|
}
|
1522 |
|
|
}
|
1523 |
|
|
|
1524 |
|
|
else {
|
1525 |
|
|
|
1526 |
|
|
if (cmd) {
|
1527 |
|
|
if (phs == 0x00) {
|
1528 |
|
|
hostdata->busy[cmd->target] &= ~(1 << cmd->lun);
|
1529 |
|
|
cmd->host_scribble = (uchar *)hostdata->input_Q;
|
1530 |
|
|
hostdata->input_Q = cmd;
|
1531 |
|
|
}
|
1532 |
|
|
else {
|
1533 |
|
|
printk("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---",asr,sr,phs);
|
1534 |
|
|
while (1)
|
1535 |
|
|
printk("\r");
|
1536 |
|
|
}
|
1537 |
|
|
}
|
1538 |
|
|
|
1539 |
|
|
}
|
1540 |
|
|
|
1541 |
|
|
/* OK - find out which device reselected us. */
|
1542 |
|
|
|
1543 |
|
|
id = read_3393(hostdata,WD_SOURCE_ID);
|
1544 |
|
|
id &= SRCID_MASK;
|
1545 |
|
|
|
1546 |
|
|
/* and extract the lun from the ID message. (Note that we don't
|
1547 |
|
|
* bother to check for a valid message here - I guess this is
|
1548 |
|
|
* not the right way to go, but....)
|
1549 |
|
|
*/
|
1550 |
|
|
|
1551 |
|
|
lun = read_3393(hostdata,WD_DATA);
|
1552 |
|
|
if (hostdata->level2 < L2_RESELECT)
|
1553 |
|
|
write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK);
|
1554 |
|
|
lun &= 7;
|
1555 |
|
|
|
1556 |
|
|
/* Now we look for the command that's reconnecting. */
|
1557 |
|
|
|
1558 |
|
|
cmd = (Scsi_Cmnd *)hostdata->disconnected_Q;
|
1559 |
|
|
patch = NULL;
|
1560 |
|
|
while (cmd) {
|
1561 |
|
|
if (id == cmd->target && lun == cmd->lun)
|
1562 |
|
|
break;
|
1563 |
|
|
patch = cmd;
|
1564 |
|
|
cmd = (Scsi_Cmnd *)cmd->host_scribble;
|
1565 |
|
|
}
|
1566 |
|
|
|
1567 |
|
|
/* Hmm. Couldn't find a valid command.... What to do? */
|
1568 |
|
|
|
1569 |
|
|
if (!cmd) {
|
1570 |
|
|
printk("---TROUBLE: target %d.%d not in disconnect queue---",id,lun);
|
1571 |
|
|
break;
|
1572 |
|
|
}
|
1573 |
|
|
|
1574 |
|
|
/* Ok, found the command - now start it up again. */
|
1575 |
|
|
|
1576 |
|
|
if (patch)
|
1577 |
|
|
patch->host_scribble = cmd->host_scribble;
|
1578 |
|
|
else
|
1579 |
|
|
hostdata->disconnected_Q = (Scsi_Cmnd *)cmd->host_scribble;
|
1580 |
|
|
hostdata->connected = cmd;
|
1581 |
|
|
|
1582 |
|
|
/* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]'
|
1583 |
|
|
* because these things are preserved over a disconnect.
|
1584 |
|
|
* But we DO need to fix the DPD bit so it's correct for this command.
|
1585 |
|
|
*/
|
1586 |
|
|
|
1587 |
|
|
if (is_dir_out(cmd))
|
1588 |
|
|
write_3393(hostdata,WD_DESTINATION_ID,cmd->target);
|
1589 |
|
|
else
|
1590 |
|
|
write_3393(hostdata,WD_DESTINATION_ID,cmd->target | DSTID_DPD);
|
1591 |
|
|
if (hostdata->level2 >= L2_RESELECT) {
|
1592 |
|
|
write_3393_count(hostdata,0); /* we want a DATA_PHASE interrupt */
|
1593 |
|
|
write_3393(hostdata,WD_COMMAND_PHASE, 0x45);
|
1594 |
|
|
write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER);
|
1595 |
|
|
hostdata->state = S_RUNNING_LEVEL2;
|
1596 |
|
|
}
|
1597 |
|
|
else
|
1598 |
|
|
hostdata->state = S_CONNECTED;
|
1599 |
|
|
|
1600 |
|
|
DB(DB_INTR,printk("-%ld",cmd->pid))
|
1601 |
|
|
break;
|
1602 |
|
|
|
1603 |
|
|
default:
|
1604 |
|
|
printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--",asr,sr,phs);
|
1605 |
|
|
}
|
1606 |
|
|
|
1607 |
|
|
write1_io(0, IO_LED_OFF);
|
1608 |
|
|
|
1609 |
|
|
DB(DB_INTR,printk("} "))
|
1610 |
|
|
|
1611 |
|
|
/* release the SMP spin_lock and restore irq state */
|
1612 |
|
|
CLISPIN_UNLOCK(flags);
|
1613 |
|
|
|
1614 |
|
|
}
|
1615 |
|
|
|
1616 |
|
|
|
1617 |
|
|
|
1618 |
|
|
#define RESET_CARD 0
|
1619 |
|
|
#define RESET_CARD_AND_BUS 1
|
1620 |
|
|
#define B_FLAG 0x80
|
1621 |
|
|
|
1622 |
|
|
static int reset_hardware(struct Scsi_Host *instance, int type)
|
1623 |
|
|
{
|
1624 |
|
|
struct IN2000_hostdata *hostdata;
|
1625 |
|
|
int qt,x;
|
1626 |
|
|
unsigned long flags;
|
1627 |
|
|
|
1628 |
|
|
hostdata = (struct IN2000_hostdata *)instance->hostdata;
|
1629 |
|
|
|
1630 |
|
|
write1_io(0, IO_LED_ON);
|
1631 |
|
|
if (type == RESET_CARD_AND_BUS) {
|
1632 |
|
|
write1_io(0,IO_CARD_RESET);
|
1633 |
|
|
x = read1_io(IO_HARDWARE);
|
1634 |
|
|
}
|
1635 |
|
|
x = read_3393(hostdata,WD_SCSI_STATUS); /* clear any WD intrpt */
|
1636 |
|
|
write_3393(hostdata,WD_OWN_ID, instance->this_id |
|
1637 |
|
|
OWNID_EAF | OWNID_RAF | OWNID_FS_8);
|
1638 |
|
|
write_3393(hostdata,WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
|
1639 |
|
|
