1 |
1633 |
jcastillo |
#ifndef _I386_PGTABLE_H
|
2 |
|
|
#define _I386_PGTABLE_H
|
3 |
|
|
|
4 |
|
|
#include <linux/config.h>
|
5 |
|
|
|
6 |
|
|
/*
|
7 |
|
|
* Define USE_PENTIUM_MM if you want the 4MB page table optimizations.
|
8 |
|
|
* This works only on a intel Pentium.
|
9 |
|
|
*/
|
10 |
|
|
#define USE_PENTIUM_MM 1
|
11 |
|
|
|
12 |
|
|
/*
|
13 |
|
|
* The Linux memory management assumes a three-level page table setup. On
|
14 |
|
|
* the i386, we use that, but "fold" the mid level into the top-level page
|
15 |
|
|
* table, so that we physically have the same two-level page table as the
|
16 |
|
|
* i386 mmu expects.
|
17 |
|
|
*
|
18 |
|
|
* This file contains the functions and defines necessary to modify and use
|
19 |
|
|
* the i386 page table tree.
|
20 |
|
|
*/
|
21 |
|
|
|
22 |
|
|
#ifndef __ASSEMBLY__
|
23 |
|
|
|
24 |
|
|
/* Caches aren't brain-dead on the intel. */
|
25 |
|
|
#define flush_cache_all() do { } while (0)
|
26 |
|
|
#define flush_cache_mm(mm) do { } while (0)
|
27 |
|
|
#define flush_cache_range(mm, start, end) do { } while (0)
|
28 |
|
|
#define flush_cache_page(vma, vmaddr) do { } while (0)
|
29 |
|
|
#define flush_page_to_ram(page) do { } while (0)
|
30 |
|
|
#define flush_pages_to_ram(page,n) do { } while (0)
|
31 |
|
|
|
32 |
|
|
/*
|
33 |
|
|
* TLB flushing:
|
34 |
|
|
*
|
35 |
|
|
* - flush_tlb() flushes the current mm struct TLBs
|
36 |
|
|
* - flush_tlb_all() flushes all processes TLBs
|
37 |
|
|
* - flush_tlb_mm(mm) flushes the specified mm context TLB's
|
38 |
|
|
* - flush_tlb_page(vma, vmaddr) flushes one page
|
39 |
|
|
* - flush_tlb_range(mm, start, end) flushes a range of pages
|
40 |
|
|
*
|
41 |
|
|
* ..but the i386 has somewhat limited tlb flushing capabilities,
|
42 |
|
|
* and page-granular flushes are available only on i486 and up.
|
43 |
|
|
*/
|
44 |
|
|
|
45 |
|
|
#define __flush_tlb() \
|
46 |
|
|
do { unsigned long tmpreg; __asm__ __volatile__("movl %%cr3,%0\n\tmovl %0,%%cr3":"=r" (tmpreg) : :"memory"); } while (0)
|
47 |
|
|
|
48 |
|
|
/*
|
49 |
|
|
* NOTE! The intel "invlpg" semantics are extremely strange. The
|
50 |
|
|
* chip will add the segment base to the memory address, even though
|
51 |
|
|
* no segment checking is done. We correct for this by using an
|
52 |
|
|
* offset of -__PAGE_OFFSET that will wrap around the kernel segment base
|
53 |
|
|
* of __PAGE_OFFSET to get the correct address (it will always be outside
|
54 |
|
|
* the kernel segment, but we're only interested in the final linear
|
55 |
|
|
* address.
|
56 |
|
|
*/
|
57 |
|
|
#define __invlpg_mem(addr) \
|
58 |
|
|
(*((char *)(addr)-__PAGE_OFFSET))
|
59 |
|
|
#define __invlpg(addr) \
|
60 |
|
|
__asm__ __volatile__("invlpg %0": :"m" (__invlpg_mem(addr)))
|
61 |
|
|
|
62 |
|
|
/*
|
63 |
|
|
* The i386 doesn't have a page-granular invalidate. Invalidate
|
64 |
|
|
* everything for it.
