1 |
1633 |
jcastillo |
/*
|
2 |
|
|
* linux/include/asm-arm/proc-armo/pgtable.h
|
3 |
|
|
*
|
4 |
|
|
* Copyright (C) 1995, 1996 Russell King
|
5 |
|
|
* Modified 18/19-Oct-1997 for two-level page table
|
6 |
|
|
*/
|
7 |
|
|
#ifndef __ASM_PROC_PGTABLE_H
|
8 |
|
|
#define __ASM_PROC_PGTABLE_H
|
9 |
|
|
|
10 |
|
|
#include <asm/arch/mmu.h>
|
11 |
|
|
|
12 |
|
|
#define LIBRARY_TEXT_START 0x0c000000
|
13 |
|
|
|
14 |
|
|
/*
|
15 |
|
|
* Cache flushing...
|
16 |
|
|
*/
|
17 |
|
|
#define flush_cache_all() do { } while (0)
|
18 |
|
|
#define flush_cache_mm(mm) do { } while (0)
|
19 |
|
|
#define flush_cache_range(mm,start,end) do { } while (0)
|
20 |
|
|
#define flush_cache_page(vma,vmaddr) do { } while (0)
|
21 |
|
|
#define flush_page_to_ram(page) do { } while (0)
|
22 |
|
|
|
23 |
|
|
/*
|
24 |
|
|
* TLB flushing:
|
25 |
|
|
*
|
26 |
|
|
* - flush_tlb() flushes the current mm struct TLBs
|
27 |
|
|
* - flush_tlb_all() flushes all processes TLBs
|
28 |
|
|
* - flush_tlb_mm(mm) flushes the specified mm context TLB's
|
29 |
|
|
* - flush_tlb_page(vma, vmaddr) flushes one page
|
30 |
|
|
* - flush_tlb_range(mm, start, end) flushes a range of pages
|
31 |
|
|
*/
|
32 |
|
|
#define flush_tlb() do { } while (0)
|
33 |
|
|
#define flush_tlb_all() do { } while (0)
|
34 |
|
|
#define flush_tlb_mm(mm) do { } while (0)
|
35 |
|
|
#define flush_tlb_range(mm, start, end) do { } while (0)
|
36 |
|
|
#define flush_tlb_page(vma, vmaddr) do { } while (0)
|
37 |
|
|
|
38 |
|
|
/*
|
39 |
|
|
* We have a mem map cache...
|
40 |
|
|
*/
|
41 |
|
|
extern __inline__ void update_mm_cache_all(void)
|
42 |
|
|
{
|
43 |
|
|
struct task_struct *p;
|
44 |
|
|
|
45 |
|
|
p = &init_task;
|
46 |
|
|
do {
|
47 |
|
|
processor.u.armv2._update_map(p);
|
48 |
|
|
p = p->next_task;
|
49 |
|
|
} while (p != &init_task);
|
50 |
|
|
|
51 |
|
|
processor.u.armv2._remap_memc (current);
|
52 |
|
|
}
|
53 |
|
|
|
54 |
|
|
extern __inline__ void update_mm_cache_task(struct task_struct *tsk)
|
55 |
|
|
{
|
56 |
|
|
processor.u.armv2._update_map(tsk);
|
57 |
|
|
|
58 |
|
|
if (tsk == current)
|
59 |
|
|
processor.u.armv2._remap_memc (tsk);
|
60 |
|
|
}
|
61 |
|
|
|
62 |
|
|
extern __inline__ void update_mm_cache_mm(struct mm_struct *mm)
|
63 |
|
|
{
|
64 |
|
|
struct task_struct *p;
|
65 |
|
|
|
66 |
|
|
p = &init_task;
|
67 |
|
|
do {
|
68 |
|
|
if (p->mm == mm)
|
69 |
|
|
processor.u.armv2._update_map(p);
|
70 |
|
|
p = p->next_task;
|
71 |
|
|
} while (p != &init_task);
|
72 |
|
|
|
73 |
|
|
if (current->mm == mm)
|
74 |
|
|
processor.u.armv2._remap_memc (current);
|
75 |
|
|
}
|
76 |
|
|
|
77 |
|
|
extern __inline__ void update_mm_cache_mm_addr(struct mm_struct *mm, unsigned long addr, pte_t pte)
|
78 |
|
|
{
|
79 |
|
|
struct task_struct *p;
|
80 |
|
|
|
81 |
|
|
p = &init_task;
|
82 |
|
|
do {
|
83 |
|
|
if (p->mm == mm)
|
84 |
|
|
processor.u.armv2._update_mmu_cache(p, addr, pte);
|
85 |
|
|
p = p->next_task;
|
86 |
|
|
} while (p != &init_task);
|
87 |
|
|
|
88 |
|
|
if (current->mm == mm)
|
89 |
|
|
processor.u.armv2._remap_memc (current);
|
90 |
|
|
}
|
91 |
|
|
|
92 |
|
|
#define __flush_entry_to_ram(entry)
|
93 |
|
|
|
94 |
|
|
/* Certain architectures need to do special things when pte's
|
95 |
|
|
* within a page table are directly modified. Thus, the following
|
96 |
|
|
* hook is made available.