write_3393(hostdata,WD_SYNCHRONOUS_TRANSFER,
|
1640 |
|
|
calc_sync_xfer(hostdata->default_sx_per/4,DEFAULT_SX_OFF));
|
1641 |
|
|
save_flags(flags);
|
1642 |
|
|
cli();
|
1643 |
|
|
write1_io(0,IO_FIFO_WRITE); /* clear fifo counter */
|
1644 |
|
|
write1_io(0,IO_FIFO_READ); /* start fifo out in read mode */
|
1645 |
|
|
write_3393(hostdata,WD_COMMAND, WD_CMD_RESET);
|
1646 |
|
|
while (!(READ_AUX_STAT() & ASR_INT))
|
1647 |
|
|
; /* wait for RESET to complete */
|
1648 |
|
|
|
1649 |
|
|
x = read_3393(hostdata,WD_SCSI_STATUS); /* clear interrupt */
|
1650 |
|
|
restore_flags(flags);
|
1651 |
|
|
write_3393(hostdata,WD_QUEUE_TAG,0xa5); /* any random number */
|
1652 |
|
|
qt = read_3393(hostdata,WD_QUEUE_TAG);
|
1653 |
|
|
if (qt == 0xa5) {
|
1654 |
|
|
x |= B_FLAG;
|
1655 |
|
|
write_3393(hostdata,WD_QUEUE_TAG,0);
|
1656 |
|
|
}
|
1657 |
|
|
write_3393(hostdata,WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE);
|
1658 |
|
|
write_3393(hostdata,WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
|
1659 |
|
|
write1_io(0, IO_LED_OFF);
|
1660 |
|
|
return x;
|
1661 |
|
|
}
|
1662 |
|
|
|
1663 |
|
|
|
1664 |
|
|
|
1665 |
|
|
int in2000_reset(Scsi_Cmnd *cmd, unsigned int reset_flags)
|
1666 |
|
|
{
|
1667 |
|
|
unsigned long flags;
|
1668 |
|
|
struct Scsi_Host *instance;
|
1669 |
|
|
struct IN2000_hostdata *hostdata;
|
1670 |
|
|
int x;
|
1671 |
|
|
|
1672 |
|
|
instance = cmd->host;
|
1673 |
|
|
hostdata = (struct IN2000_hostdata *)instance->hostdata;
|
1674 |
|
|
|
1675 |
|
|
printk("scsi%d: Reset. ", instance->host_no);
|
1676 |
|
|
save_flags(flags);
|
1677 |
|
|
cli();
|
1678 |
|
|
|
1679 |
|
|
/* do scsi-reset here */
|
1680 |
|
|
|
1681 |
|
|
reset_hardware(instance, RESET_CARD_AND_BUS);
|
1682 |
|
|
for (x = 0; x < 8; x++) {
|
1683 |
|
|
hostdata->busy[x] = 0;
|
1684 |
|
|
hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER/4,DEFAULT_SX_OFF);
|
1685 |
|
|
hostdata->sync_stat[x] = SS_UNSET; /* using default sync values */
|
1686 |
|
|
}
|
1687 |
|
|
hostdata->input_Q = NULL;
|
1688 |
|
|
hostdata->selecting = NULL;
|
1689 |
|
|
hostdata->connected = NULL;
|
1690 |
|
|
hostdata->disconnected_Q = NULL;
|
1691 |
|
|
hostdata->state = S_UNCONNECTED;
|
1692 |
|
|
hostdata->fifo = FI_FIFO_UNUSED;
|
1693 |
|
|
hostdata->incoming_ptr = 0;
|
1694 |
|
|
hostdata->outgoing_len = 0;
|
1695 |
|
|
|
1696 |
|
|
cmd->result = DID_RESET << 16;
|
1697 |
|
|
restore_flags(flags);
|
1698 |
|
|
return 0;
|
1699 |
|
|
}
|
1700 |
|
|
|
1701 |
|
|
|
1702 |
|
|
|
1703 |
|
|
int in2000_abort (Scsi_Cmnd *cmd)
|
1704 |
|
|
{
|
1705 |
|
|
struct Scsi_Host *instance;
|
1706 |
|
|
struct IN2000_hostdata *hostdata;
|
1707 |
|
|
Scsi_Cmnd *tmp, *prev;
|
1708 |
|
|
unsigned long flags;
|
1709 |
|
|
uchar sr, asr;
|
1710 |
|
|
unsigned long timeout;
|
1711 |
|
|
|
1712 |
|
|
save_flags (flags);
|
1713 |
|
|
cli();
|
1714 |
|
|
|
1715 |
|
|
instance = cmd->host;
|
1716 |
|
|
hostdata = (struct IN2000_hostdata *)instance->hostdata;
|
1717 |
|
|
|
1718 |
|
|
printk ("scsi%d: Abort-", instance->host_no);
|
1719 |
|
|
printk("(asr=%02x,count=%ld,resid=%d,buf_resid=%d,have_data=%d,FC=%02x)- ",
|
1720 |
|
|
READ_AUX_STAT(),read_3393_count(hostdata),cmd->SCp.this_residual,cmd->SCp.buffers_residual,
|
1721 |
|
|
cmd->SCp.have_data_in,read1_io(IO_FIFO_COUNT));
|
1722 |
|
|
|
1723 |
|
|
/*
|
1724 |
|
|
* Case 1 : If the command hasn't been issued yet, we simply remove it
|
1725 |
|
|
* from the inout_Q.
|
1726 |
|
|
*/
|
1727 |
|
|
|
1728 |
|
|
tmp = (Scsi_Cmnd *)hostdata->input_Q;
|
1729 |
|
|
prev = 0;
|
1730 |
|
|
while (tmp) {
|
1731 |
|
|
if (tmp == cmd) {
|
1732 |
|
|
if (prev)
|
1733 |
|
|
prev->host_scribble = cmd->host_scribble;
|
1734 |
|
|
cmd->host_scribble = NULL;
|
1735 |
|
|
cmd->result = DID_ABORT << 16;
|
1736 |
|
|
printk("scsi%d: Abort - removing command %ld from input_Q. ",
|
1737 |
|
|
instance->host_no, cmd->pid);
|
1738 |
|
|
cmd->scsi_done(cmd);
|
1739 |
|
|
restore_flags(flags);
|
1740 |
|
|
return SCSI_ABORT_SUCCESS;
|
1741 |
|
|
}
|
1742 |
|
|
prev = tmp;
|
1743 |
|
|
tmp = (Scsi_Cmnd *)tmp->host_scribble;
|
1744 |
|
|
}
|
1745 |
|
|
|
1746 |
|
|
/*
|
1747 |
|
|
* Case 2 : If the command is connected, we're going to fail the abort
|
1748 |
|
|
* and let the high level SCSI driver retry at a later time or
|
1749 |
|
|
* issue a reset.