|
65 |
|
|
*/
|
66 |
|
|
#ifdef CONFIG_M386
|
67 |
|
|
#define __flush_tlb_one(addr) __flush_tlb()
|
68 |
|
|
#else
|
69 |
|
|
#define __flush_tlb_one(addr) __invlpg(addr)
|
70 |
|
|
#endif
|
71 |
|
|
|
72 |
|
|
#ifndef __SMP__
|
73 |
|
|
|
74 |
|
|
#define flush_tlb() __flush_tlb()
|
75 |
|
|
#define flush_tlb_all() __flush_tlb()
|
76 |
|
|
#define local_flush_tlb() __flush_tlb()
|
77 |
|
|
|
78 |
|
|
static inline void flush_tlb_mm(struct mm_struct *mm)
|
79 |
|
|
{
|
80 |
|
|
if (mm == current->mm)
|
81 |
|
|
__flush_tlb();
|
82 |
|
|
}
|
83 |
|
|
|
84 |
|
|
static inline void flush_tlb_page(struct vm_area_struct *vma,
|
85 |
|
|
unsigned long addr)
|
86 |
|
|
{
|
87 |
|
|
if (vma->vm_mm == current->mm)
|
88 |
|
|
__flush_tlb_one(addr);
|
89 |
|
|
}
|
90 |
|
|
|
91 |
|
|
static inline void flush_tlb_range(struct mm_struct *mm,
|
92 |
|
|
unsigned long start, unsigned long end)
|
93 |
|
|
{
|
94 |
|
|
if (mm == current->mm)
|
95 |
|
|
__flush_tlb();
|
96 |
|
|
}
|
97 |
|
|
|
98 |
|
|
#else
|
99 |
|
|
|
100 |
|
|
/*
|
101 |
|
|
* We aren't very clever about this yet - SMP could certainly
|
102 |
|
|
* avoid some global flushes..
|
103 |
|
|
*/
|
104 |
|
|
|
105 |
|
|
#include <asm/smp.h>
|
106 |
|
|
|
107 |
|
|
#define local_flush_tlb() \
|
108 |
|
|
__flush_tlb()
|
109 |
|
|
|
110 |
|
|
|
111 |
|
|
#define CLEVER_SMP_INVALIDATE
|
112 |
|
|
#ifdef CLEVER_SMP_INVALIDATE
|
113 |
|
|
|
114 |
|
|
/*
|
115 |
|
|
* Smarter SMP flushing macros.
|
116 |
|
|
* c/o Linus Torvalds.
|
117 |
|
|
*
|
118 |
|
|
* These mean you can really definitely utterly forget about
|
119 |
|
|
* writing to user space from interrupts. (Its not allowed anyway).
|
120 |
|
|
*/
|
121 |
|
|
|
122 |
|
|
static inline void flush_tlb_current_task(void)
|
123 |
|
|
{
|
124 |
|
|
if (current->mm->count == 1) /* just one copy of this mm */
|
125 |
|
|
local_flush_tlb(); /* and that's us, so.. */
|
126 |
|
|
else
|
127 |
|
|
smp_flush_tlb();
|
128 |
|
|
}
|
129 |
|
|
|
130 |
|
|
#define flush_tlb() flush_tlb_current_task()
|
131 |
|
|
|
132 |
|
|
#define flush_tlb_all() smp_flush_tlb()
|
133 |
|
|
|
134 |
|
|
static inline void flush_tlb_mm(struct mm_struct * mm)
|
135 |
|
|
{
|
136 |
|
|
if (mm == current->mm && mm->count == 1)
|
137 |
|
|
local_flush_tlb();
|
138 |
|
|
else
|
139 |
|
|
smp_flush_tlb();
|
140 |
|
|
}
|
141 |
|
|
|
142 |
|
|
static inline void flush_tlb_page(struct vm_area_struct * vma,
|
143 |
|
|
unsigned long va)
|
144 |
|
|
{
|
145 |
|
|
if (vma->vm_mm == current->mm && current->mm->count == 1)
|
146 |
|
|
__flush_tlb_one(va);
|
147 |
|
|
else
|
148 |
|
|
smp_flush_tlb();
|
149 |
|
|
}
|
150 |
|
|
|
151 |
|
|
static inline void flush_tlb_range(struct mm_struct * mm,
|
152 |
|
|
unsigned long start, unsigned long end)
|
153 |