|
97 |
|
|
*/
|
98 |
|
|
/* PMD_SHIFT determines the size of the area a second-level page table can map */
|
99 |
|
|
#define PMD_SHIFT 20
|
100 |
|
|
#define PMD_SIZE (1UL << PMD_SHIFT)
|
101 |
|
|
#define PMD_MASK (~(PMD_SIZE-1))
|
102 |
|
|
|
103 |
|
|
/* PGDIR_SHIFT determines what a third-level page table entry can map */
|
104 |
|
|
#define PGDIR_SHIFT 20
|
105 |
|
|
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
|
106 |
|
|
#define PGDIR_MASK (~(PGDIR_SIZE-1))
|
107 |
|
|
|
108 |
|
|
/*
|
109 |
|
|
* entries per page directory level: the arm3 is one-level, so
|
110 |
|
|
* we don't really have any PMD or PTE directory physically.
|
111 |
|
|
*
|
112 |
|
|
* 18-Oct-1997 RMK Now two-level (32x32)
|
113 |
|
|
*/
|
114 |
|
|
#define PTRS_PER_PTE 32
|
115 |
|
|
#define PTRS_PER_PMD 1
|
116 |
|
|
#define PTRS_PER_PGD 32
|
117 |
|
|
|
118 |
|
|
/* Just any arbitrary offset to the start of the vmalloc VM area: the
|
119 |
|
|
* current 8MB value just means that there will be a 8MB "hole" after the
|
120 |
|
|
* physical memory until the kernel virtual memory starts. That means that
|
121 |
|
|
* any out-of-bounds memory accesses will hopefully be caught.
|
122 |
|
|
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
|
123 |
|
|
* area for the same reason. ;)
|
124 |
|
|
*/
|
125 |
|
|
#define VMALLOC_START 0x01a00000
|
126 |
|
|
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
|
127 |
|
|
|
128 |
|
|
#define _PAGE_PRESENT 0x01
|
129 |
|
|
#define _PAGE_READONLY 0x02
|
130 |
|
|
#define _PAGE_NOT_USER 0x04
|
131 |
|
|
#define _PAGE_OLD 0x08
|
132 |
|
|
#define _PAGE_CLEAN 0x10
|
133 |
|
|
|
134 |
|
|
#define _PAGE_TABLE (_PAGE_PRESENT)
|
135 |
|
|
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_OLD | _PAGE_CLEAN)
|
136 |
|
|
|
137 |
|
|
/* -- present -- -- !dirty -- --- !write --- ---- !user --- */
|
138 |
|
|
#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_CLEAN | _PAGE_READONLY | _PAGE_NOT_USER)
|
139 |
|
|
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_CLEAN )
|
140 |
|
|
#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_CLEAN | _PAGE_READONLY )
|
141 |
|
|
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_CLEAN | _PAGE_READONLY )
|
142 |
|
|
#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_NOT_USER)
|
143 |
|
|
|
144 |
|
|
/*
|
145 |
|
|
* The arm can't do page protection for execute, and considers that the same are read.
|
146 |
|
|
* Also, write permissions imply read permissions. This is the closest we can get..
|
147 |
|
|
*/
|
148 |
|
|
#define __P000 PAGE_NONE
|
149 |
|
|
#define __P001 PAGE_READONLY
|
150 |
|
|
#define __P010 PAGE_COPY
|
151 |
|
|
#define __P011 PAGE_COPY
|
152 |
|
|
#define __P100 PAGE_READONLY
|
153 |
|
|
#define __P101 PAGE_READONLY
|
154 |
|
|
#define __P110 PAGE_COPY
|
155 |
|
|
#define __P111 PAGE_COPY
|
156 |
|
|
|
157 |
|
|
#define __S000 PAGE_NONE
|
158 |
|
|
#define __S001 PAGE_READONLY
|
159 |
|
|
#define __S010 PAGE_SHARED
|
160 |
|
|
#define __S011 PAGE_SHARED
|
161 |
|
|
#define __S100 PAGE_READONLY
|
162 |
|
|
#define __S101 PAGE_READONLY
|
163 |
|
|
#define __S110 PAGE_SHARED
|
164 |
|
|
#define __S111 PAGE_SHARED
|
165 |
|
|
|
166 |
|
|
#undef TEST_VERIFY_AREA
|
167 |
|
|
|
168 |
|
|
extern unsigned long *empty_zero_page;
|
169 |
|
|
|
170 |
|
|
/*
|
171 |
|
|
* BAD_PAGETABLE is used when we need a bogus page-table, while
|
172 |
|
|
* BAD_PAGE is used for a bogus page.