|
1750 |
|
|
*
|
1751 |
|
|
* Timeouts, and therefore aborted commands, will be highly unlikely
|
1752 |
|
|
* and handling them cleanly in this situation would make the common
|
1753 |
|
|
* case of noresets less efficient, and would pollute our code. So,
|
1754 |
|
|
* we fail.
|
1755 |
|
|
*/
|
1756 |
|
|
|
1757 |
|
|
if (hostdata->connected == cmd) {
|
1758 |
|
|
|
1759 |
|
|
printk("scsi%d: Aborting connected command %ld - ",
|
1760 |
|
|
instance->host_no, cmd->pid);
|
1761 |
|
|
|
1762 |
|
|
printk("sending wd33c93 ABORT command - ");
|
1763 |
|
|
write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
|
1764 |
|
|
write_3393_cmd(hostdata, WD_CMD_ABORT);
|
1765 |
|
|
|
1766 |
|
|
/* Now we have to attempt to flush out the FIFO... */
|
1767 |
|
|
|
1768 |
|
|
printk("flushing fifo - ");
|
1769 |
|
|
timeout = 1000000;
|
1770 |
|
|
do {
|
1771 |
|
|
asr = READ_AUX_STAT();
|
1772 |
|
|
if (asr & ASR_DBR)
|
1773 |
|
|
read_3393(hostdata, WD_DATA);
|
1774 |
|
|
} while (!(asr & ASR_INT) && timeout-- > 0);
|
1775 |
|
|
sr = read_3393(hostdata, WD_SCSI_STATUS);
|
1776 |
|
|
printk("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ",
|
1777 |
|
|
asr, sr, read_3393_count(hostdata), timeout);
|
1778 |
|
|
|
1779 |
|
|
/*
|
1780 |
|
|
* Abort command processed.
|
1781 |
|
|
* Still connected.
|
1782 |
|
|
* We must disconnect.
|
1783 |
|
|
*/
|
1784 |
|
|
|
1785 |
|
|
printk("sending wd33c93 DISCONNECT command - ");
|
1786 |
|
|
write_3393_cmd(hostdata, WD_CMD_DISCONNECT);
|
1787 |
|
|
|
1788 |
|
|
timeout = 1000000;
|
1789 |
|
|
asr = READ_AUX_STAT();
|
1790 |
|
|
while ((asr & ASR_CIP) && timeout-- > 0)
|
1791 |
|
|
asr = READ_AUX_STAT();
|
1792 |
|
|
sr = read_3393(hostdata, WD_SCSI_STATUS);
|
1793 |
|
|
printk("asr=%02x, sr=%02x.",asr,sr);
|
1794 |
|
|
|
1795 |
|
|
hostdata->busy[cmd->target] &= ~(1 << cmd->lun);
|
1796 |
|
|
hostdata->connected = NULL;
|
1797 |
|
|
hostdata->state = S_UNCONNECTED;
|
1798 |
|
|
cmd->result = DID_ABORT << 16;
|
1799 |
|
|
cmd->scsi_done(cmd);
|
1800 |
|
|
|
1801 |
|
|
in2000_execute (instance);
|
1802 |
|
|
|
1803 |
|
|
restore_flags(flags);
|
1804 |
|
|
return SCSI_ABORT_SUCCESS;
|
1805 |
|
|
}
|
1806 |
|
|
|
1807 |
|
|
/*
|
1808 |
|
|
* Case 3: If the command is currently disconnected from the bus,
|
1809 |
|
|
* we're not going to expend much effort here: Let's just return
|
1810 |
|
|
* an ABORT_SNOOZE and hope for the best...
|
1811 |
|
|
*/
|
1812 |
|
|
|
1813 |
|
|
for (tmp=(Scsi_Cmnd *)hostdata->disconnected_Q; tmp;
|
1814 |
|
|
tmp=(Scsi_Cmnd *)tmp->host_scribble)
|
1815 |
|
|
if (cmd == tmp) {
|
1816 |
|
|
restore_flags(flags);
|
1817 |
|
|
printk("Sending ABORT_SNOOZE. ");
|
1818 |
|
|
return SCSI_ABORT_SNOOZE;
|
1819 |
|
|
}
|
1820 |
|
|
|
1821 |
|
|
/*
|
1822 |
|
|
* Case 4 : If we reached this point, the command was not found in any of
|
1823 |
|
|
* the queues.
|
1824 |
|
|
*
|
1825 |
|
|
* We probably reached this point because of an unlikely race condition
|
1826 |
|
|
* between the command completing successfully and the abortion code,
|
1827 |
|
|
* so we won't panic, but we will notify the user in case something really
|
1828 |
|
|
* broke.