|
|
{
|
154 |
|
|
flush_tlb_mm(mm);
|
155 |
|
|
}
|
156 |
|
|
|
157 |
|
|
|
158 |
|
|
#else
|
159 |
|
|
|
160 |
|
|
#define flush_tlb() \
|
161 |
|
|
smp_flush_tlb()
|
162 |
|
|
|
163 |
|
|
#define flush_tlb_all() flush_tlb()
|
164 |
|
|
|
165 |
|
|
static inline void flush_tlb_mm(struct mm_struct *mm)
|
166 |
|
|
{
|
167 |
|
|
flush_tlb();
|
168 |
|
|
}
|
169 |
|
|
|
170 |
|
|
static inline void flush_tlb_page(struct vm_area_struct *vma,
|
171 |
|
|
unsigned long addr)
|
172 |
|
|
{
|
173 |
|
|
flush_tlb();
|
174 |
|
|
}
|
175 |
|
|
|
176 |
|
|
static inline void flush_tlb_range(struct mm_struct *mm,
|
177 |
|
|
unsigned long start, unsigned long end)
|
178 |
|
|
{
|
179 |
|
|
flush_tlb();
|
180 |
|
|
}
|
181 |
|
|
#endif
|
182 |
|
|
#endif
|
183 |
|
|
#endif /* !__ASSEMBLY__ */
|
184 |
|
|
|
185 |
|
|
|
186 |
|
|
/* Certain architectures need to do special things when pte's
|
187 |
|
|
* within a page table are directly modified. Thus, the following
|
188 |
|
|
* hook is made available.
|
189 |
|
|
*/
|
190 |
|
|
#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
|
191 |
|
|
|
192 |
|
|
/* PMD_SHIFT determines the size of the area a second-level page table can map */
|
193 |
|
|
#define PMD_SHIFT 22
|
194 |
|
|
#define PMD_SIZE (1UL << PMD_SHIFT)
|
195 |
|
|
#define PMD_MASK (~(PMD_SIZE-1))
|
196 |
|
|
|
197 |
|
|
/* PGDIR_SHIFT determines what a third-level page table entry can map */
|
198 |
|
|
#define PGDIR_SHIFT 22
|
199 |
|
|
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
|
200 |
|
|
#define PGDIR_MASK (~(PGDIR_SIZE-1))
|
201 |
|
|
|
202 |
|
|
/*
|
203 |
|
|
* entries per page directory level: the i386 is two-level, so
|
204 |
|
|
* we don't really have any PMD directory physically.
|
205 |
|
|
*/
|
206 |
|
|
#define PTRS_PER_PTE 1024
|
207 |
|
|
#define PTRS_PER_PMD 1
|
208 |
|
|
#define PTRS_PER_PGD 1024
|
209 |
|
|
|
210 |
|
|
/*
|
211 |
|
|
* pgd entries used up by user/kernel:
|
212 |
|
|
*/
|
213 |
|
|
|
214 |
|
|
#if CONFIG_MAX_MEMSIZE & 3
|
215 |
|
|
#error Invalid max physical memory size requested
|
216 |
|
|
#endif
|
217 |
|
|
|
218 |
|
|
#define USER_PGD_PTRS ((unsigned long)__PAGE_OFFSET >> PGDIR_SHIFT)
|
219 |
|
|
#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
|
220 |
|
|
#define __USER_PGD_PTRS (__PAGE_OFFSET >> PGDIR_SHIFT)
|
221 |
|
|
#define __KERNEL_PGD_PTRS (PTRS_PER_PGD-__USER_PGD_PTRS)
|
222 |
|
|
|
223 |
|
|
#ifndef __ASSEMBLY__
|
224 |
|
|
|
225 |
|
|
/* Just any arbitrary offset to the start of the vmalloc VM area: the
|
226 |
|
|
* current 8MB value just means that there will be a 8MB "hole" after the
|
227 |
|
|
* physical memory until the kernel virtual memory starts. That means that
|
228 |
|
|
* any out-of-bounds memory accesses will hopefully be caught.