|
173 |
|
|
*
|
174 |
|
|
* ZERO_PAGE is a global shared page that is always zero: used
|
175 |
|
|
* for zero-mapped memory areas etc..
|
176 |
|
|
*/
|
177 |
|
|
extern pte_t __bad_page(void);
|
178 |
|
|
extern pte_t *__bad_pagetable(void);
|
179 |
|
|
|
180 |
|
|
#define BAD_PAGETABLE __bad_pagetable()
|
181 |
|
|
#define BAD_PAGE __bad_page()
|
182 |
|
|
#define ZERO_PAGE ((unsigned long) empty_zero_page)
|
183 |
|
|
|
184 |
|
|
/* number of bits that fit into a memory pointer */
|
185 |
|
|
#define BYTES_PER_PTR (sizeof(unsigned long))
|
186 |
|
|
#define BITS_PER_PTR (8*BYTES_PER_PTR)
|
187 |
|
|
|
188 |
|
|
/* to align the pointer to a pointer address */
|
189 |
|
|
#define PTR_MASK (~(sizeof(void*)-1))
|
190 |
|
|
|
191 |
|
|
/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
|
192 |
|
|
#define SIZEOF_PTR_LOG2 2
|
193 |
|
|
|
194 |
|
|
/* to find an entry in a page-table */
|
195 |
|
|
#define PAGE_PTR(address) \
|
196 |
|
|
((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
|
197 |
|
|
|
198 |
|
|
/* to set the page-dir */
|
199 |
|
|
#define SET_PAGE_DIR(tsk,pgdir) \
|
200 |
|
|
do { \
|
201 |
|
|
tsk->tss.memmap = (unsigned long)pgdir; \
|
202 |
|
|
processor.u.armv2._update_map(tsk); \
|
203 |
|
|
if ((tsk) == current) \
|
204 |
|
|
processor.u.armv2._remap_memc (current); \
|
205 |
|
|
} while (0)
|
206 |
|
|
|
207 |
|
|
extern unsigned long physical_start;
|
208 |
|
|
extern unsigned long physical_end;
|
209 |
|
|
|
210 |
|
|
#define pte_none(pte) (!pte_val(pte))
|
211 |
|
|
#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
|
212 |
|
|
#define pte_clear(ptep) set_pte((ptep), __pte(0))
|
213 |
|
|
|
214 |
|
|
#define pmd_none(pmd) (!pmd_val(pmd))
|
215 |
|
|
#define pmd_bad(pmd) ((pmd_val(pmd) & 0xfc000002))
|
216 |
|
|
#define pmd_present(pmd) (pmd_val(pmd) & _PAGE_PRESENT)
|
217 |
|
|
#define pmd_clear(pmdp) set_pmd(pmdp, __pmd(0))
|
218 |
|
|
|
219 |
|
|
/*
|
220 |
|
|
* The "pgd_xxx()" functions here are trivial for a folded two-level
|
221 |
|
|
* setup: the pgd is never bad, and a pmd always exists (as it's folded
|
222 |
|
|
* into the pgd entry)
|
223 |
|
|
*/
|
224 |
|
|
#define pgd_none(pgd) (0)
|
225 |
|
|
#define pgd_bad(pgd) (0)
|
226 |
|
|
#define pgd_present(pgd) (1)
|
227 |
|
|
#define pgd_clear(pgdp)
|
228 |
|
|
|
229 |
|
|
/*
|
230 |
|
|
* The following only work if pte_present() is true.
|
231 |
|
|
* Undefined behaviour if not..