|
1829 |
|
|
*/
|
1830 |
|
|
|
1831 |
|
|
in2000_execute (instance);
|
1832 |
|
|
|
1833 |
|
|
restore_flags(flags);
|
1834 |
|
|
printk("scsi%d: warning : SCSI command probably completed successfully"
|
1835 |
|
|
" before abortion. ", instance->host_no);
|
1836 |
|
|
return SCSI_ABORT_NOT_RUNNING;
|
1837 |
|
|
}
|
1838 |
|
|
|
1839 |
|
|
|
1840 |
|
|
|
1841 |
|
|
#define MAX_IN2000_HOSTS 3
|
1842 |
|
|
#define MAX_SETUP_ARGS (sizeof(setup_args) / sizeof(char *))
|
1843 |
|
|
#define SETUP_BUFFER_SIZE 200
|
1844 |
|
|
static char setup_buffer[SETUP_BUFFER_SIZE];
|
1845 |
|
|
static char setup_used[MAX_SETUP_ARGS];
|
1846 |
|
|
static int done_setup = 0;
|
1847 |
|
|
|
1848 |
|
|
in2000__INITFUNC( void in2000_setup (char *str, int *ints) )
|
1849 |
|
|
{
|
1850 |
|
|
int i;
|
1851 |
|
|
char *p1,*p2;
|
1852 |
|
|
|
1853 |
|
|
strncpy(setup_buffer,str,SETUP_BUFFER_SIZE);
|
1854 |
|
|
setup_buffer[SETUP_BUFFER_SIZE - 1] = '\0';
|
1855 |
|
|
p1 = setup_buffer;
|
1856 |
|
|
i = 0;
|
1857 |
|
|
while (*p1 && (i < MAX_SETUP_ARGS)) {
|
1858 |
|
|
p2 = strchr(p1, ',');
|
1859 |
|
|
if (p2) {
|
1860 |
|
|
*p2 = '\0';
|
1861 |
|
|
if (p1 != p2)
|
1862 |
|
|
setup_args[i] = p1;
|
1863 |
|
|
p1 = p2 + 1;
|
1864 |
|
|
i++;
|
1865 |
|
|
}
|
1866 |
|
|
else {
|
1867 |
|
|
setup_args[i] = p1;
|
1868 |
|
|
break;
|
1869 |
|
|
}
|
1870 |
|
|
}
|
1871 |
|
|
for (i=0; i<MAX_SETUP_ARGS; i++)
|
1872 |
|
|
setup_used[i] = 0;
|
1873 |
|
|
done_setup = 1;
|
1874 |
|
|
}
|
1875 |
|
|
|
1876 |
|
|
|
1877 |
|
|
/* check_setup_args() returns index if key found, 0 if not
|
1878 |
|
|
*/
|
1879 |
|
|
|
1880 |
|
|
in2000__INITFUNC( static int check_setup_args(char *key, int *flags, int *val, char *buf) )
|
1881 |
|
|
{
|
1882 |
|
|
int x;
|
1883 |
|
|
char *cp;
|
1884 |
|
|
|
1885 |
|
|
for (x=0; x<MAX_SETUP_ARGS; x++) {
|
1886 |
|
|
if (setup_used[x])
|
1887 |
|
|
continue;
|
1888 |
|
|
if (!strncmp(setup_args[x], key, strlen(key)))
|
1889 |
|
|
break;
|
1890 |
|
|
}
|
1891 |
|
|
if (x == MAX_SETUP_ARGS)
|
1892 |
|
|
return 0;
|
1893 |
|
|
setup_used[x] = 1;
|
1894 |
|
|
cp = setup_args[x] + strlen(key);
|
1895 |
|
|
*val = -1;
|
1896 |
|
|
if (*cp != ':')
|
1897 |
|
|
return ++x;
|
1898 |
|
|
cp++;
|
1899 |
|
|
if ((*cp >= '0') && (*cp <= '9')) {
|
1900 |
|
|
*val = simple_strtoul(cp,NULL,0);
|
1901 |
|
|
}
|
1902 |
|
|
return ++x;
|
1903 |
|
|
}
|
1904 |
|
|
|
1905 |
|
|
|
1906 |
|
|
|
1907 |
|
|
/* The "correct" (ie portable) way to access memory-mapped hardware
|
1908 |
|
|
* such as the IN2000 EPROM and dip switch is through the use of
|
1909 |
|
|
* special macros declared in 'asm/io.h'. We use readb() and readl()
|
1910 |
|
|
* when reading from the card's BIOS area in in2000_detect().
|
1911 |
|
|
*/
|
1912 |
|
|
static const unsigned int *bios_tab[] in2000__INITDATA = {
|
1913 |
|
|
(unsigned int *)0xc8000,
|
1914 |
|
|
(unsigned int *)0xd0000,
|
1915 |
|
|
(unsigned int *)0xd8000,
|
1916 |
|
|
|
1917 |
|
|
};
|
1918 |
|
|
|
1919 |
|
|
static const unsigned short base_tab[] in2000__INITDATA = {
|
1920 |
|
|
0x220,
|
1921 |
|
|
0x200,
|
1922 |
|
|
0x110,
|
1923 |
|
|
0x100,
|
1924 |
|
|
};
|
1925 |
|
|
|
1926 |
|
|
static const int int_tab[] in2000__INITDATA = {
|
1927 |
|
|
15,
|
1928 |
|
|
14,
|
1929 |
|
|
11,
|
1930 |
|
|
10
|
1931 |
|
|
};
|
1932 |
|
|
|
1933 |
|
|
|
1934 |
|
|
in2000__INITFUNC( int in2000_detect(Scsi_Host_Template * tpnt) )
|
1935 |
|
|
{
|
1936 |
|
|
struct Scsi_Host *instance;
|
1937 |
|
|
struct IN2000_hostdata *hostdata;
|
1938 |
|
|
int detect_count;
|
1939 |
|
|
int bios;
|
1940 |
|
|
int x;
|
1941 |
|
|
unsigned short base;
|
1942 |
|
|
uchar switches;
|
1943 |
|
|
uchar hrev;
|
1944 |
|
|
int flags;
|
1945 |
|
|
int val;
|
1946 |
|
|
char buf[32];
|
1947 |
|
|
|
1948 |
|
|
/* Thanks to help from Bill Earnest, probing for IN2000 cards is a
|
1949 |
|
|
* pretty straightforward and fool-proof operation. There are 3
|
1950 |
|
|
* possible locations for the IN2000 EPROM in memory space - if we
|
1951 |
|
|
* find a BIOS signature, we can read the dip switch settings from
|
1952 |
|
|
* the byte at BIOS+32 (shadowed in by logic on the card). From 2
|
1953 |
|
|
* of the switch bits we get the card's address in IO space. There's
|
1954 |
|
|
* an image of the dip switch there, also, so we have a way to back-
|
1955 |
|
|
* check that this really is an IN2000 card. Very nifty. Use the
|
1956 |
|
|
* 'ioport:xx' command-line parameter if your BIOS EPROM is absent
|
1957 |
|
|
* or disabled.