|
229 |
|
|
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
|
230 |
|
|
* area for the same reason. ;)
|
231 |
|
|
*/
|
232 |
|
|
#define VMALLOC_OFFSET (8*1024*1024)
|
233 |
|
|
#define VMALLOC_START ((high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
|
234 |
|
|
#define VMALLOC_VMADDR(x) (TASK_SIZE + (unsigned long)(x))
|
235 |
|
|
|
236 |
|
|
/*
|
237 |
|
|
* The 4MB page is guessing.. Detailed in the infamous "Chapter H"
|
238 |
|
|
* of the Pentium details, but assuming intel did the straightforward
|
239 |
|
|
* thing, this bit set in the page directory entry just means that
|
240 |
|
|
* the page directory entry points directly to a 4MB-aligned block of
|
241 |
|
|
* memory.
|
242 |
|
|
*/
|
243 |
|
|
#define _PAGE_PRESENT 0x001
|
244 |
|
|
#define _PAGE_RW 0x002
|
245 |
|
|
#define _PAGE_USER 0x004
|
246 |
|
|
#define _PAGE_PCD 0x010
|
247 |
|
|
#define _PAGE_ACCESSED 0x020
|
248 |
|
|
#define _PAGE_DIRTY 0x040
|
249 |
|
|
#define _PAGE_4M 0x080 /* 4 MB page, Pentium+.. */
|
250 |
|
|
|
251 |
|
|
#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
|
252 |
|
|
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
|
253 |
|
|
|
254 |
|
|
#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
|
255 |
|
|
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
|
256 |
|
|
#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
|
257 |
|
|
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
|
258 |
|
|
#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
|
259 |
|
|
|
260 |
|
|
/*
|
261 |
|
|
* The i386 can't do page protection for execute, and considers that the same are read.
|
262 |
|
|
* Also, write permissions imply read permissions. This is the closest we can get..
|
263 |
|
|
*/
|
264 |
|
|
#define __P000 PAGE_NONE
|
265 |
|
|
#define __P001 PAGE_READONLY
|
266 |
|
|
#define __P010 PAGE_COPY
|
267 |
|
|
#define __P011 PAGE_COPY
|
268 |
|
|
#define __P100 PAGE_READONLY
|
269 |
|
|
#define __P101 PAGE_READONLY
|
270 |
|
|
#define __P110 PAGE_COPY
|
271 |
|
|
#define __P111 PAGE_COPY
|
272 |
|
|
|
273 |
|
|
#define __S000 PAGE_NONE
|
274 |
|
|
#define __S001 PAGE_READONLY
|
275 |
|
|
#define __S010 PAGE_SHARED
|
276 |
|
|
#define __S011 PAGE_SHARED
|
277 |
|
|
#define __S100 PAGE_READONLY
|
278 |
|
|
#define __S101 PAGE_READONLY
|
279 |
|
|
#define __S110 PAGE_SHARED
|
280 |
|
|
#define __S111 PAGE_SHARED
|
281 |
|
|
|
282 |
|
|
/*
|
283 |
|
|
* Define this if things work differently on a i386 and a i486:
|
284 |
|
|
* it will (on a i486) warn about kernel memory accesses that are
|
285 |
|
|
* done without a 'verify_area(VERIFY_WRITE,..)'