|
232 |
|
|
*/
|
233 |
|
|
extern inline int pte_read(pte_t pte) { return !(pte_val(pte) & _PAGE_NOT_USER); }
|
234 |
|
|
extern inline int pte_write(pte_t pte) { return !(pte_val(pte) & _PAGE_READONLY); }
|
235 |
|
|
extern inline int pte_exec(pte_t pte) { return !(pte_val(pte) & _PAGE_NOT_USER); }
|
236 |
|
|
extern inline int pte_dirty(pte_t pte) { return !(pte_val(pte) & _PAGE_CLEAN); }
|
237 |
|
|
extern inline int pte_young(pte_t pte) { return !(pte_val(pte) & _PAGE_OLD); }
|
238 |
|
|
#define pte_cacheable(pte) 1
|
239 |
|
|
|
240 |
|
|
extern inline pte_t pte_nocache(pte_t pte) { return pte; }
|
241 |
|
|
extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) |= _PAGE_READONLY; return pte; }
|
242 |
|
|
extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) |= _PAGE_NOT_USER; return pte; }
|
243 |
|
|
extern inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) |= _PAGE_NOT_USER; return pte; }
|
244 |
|
|
extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) |= _PAGE_CLEAN; return pte; }
|
245 |
|
|
extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) |= _PAGE_OLD; return pte; }
|
246 |
|
|
|
247 |
|
|
extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) &= ~_PAGE_READONLY; return pte; }
|
248 |
|
|
extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) &= ~_PAGE_NOT_USER; return pte; }
|
249 |
|
|
extern inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) &= ~_PAGE_NOT_USER; return pte; }
|
250 |
|
|
extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) &= ~_PAGE_CLEAN; return pte; }
|
251 |
|
|
extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) &= ~_PAGE_OLD; return pte; }
|
252 |
|
|
|
253 |
|
|
/*
|
254 |
|
|
* Conversion functions: convert a page and protection to a page entry,
|
255 |
|
|
* and a page entry and page directory to the page they refer to.
|
256 |
|
|
*/
|
257 |
|
|
extern __inline__ pte_t mk_pte(unsigned long page, pgprot_t pgprot)
|
258 |
|
|
{
|
259 |
|
|
pte_t pte;
|
260 |
|
|
pte_val(pte) = __virt_to_phys(page) | pgprot_val(pgprot);
|
261 |
|
|
return pte;
|
262 |
|
|
}
|
263 |
|
|
|
264 |
|
|
extern __inline__ pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
265 |
|
|
{
|
266 |
|
|
pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
|
267 |
|
|
return pte;
|
268 |
|
|
}
|
269 |
|
|
|
270 |
|
|
#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
|
271 |
|
|
|
272 |
|
|
extern __inline__ unsigned long pte_page(pte_t pte)
|
273 |
|
|
{
|
274 |
|
|
return __phys_to_virt(pte_val(pte) & PAGE_MASK);
|
275 |
|
|
}
|
276 |
|
|
|
277 |
|
|
extern __inline__ pmd_t mk_pmd (pte_t *ptep)
|
278 |
|
|
{
|
279 |
|
|
pmd_t pmd;
|
280 |
|
|
pmd_val(pmd) = __virt_to_phys((unsigned long)ptep) | _PAGE_TABLE;
|
281 |
|
|
return pmd;
|
282 |
|
|
}
|
283 |
|
|
|
284 |
|
|
#define set_pmd(pmdp,pmd) ((*(pmdp)) = (pmd))
|
285 |
|
|
|
286 |
|
|
extern __inline__ unsigned long pmd_page(pmd_t pmd)
|
287 |
|
|
{
|
288 |
|
|
return __phys_to_virt(pmd_val(pmd) & ~_PAGE_TABLE);
|
289 |
|
|
}
|
290 |
|
|
|
291 |
|
|
/* to find an entry in a page-table-directory */
|
292 |
|
|
extern __inline__ pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
|
293 |
|
|
{
|
294 |
|
|
return mm->pgd + (address >> PGDIR_SHIFT);
|
295 |
|
|
}
|
296 |
|
|
|
297 |
|
|
/* Find an entry in the second-level page table.. */
|
298 |
|
|
#define pmd_offset(dir, address) ((pmd_t *)(dir))
|
299 |
|
|
|
300 |
|
|
/* Find an entry in the third-level page table.. */
|
301 |
|
|
extern __inline__ pte_t * pte_offset(pmd_t *dir, unsigned long address)
|
302 |
|
|
{
|
303 |
|
|
return (pte_t *)pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
|
304 |
|
|
}
|
305 |
|
|
|
306 |
|
|
/*
|
307 |
|
|
* Allocate and free page tables. The xxx_kernel() versions are
|
308 |
|
|
* used to allocate a kernel page table - this turns on ASN bits
|
309 |
|
|
* if any.