|
1958 |
|
|
*/
|
1959 |
|
|
|
1960 |
|
|
if (!done_setup && setup_strings)
|
1961 |
|
|
in2000_setup(setup_strings,0);
|
1962 |
|
|
|
1963 |
|
|
detect_count = 0;
|
1964 |
|
|
for (bios = 0; bios_tab[bios]; bios++) {
|
1965 |
|
|
if (check_setup_args("ioport",&flags,&val,buf)) {
|
1966 |
|
|
base = val;
|
1967 |
|
|
switches = ~inb(base + IO_SWITCHES) & 0xff;
|
1968 |
|
|
printk("Forcing IN2000 detection at IOport 0x%x ",base);
|
1969 |
|
|
bios = 2;
|
1970 |
|
|
}
|
1971 |
|
|
/*
|
1972 |
|
|
* There have been a couple of BIOS versions with different layouts
|
1973 |
|
|
* for the obvious ID strings. We look for the 2 most common ones and
|
1974 |
|
|
* hope that they cover all the cases...
|
1975 |
|
|
*/
|
1976 |
|
|
else if (readl(bios_tab[bios]+0x04) == 0x41564f4e ||
|
1977 |
|
|
readl(bios_tab[bios]+0x0c) == 0x61776c41) {
|
1978 |
|
|
printk("Found IN2000 BIOS at 0x%x ",(unsigned int)bios_tab[bios]);
|
1979 |
|
|
|
1980 |
|
|
/* Read the switch image that's mapped into EPROM space */
|
1981 |
|
|
|
1982 |
|
|
switches = ~((readb(bios_tab[bios]+0x08) & 0xff));
|
1983 |
|
|
|
1984 |
|
|
/* Find out where the IO space is */
|
1985 |
|
|
|
1986 |
|
|
x = switches & (SW_ADDR0 | SW_ADDR1);
|
1987 |
|
|
base = base_tab[x];
|
1988 |
|
|
|
1989 |
|
|
/* Check for the IN2000 signature in IO space. */
|
1990 |
|
|
|
1991 |
|
|
x = ~inb(base + IO_SWITCHES) & 0xff;
|
1992 |
|
|
if (x != switches) {
|
1993 |
|
|
printk("Bad IO signature: %02x vs %02x.\n",x,switches);
|
1994 |
|
|
continue;
|
1995 |
|
|
}
|
1996 |
|
|
}
|
1997 |
|
|
else
|
1998 |
|
|
continue;
|
1999 |
|
|
|
2000 |
|
|
/* OK. We have a base address for the IO ports - run a few safety checks */
|
2001 |
|
|
|
2002 |
|
|
if (!(switches & SW_BIT7)) { /* I _think_ all cards do this */
|
2003 |
|
|
printk("There is no IN-2000 SCSI card at IOport 0x%03x!\n",base);
|
2004 |
|
|
continue;
|
2005 |
|
|
}
|
2006 |
|
|
|
2007 |
|
|
/* Let's assume any hardware version will work, although the driver
|
2008 |
|
|
* has only been tested on 0x21, 0x22, 0x25, 0x26, and 0x27. We'll
|
2009 |
|
|
* print out the rev number for reference later, but accept them all.
|
2010 |
|
|
*/
|
2011 |
|
|
|
2012 |
|
|
hrev = inb(base + IO_HARDWARE);
|
2013 |
|
|
|
2014 |
|
|
/* Bit 2 tells us if interrupts are disabled */
|
2015 |
|
|
if (switches & SW_DISINT) {
|
2016 |
|
|
printk("The IN-2000 SCSI card at IOport 0x%03x ",base);
|
2017 |
|
|
printk("is not configured for interrupt operation!\n");
|
2018 |
|
|
printk("This driver requires an interrupt: cancelling detection.\n");
|
2019 |
|
|
continue;
|
2020 |
|
|
}
|
2021 |
|
|
|
2022 |
|
|
/* Ok. We accept that there's an IN2000 at ioaddr 'base'. Now
|
2023 |
|
|
* initialize it.
|
2024 |
|
|
*/
|
2025 |
|
|
|
2026 |
|
|
tpnt->proc_dir = &proc_scsi_in2000; /* done more than once? harmless. */
|
2027 |
|
|
detect_count++;
|
2028 |
|
|
instance = scsi_register(tpnt, sizeof(struct IN2000_hostdata));
|
2029 |
|
|
if (!instance_list)
|
2030 |
|
|
instance_list = instance;
|
2031 |
|
|
hostdata = (struct IN2000_hostdata *)instance->hostdata;
|
2032 |
|
|
instance->io_port = hostdata->io_base = base;
|
2033 |
|
|
hostdata->dip_switch = switches;
|
2034 |
|
|
hostdata->hrev = hrev;
|
2035 |
|
|
|
2036 |
|
|
write1_io(0,IO_FIFO_WRITE); /* clear fifo counter */
|
2037 |
|
|
write1_io(0,IO_FIFO_READ); /* start fifo out in read mode */
|
2038 |
|
|
write1_io(0,IO_INTR_MASK); /* allow all ints */
|
2039 |
|
|
x = int_tab[(switches & (SW_INT0 | SW_INT1)) >> SW_INT_SHIFT];
|
2040 |
|
|
if (request_irq(x, in2000_intr, SA_INTERRUPT, "in2000", NULL)) {
|
2041 |
|
|
printk("in2000_detect: Unable to allocate IRQ.\n");
|
2042 |
|
|
detect_count--;
|
2043 |
|
|
continue;
|
2044 |
|
|
}
|
2045 |
|
|
instance->irq = x;
|
2046 |
|
|
instance->n_io_port = 13;
|
2047 |
|
|
request_region(base, 13, "in2000"); /* lock in this IO space for our use */
|
2048 |
|
|
|
2049 |
|
|
for (x = 0; x < 8; x++) {
|
2050 |
|
|
hostdata->busy[x] = 0;
|
2051 |
|
|
hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER/4,DEFAULT_SX_OFF);
|
2052 |
|
|
hostdata->sync_stat[x] = SS_UNSET; /* using default sync values */
|
2053 |
|
|
#ifdef PROC_STATISTICS
|
2054 |
|
|
hostdata->cmd_cnt[x] = 0;
|
2055 |
|
|
hostdata->disc_allowed_cnt[x] = 0;
|
2056 |
|
|
hostdata->disc_done_cnt[x] = 0;
|
2057 |
|
|
#endif
|
2058 |
|
|
}
|
2059 |
|
|
hostdata->input_Q = NULL;
|
2060 |