|
286 |
|
|
*/
|
287 |
|
|
#undef TEST_VERIFY_AREA
|
288 |
|
|
|
289 |
|
|
/* page table for 0-4MB for everybody */
|
290 |
|
|
extern unsigned long pg0[1024];
|
291 |
|
|
/* zero page used for uninitialized stuff */
|
292 |
|
|
extern unsigned long empty_zero_page[1024];
|
293 |
|
|
|
294 |
|
|
/*
|
295 |
|
|
* BAD_PAGETABLE is used when we need a bogus page-table, while
|
296 |
|
|
* BAD_PAGE is used for a bogus page.
|
297 |
|
|
*
|
298 |
|
|
* ZERO_PAGE is a global shared page that is always zero: used
|
299 |
|
|
* for zero-mapped memory areas etc..
|
300 |
|
|
*/
|
301 |
|
|
extern pte_t __bad_page(void);
|
302 |
|
|
extern pte_t * __bad_pagetable(void);
|
303 |
|
|
|
304 |
|
|
#define BAD_PAGETABLE __bad_pagetable()
|
305 |
|
|
#define BAD_PAGE __bad_page()
|
306 |
|
|
#define ZERO_PAGE ((unsigned long) empty_zero_page)
|
307 |
|
|
|
308 |
|
|
/* number of bits that fit into a memory pointer */
|
309 |
|
|
#define BITS_PER_PTR (8*sizeof(unsigned long))
|
310 |
|
|
|
311 |
|
|
/* to align the pointer to a pointer address */
|
312 |
|
|
#define PTR_MASK (~(sizeof(void*)-1))
|
313 |
|
|
|
314 |
|
|
/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
|
315 |
|
|
/* 64-bit machines, beware! SRB. */
|
316 |
|
|
#define SIZEOF_PTR_LOG2 2
|
317 |
|
|
|
318 |
|
|
/* to find an entry in a page-table */
|
319 |
|
|
#define PAGE_PTR(address) \
|
320 |
|
|
((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
|
321 |
|
|
|
322 |
|
|
/* to set the page-dir */
|
323 |
|
|
#define SET_PAGE_DIR(tsk,pgdir) \
|
324 |
|
|
do { \
|
325 |
|
|
(tsk)->tss.cr3 = (unsigned long) (pgdir); \
|
326 |
|
|
if ((tsk) == current) \
|
327 |
|
|
__asm__ __volatile__("movl %0,%%cr3": :"r" (pgdir)); \
|
328 |
|
|
} while (0)
|
329 |
|
|
|
330 |
|
|
#define pte_none(x) (!pte_val(x))
|
331 |
|
|
#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
|
332 |
|
|
#define pte_clear(xp) do { pte_val(*(xp)) = 0; } while (0)
|
333 |
|
|
|
334 |
|
|
#define pmd_none(x) (!pmd_val(x))
|
335 |
|
|
#define pmd_bad(x) ((pmd_val(x) & ~PAGE_MASK) != _PAGE_TABLE)
|
336 |
|
|
#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
|
337 |
|
|
#define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
|
338 |
|
|
|
339 |
|
|
/*
|
340 |
|
|
* The "pgd_xxx()" functions here are trivial for a folded two-level
|
341 |
|
|
* setup: the pgd is never bad, and a pmd always exists (as it's folded
|
342 |
|
|
* into the pgd entry)
|
343 |
|
|
*/
|
344 |
|
|
extern inline int pgd_none(pgd_t pgd) { return 0; }
|
345 |
|
|
extern inline int pgd_bad(pgd_t pgd) { return 0; }
|
346 |
|
|
extern inline int pgd_present(pgd_t pgd) { return 1; }
|
347 |
|
|
extern inline void pgd_clear(pgd_t * pgdp) { }
|
348 |
|
|
|
349 |
|
|
/*
|
350 |
|
|
* The following only work if pte_present() is true.
|
351 |
|
|
* Undefined behaviour if not..