|
310 |
|
|
*/
|
311 |
|
|
#define pte_free_kernel(pte) pte_free((pte))
|
312 |
|
|
#define pte_alloc_kernel(pmd,address) pte_alloc((pmd),(address))
|
313 |
|
|
|
314 |
|
|
/*
|
315 |
|
|
* allocating and freeing a pmd is trivial: the 1-entry pmd is
|
316 |
|
|
* inside the pgd, so has no extra memory associated with it.
|
317 |
|
|
*/
|
318 |
|
|
#define pmd_free_kernel(pmdp)
|
319 |
|
|
#define pmd_alloc_kernel(pgd,address) ((pmd_t *)(pgd))
|
320 |
|
|
|
321 |
|
|
extern __inline__ void pte_free(pte_t * pte)
|
322 |
|
|
{
|
323 |
|
|
extern void kfree(void *);
|
324 |
|
|
kfree (pte);
|
325 |
|
|
}
|
326 |
|
|
|
327 |
|
|
extern const char bad_pmd_string[];
|
328 |
|
|
|
329 |
|
|
extern __inline__ pte_t *pte_alloc(pmd_t * pmd, unsigned long address)
|
330 |
|
|
{
|
331 |
|
|
address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
|
332 |
|
|
|
333 |
|
|
if (pmd_none (*pmd)) {
|
334 |
|
|
pte_t *page = (pte_t *) kmalloc (PTRS_PER_PTE * BYTES_PER_PTR, GFP_KERNEL);
|
335 |
|
|
if (pmd_none (*pmd)) {
|
336 |
|
|
if (page) {
|
337 |
|
|
memzero (page, PTRS_PER_PTE * BYTES_PER_PTR);
|
338 |
|
|
set_pmd(pmd, mk_pmd(page));
|
339 |
|
|
return page + address;
|
340 |
|
|
}
|
341 |
|
|
set_pmd (pmd, mk_pmd (BAD_PAGETABLE));
|
342 |
|
|
return NULL;
|
343 |
|
|
}
|
344 |
|
|
kfree (page);
|
345 |
|
|
}
|
346 |
|
|
if (pmd_bad (*pmd)) {
|
347 |
|
|
printk(bad_pmd_string, pmd_val(*pmd));
|
348 |
|
|
set_pmd (pmd, mk_pmd (BAD_PAGETABLE));
|
349 |
|
|
return NULL;
|
350 |
|
|
}
|
351 |
|
|
return (pte_t *) pmd_page(*pmd) + address;
|
352 |
|
|
}
|
353 |
|
|
|
354 |
|
|
/*
|
355 |
|
|
* allocating and freeing a pmd is trivial: the 1-entry pmd is
|
356 |
|
|
* inside the pgd, so has no extra memory associated with it.
|
357 |
|
|
*/
|
358 |
|
|
#define pmd_free(pmd)
|
359 |
|
|
#define pmd_alloc(pgd,address) ((pmd_t *)(pgd))
|
360 |
|
|
|
361 |
|
|
/*
|
362 |
|
|
* Free a page directory. Takes the virtual address.
|
363 |
|
|
*/
|
364 |
|
|
extern __inline__ void pgd_free(pgd_t * pgd)
|
365 |
|
|
{
|
366 |
|
|
extern void kfree(void *);
|
367 |
|
|
kfree ((void *)pgd);
|
368 |
|
|
}
|
369 |
|
|
|
370 |
|
|
/*
|
371 |
|
|
* Allocate a new page directory. Return the virtual address of it.
|
372 |
|
|
*/
|
373 |
|
|
extern __inline__ pgd_t * pgd_alloc(void)
|
374 |
|
|
{
|
375 |
|
|
pgd_t *pgd;
|
376 |
|
|
extern void *kmalloc(unsigned int, int);
|
377 |
|
|
|
378 |
|
|
pgd = (pgd_t *) kmalloc(PTRS_PER_PGD * BYTES_PER_PTR, GFP_KERNEL);
|
379 |
|
|
if (pgd)
|
380 |
|
|
memzero (pgd, PTRS_PER_PGD * BYTES_PER_PTR);
|
381 |
|
|
return pgd;
|
382 |
|
|
}
|
383 |
|
|
|
384 |
|
|
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
|
385 |
|
|
|
386 |
|
|
#define update_mmu_cache(vma,address,pte)
|
387 |
|
|
|
388 |
|
|
#define SWP_TYPE(entry) (((entry) >> 1) & 0x7f)
|
389 |
|
|
#define SWP_OFFSET(entry) ((entry) >> 8)
|
390 |
|
|
#define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) << 8))
|
391 |
|
|
|
392 |
|
|
#endif /* __ASM_PROC_PAGE_H */
|
393 |
|
|
|