|
|
hostdata->selecting = NULL;
|
2061 |
|
|
hostdata->connected = NULL;
|
2062 |
|
|
hostdata->disconnected_Q = NULL;
|
2063 |
|
|
hostdata->state = S_UNCONNECTED;
|
2064 |
|
|
hostdata->fifo = FI_FIFO_UNUSED;
|
2065 |
|
|
hostdata->level2 = L2_BASIC;
|
2066 |
|
|
hostdata->disconnect = DIS_ADAPTIVE;
|
2067 |
|
|
hostdata->args = DEBUG_DEFAULTS;
|
2068 |
|
|
hostdata->incoming_ptr = 0;
|
2069 |
|
|
hostdata->outgoing_len = 0;
|
2070 |
|
|
hostdata->default_sx_per = DEFAULT_SX_PER;
|
2071 |
|
|
|
2072 |
|
|
/* Older BIOS's had a 'sync on/off' switch - use its setting */
|
2073 |
|
|
|
2074 |
|
|
if (readl(bios_tab[bios]+0x04) == 0x41564f4e && (switches & SW_SYNC_DOS5))
|
2075 |
|
|
hostdata->sync_off = 0x00; /* sync defaults to on */
|
2076 |
|
|
else
|
2077 |
|
|
hostdata->sync_off = 0xff; /* sync defaults to off */
|
2078 |
|
|
|
2079 |
|
|
#ifdef PROC_INTERFACE
|
2080 |
|
|
hostdata->proc = PR_VERSION|PR_INFO|PR_STATISTICS|
|
2081 |
|
|
PR_CONNECTED|PR_INPUTQ|PR_DISCQ|
|
2082 |
|
|
PR_STOP;
|
2083 |
|
|
#ifdef PROC_STATISTICS
|
2084 |
|
|
hostdata->int_cnt = 0;
|
2085 |
|
|
#endif
|
2086 |
|
|
#endif
|
2087 |
|
|
|
2088 |
|
|
if (check_setup_args("nosync",&flags,&val,buf))
|
2089 |
|
|
hostdata->sync_off = val;
|
2090 |
|
|
|
2091 |
|
|
if (check_setup_args("period",&flags,&val,buf))
|
2092 |
|
|
hostdata->default_sx_per = sx_table[round_period((unsigned int)val)].period_ns;
|
2093 |
|
|
|
2094 |
|
|
if (check_setup_args("disconnect",&flags,&val,buf)) {
|
2095 |
|
|
if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS))
|
2096 |
|
|
hostdata->disconnect = val;
|
2097 |
|
|
else
|
2098 |
|
|
hostdata->disconnect = DIS_ADAPTIVE;
|
2099 |
|
|
}
|
2100 |
|
|
|
2101 |
|
|
if (check_setup_args("noreset",&flags,&val,buf))
|
2102 |
|
|
hostdata->args ^= A_NO_SCSI_RESET;
|
2103 |
|
|
|
2104 |
|
|
if (check_setup_args("level2",&flags,&val,buf))
|
2105 |
|
|
hostdata->level2 = val;
|
2106 |
|
|
|
2107 |
|
|
if (check_setup_args("debug",&flags,&val,buf))
|
2108 |
|
|
hostdata->args = (val & DB_MASK);
|
2109 |
|
|
|
2110 |
|
|
#ifdef PROC_INTERFACE
|
2111 |
|
|
if (check_setup_args("proc",&flags,&val,buf))
|
2112 |
|
|
hostdata->proc = val;
|
2113 |
|
|
#endif
|
2114 |
|
|
|
2115 |
|
|
|
2116 |
|
|
x = reset_hardware(instance,(hostdata->args & A_NO_SCSI_RESET)?RESET_CARD:RESET_CARD_AND_BUS);
|
2117 |
|
|
|
2118 |
|
|
hostdata->microcode = read_3393(hostdata,WD_CDB_1);
|
2119 |
|
|
if (x & 0x01) {
|
2120 |
|
|
if (x & B_FLAG)
|
2121 |
|
|
hostdata->chip = C_WD33C93B;
|
2122 |
|
|
else
|
2123 |
|
|
hostdata->chip = C_WD33C93A;
|
2124 |
|
|
}
|
2125 |
|
|
else
|
2126 |
|
|
hostdata->chip = C_WD33C93;
|
2127 |
|
|
|
2128 |
|
|
printk("dip_switch=%02x irq=%d ioport=%02x floppy=%s sync/DOS5=%s ",
|
2129 |
|
|
(switches & 0x7f),
|
2130 |
|
|
instance->irq,hostdata->io_base,
|
2131 |
|
|
(switches & SW_FLOPPY)?"Yes":"No",
|
2132 |
|
|
(switches & SW_SYNC_DOS5)?"Yes":"No");
|
2133 |
|
|
printk("hardware_ver=%02x chip=%s microcode=%02x\n",
|
2134 |
|
|
hrev,
|
2135 |
|
|
(hostdata->chip==C_WD33C93)?"WD33c93":
|
2136 |
|
|
(hostdata->chip==C_WD33C93A)?"WD33c93A":
|
2137 |
|
|
(hostdata->chip==C_WD33C93B)?"WD33c93B":"unknown",
|
2138 |
|
|
hostdata->microcode);
|
2139 |
|
|
#ifdef DEBUGGING_ON
|
2140 |
|
|
printk("setup_args = ");
|
2141 |
|
|
for (x=0; x<MAX_SETUP_ARGS; x++)
|
2142 |
|
|
printk("%s,",setup_args[x]);
|
2143 |
|
|
printk("\n");
|
2144 |
|
|
#endif
|
2145 |
|
|
if (hostdata->sync_off == 0xff)
|
2146 |
|
|
printk("Sync-transfer DISABLED on all devices: ENABLE from command-line\n");
|
2147 |
|
|
printk("IN2000 driver version %s - %s\n",IN2000_VERSION,IN2000_DATE);
|
2148 |
|
|
}
|
2149 |
|
|
|
2150 |
|
|
return detect_count;
|
2151 |
|
|
}
|
2152 |
|
|
|
2153 |
|
|
|
2154 |
|
|
/* NOTE: I lifted this function straight out of the old driver,
|
2155 |
|
|
* and have not tested it. Presumably it does what it's
|
2156 |
|
|
* supposed to do...
|
2157 |
|
|
*/
|
2158 |
|
|
|
2159 |
|
|
int in2000_biosparam(Disk *disk, kdev_t dev, int *iinfo)
|
2160 |
|
|
{
|
2161 |
|
|
int size;
|
2162 |
|
|
|
2163 |
|
|
size = disk->capacity;
|
2164 |
|
|
iinfo[0] = 64;
|
2165 |
|
|
iinfo[1] = 32;
|
2166 |
|
|
iinfo[2] = size >> 11;
|
2167 |
|
|
|
2168 |
|
|
/* This should approximate the large drive handling that the DOS ASPI manager
|
2169 |
|
|
uses. Drives very near the boundaries may not be handled correctly (i.e.
|
2170 |
|
|
near 2.0 Gb and 4.0 Gb) */
|
2171 |
|
|
|
2172 |
|
|
if (iinfo[2] > 1024) {
|
2173 |
|
|
iinfo[0] = 64;
|
2174 |
|
|
iinfo[1] = 63;
|
2175 |
|
|
iinfo[2] = disk->capacity / (iinfo[0] * iinfo[1]);
|
2176 |
|
|
}
|
2177 |
|
|
if (iinfo[2] > 1024) {
|
2178 |
|
|
iinfo[0] = 128;
|
2179 |
|
|
iinfo[1] = 63;
|
2180 |
|
|
iinfo[2] = disk->capacity / (iinfo[0] * iinfo[1]);
|
2181 |
|
|
}
|
2182 |
|
|
if (iinfo[2] > 1024) {
|
2183 |
|
|
iinfo[0] = 255;
|
2184 |
|
|
iinfo[1] = 63;
|
2185 |
|
|
iinfo[2] = disk->capacity / (iinfo[0] * iinfo[1]);
|
2186 |
|
|
}
|
2187 |
|
|
return 0;
|
2188 |
|
|
}
|
2189 |
|
|
|
2190 |
|
|
|
2191 |
|
|
|
2192 |
|
|
struct proc_dir_entry proc_scsi_in2000 = {
|
2193 |
|
|
PROC_SCSI_IN2000, 6, "in2000",
|
2194 |
|
|
S_IFDIR | S_IRUGO | S_IXUGO, 2
|
2195 |
|
|
};
|
2196 |
|
|
|
2197 |
|
|
|
2198 |
|
|
int in2000_proc_info(char *buf, char **start, off_t off, int len, int hn, int in)
|
2199 |
|
|
{
|
2200 |
|
|
|
2201 |
|
|
#ifdef PROC_INTERFACE
|
2202 |
|
|
|
2203 |
|
|
char *bp;
|
2204 |
|
|
char tbuf[128];
|
2205 |
|
|
unsigned long flags;
|
2206 |
|
|
struct Scsi_Host *instance;
|
2207 |
|
|
struct IN2000_hostdata *hd;
|
2208 |
|
|
Scsi_Cmnd *cmd;
|
2209 |
|
|
int x,i;
|
2210 |
|
|
static int stop = 0;
|
2211 |
|
|
|
2212 |
|
|
for (instance=instance_list; instance; instance=instance->next) {
|
2213 |
|
|
if (instance->host_no == hn)
|
2214 |
|
|
break;
|
2215 |
|
|
}
|
2216 |
|
|
if (!instance) {
|
2217 |
|
|
printk("*** Hmm... Can't find host #%d!\n",hn);
|
2218 |
|
|
return (-ESRCH);
|
2219 |
|
|
}
|
2220 |
|
|
hd = (struct IN2000_hostdata *)instance->hostdata;
|
2221 |
|
|
|
2222 |
|
|
/* If 'in' is TRUE we need to _read_ the proc file. We accept the following
|
2223 |
|
|
* keywords (same format as command-line, but only ONE per read):
|
2224 |
|
|
* debug
|
2225 |
|
|
* disconnect
|
2226 |
|
|
* period
|
2227 |
|
|
* resync
|
2228 |
|
|
* proc
|
2229 |
|
|
*/
|
2230 |
|
|
|
2231 |
|
|
if (in) {
|
2232 |
|
|
buf[len] = '\0';
|
2233 |
|
|
bp = buf;
|
2234 |
|
|
if (!strncmp(bp,"debug:",6)) {
|
2235 |
|
|
bp += 6;
|
2236 |
|
|
hd->args = simple_strtoul(bp,NULL,0) & DB_MASK;
|
2237 |
|
|
}
|
2238 |
|
|
else if (!strncmp(bp,"disconnect:",11)) {
|
2239 |
|
|
bp += 11;
|
2240 |
|
|
x = simple_strtoul(bp,NULL,0);
|
2241 |
|
|
if (x < DIS_NEVER || x > DIS_ALWAYS)
|
2242 |
|
|
x = DIS_ADAPTIVE;
|
2243 |
|
|
hd->disconnect = x;
|
2244 |
|
|
}
|
2245 |
|
|
else if (!strncmp(bp,"period:",7)) {
|
2246 |
|
|
bp += 7;
|
2247 |
|
|
x = simple_strtoul(bp,NULL,0);
|
2248 |
|
|
hd->default_sx_per = sx_table[round_period((unsigned int)x)].period_ns;
|
2249 |
|
|
}
|
2250 |
|
|
else if (!strncmp(bp,"resync:",7)) {
|
2251 |
|
|
bp += 7;
|
2252 |
|
|
x = simple_strtoul(bp,NULL,0);
|
2253 |
|
|
for (i=0; i<7; i++)
|
2254 |
|
|
if (x & (1<<i))
|
2255 |
|
|
hd->sync_stat[i] = SS_UNSET;
|
2256 |
|
|
}
|
2257 |
|
|
else if (!strncmp(bp,"proc:",5)) {
|
2258 |
|
|
bp += 5;
|
2259 |
|
|
hd->proc = simple_strtoul(bp,NULL,0);
|
2260 |
|
|
}
|
2261 |
|
|
else if (!strncmp(bp,"level2:",7)) {
|
2262 |
|
|
bp += 7;
|
2263 |
|
|
hd->level2 = simple_strtoul(bp,NULL,0);
|
2264 |
|
|
}
|
2265 |
|
|
return len;
|
2266 |
|
|
}
|
2267 |
|
|
|
2268 |
|
|
save_flags(flags);
|
2269 |
|
|
cli();
|
2270 |
|
|
bp = buf;
|
2271 |
|
|
*bp = '\0';
|
2272 |
|
|
if (hd->proc & PR_VERSION) {
|
2273 |
|
|
sprintf(tbuf,"\nVersion %s - %s. Compiled %s %s",
|
2274 |
|
|
IN2000_VERSION,IN2000_DATE,__DATE__,__TIME__);
|
2275 |
|
|
strcat(bp,tbuf);
|
2276 |
|
|
}
|
2277 |
|
|
if (hd->proc & PR_INFO) {
|
2278 |
|
|
sprintf(tbuf,"\ndip_switch=%02x: irq=%d io=%02x floppy=%s sync/DOS5=%s",
|
2279 |
|
|
(hd->dip_switch & 0x7f), instance->irq, hd->io_base,
|
2280 |
|
|
(hd->dip_switch & 0x40)?"Yes":"No",
|
2281 |
|
|
(hd->dip_switch & 0x20)?"Yes":"No");
|
2282 |
|
|
strcat(bp,tbuf);
|
2283 |
|
|
strcat(bp,"\nsync_xfer[] = ");
|
2284 |
|
|
for (x=0; x<7; x++) {
|
2285 |
|
|
sprintf(tbuf,"\t%02x",hd->sync_xfer[x]);
|
2286 |
|
|
strcat(bp,tbuf);
|
2287 |
|
|
}
|
2288 |
|
|
strcat(bp,"\nsync_stat[] = ");
|
2289 |
|
|
for (x=0; x<7; x++) {
|
2290 |
|
|
sprintf(tbuf,"\t%02x",hd->sync_stat[x]);
|
2291 |
|
|
strcat(bp,tbuf);
|
2292 |
|
|
}
|
2293 |
|
|
}
|
2294 |
|
|
#ifdef PROC_STATISTICS
|
2295 |
|
|
if (hd->proc & PR_STATISTICS) {
|
2296 |
|
|
strcat(bp,"\ncommands issued: ");
|
2297 |
|
|
for (x=0; x<7; x++) {
|
2298 |
|
|
sprintf(tbuf,"\t%ld",hd->cmd_cnt[x]);
|
2299 |
|
|
strcat(bp,tbuf);
|
2300 |
|
|
}
|
2301 |
|
|
strcat(bp,"\ndisconnects allowed:");
|
2302 |
|
|
for (x=0; x<7; x++) {
|
2303 |
|
|
sprintf(tbuf,"\t%ld",hd->disc_allowed_cnt[x]);
|
2304 |
|
|
strcat(bp,tbuf);
|
2305 |
|
|
}
|
2306 |
|
|
strcat(bp,"\ndisconnects done: ");
|
2307 |
|
|
for (x=0; x<7; x++) {
|
2308 |
|
|
sprintf(tbuf,"\t%ld",hd->disc_done_cnt[x]);
|
2309 |
|
|
strcat(bp,tbuf);
|
2310 |
|
|
}
|
2311 |
|
|
sprintf(tbuf,"\ninterrupts: \t%ld",hd->int_cnt);
|
2312 |
|
|
strcat(bp,tbuf);
|
2313 |
|
|
}
|
2314 |
|
|
#endif
|
2315 |
|
|
if (hd->proc & PR_CONNECTED) {
|
2316 |
|
|
strcat(bp,"\nconnected: ");
|
2317 |
|
|
if (hd->connected) {
|
2318 |
|
|
cmd = (Scsi_Cmnd *)hd->connected;
|
2319 |
|
|
sprintf(tbuf," %ld-%d:%d(%02x)",
|
2320 |
|
|
cmd->pid, cmd->target, cmd->lun, cmd->cmnd[0]);
|
2321 |
|
|
strcat(bp,tbuf);
|
2322 |
|
|
}
|
2323 |
|
|
}
|
2324 |
|
|
if (hd->proc & PR_INPUTQ) {
|
2325 |
|
|
strcat(bp,"\ninput_Q: ");
|
2326 |
|
|
cmd = (Scsi_Cmnd *)hd->input_Q;
|
2327 |
|
|
while (cmd) {
|
2328 |
|
|
sprintf(tbuf," %ld-%d:%d(%02x)",
|
2329 |
|
|
cmd->pid, cmd->target, cmd->lun, cmd->cmnd[0]);
|
2330 |
|
|
strcat(bp,tbuf);
|
2331 |
|
|
cmd = (Scsi_Cmnd *)cmd->host_scribble;
|
2332 |
|
|
}
|
2333 |
|
|
}
|
2334 |
|
|
if (hd->proc & PR_DISCQ) {
|
2335 |
|
|
strcat(bp,"\ndisconnected_Q:");
|
2336 |
|
|
cmd = (Scsi_Cmnd *)hd->disconnected_Q;
|
2337 |
|
|
while (cmd) {
|
2338 |
|
|
sprintf(tbuf," %ld-%d:%d(%02x)",
|
2339 |
|
|
cmd->pid, cmd->target, cmd->lun, cmd->cmnd[0]);
|
2340 |
|
|
strcat(bp,tbuf);
|
2341 |
|
|
cmd = (Scsi_Cmnd *)cmd->host_scribble;
|
2342 |
|
|
}
|
2343 |
|
|
}
|
2344 |
|
|
if (hd->proc & PR_TEST) {
|
2345 |
|
|
; /* insert your own custom function here */
|
2346 |
|
|
}
|
2347 |
|
|
strcat(bp,"\n");
|
2348 |
|
|
restore_flags(flags);
|
2349 |
|
|
*start = buf;
|
2350 |
|
|
if (stop) {
|
2351 |
|
|
stop = 0;
|
2352 |
|
|
return 0; /* return 0 to signal end-of-file */
|
2353 |
|
|
}
|
2354 |
|
|
if (off > 0x40000) /* ALWAYS stop after 256k bytes have been read */
|
2355 |
|
|
stop = 1;;
|
2356 |
|
|
if (hd->proc & PR_STOP) /* stop every other time */
|
2357 |
|
|
stop = 1;
|
2358 |
|
|
return strlen(bp);
|
2359 |
|
|
|
2360 |
|
|
#else /* PROC_INTERFACE */
|
2361 |
|
|
|
2362 |
|
|
return 0;
|
2363 |
|
|
|
2364 |
|
|
#endif /* PROC_INTERFACE */
|
2365 |
|
|
|
2366 |
|
|
}
|
2367 |
|
|
|
2368 |
|
|
|
2369 |
|
|
#ifdef MODULE
|
2370 |
|
|
|
2371 |
|
|
Scsi_Host_Template driver_template = IN2000;
|
2372 |
|
|
|
2373 |
|
|
#include "scsi_module.c"
|
2374 |
|
|
|
2375 |
|
|
#endif
|
2376 |
|
|
|