|
352 |
|
|
*/
|
353 |
|
|
extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
|
354 |
|
|
extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
|
355 |
|
|
extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
|
356 |
|
|
extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
|
357 |
|
|
extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
|
358 |
|
|
|
359 |
|
|
extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_RW; return pte; }
|
360 |
|
|
extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; }
|
361 |
|
|
extern inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; }
|
362 |
|
|
extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
|
363 |
|
|
extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
|
364 |
|
|
extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; }
|
365 |
|
|
extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
|
366 |
|
|
extern inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
|
367 |
|
|
extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
|
368 |
|
|
extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
|
369 |
|
|
|
370 |
|
|
/*
|
371 |
|
|
* Conversion functions: convert a page and protection to a page entry,
|
372 |
|
|
* and a page entry and page directory to the page they refer to.
|
373 |
|
|
*/
|
374 |
|
|
extern inline pte_t mk_pte(unsigned long page, pgprot_t pgprot)
|
375 |
|
|
{ pte_t pte; pte_val(pte) = page | pgprot_val(pgprot); return pte; }
|
376 |
|
|
|
377 |
|
|
extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
378 |
|
|
{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
|
379 |
|
|
|
380 |
|
|
extern inline unsigned long pte_page(pte_t pte)
|
381 |
|
|
{ return pte_val(pte) & PAGE_MASK; }
|
382 |
|
|
|
383 |
|
|
extern inline unsigned long pmd_page(pmd_t pmd)
|
384 |
|
|
{ return pmd_val(pmd) & PAGE_MASK; }
|
385 |
|
|
|
386 |
|
|
/* to find an entry in a page-table-directory */
|
387 |
|
|
extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
|
388 |
|
|
{
|
389 |
|
|
return mm->pgd + (address >> PGDIR_SHIFT);
|
390 |
|
|
}
|
391 |
|
|
|
392 |
|
|
/* Find an entry in the second-level page table.. */
|
393 |
|
|
extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
|
394 |
|
|
{
|
395 |
|
|
return (pmd_t *) dir;
|
396 |
|
|
}
|
397 |
|
|
|
398 |
|
|
/* Find an entry in the third-level page table.. */
|
399 |
|
|
extern inline pte_t * pte_offset(pmd_t * dir, unsigned long address)
|
400 |
|
|
{
|
401 |
|
|
return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
|
402 |
|
|
}
|
403 |
|
|
|
404 |
|
|
/*
|
405 |
|
|
* Allocate and free page tables. The xxx_kernel() versions are
|
406 |
|
|
* used to allocate a kernel page table - this turns on ASN bits
|
407 |
|
|
* if any.
|
408 |
|
|
*/
|
409 |
|
|
extern inline void pte_free_kernel(pte_t * pte)
|
410 |
|
|
{
|
411 |
|
|
free_page((unsigned long) pte);
|
412 |
|
|
}
|
413 |
|
|
|
414 |
|
|
extern const char bad_pmd_string[];
|
415 |
|
|
|
416 |
|
|
extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address)
|
417 |
|
|
{
|
418 |
|
|
address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
|
419 |
|
|
if (pmd_none(*pmd)) {
|
420 |
|
|
pte_t * page = (pte_t *) get_free_page(GFP_KERNEL);
|
421 |
|
|
if (pmd_none(*pmd)) {
|
422 |
|
|
if (page) {
|
423 |
|
|
pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) page;
|
424 |
|
|
return page + address;
|
425 |
|
|
}
|
426 |
|
|
pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
|
427 |
|
|
return NULL;
|
428 |
|
|
}
|
429 |
|
|
free_page((unsigned long) page);
|
430 |
|
|
}
|
431 |
|
|
if (pmd_bad(*pmd)) {
|
432 |
|
|
printk(bad_pmd_string, pmd_val(*pmd));
|
433 |
|
|
pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
|
434 |
|
|
return NULL;
|
435 |
|
|
}
|
436 |
|
|
return (pte_t *) pmd_page(*pmd) + address;
|
437 |
|
|
}
|
438 |
|
|
|
439 |
|
|
/*
|
440 |
|
|
* allocating and freeing a pmd is trivial: the 1-entry pmd is
|
441 |
|
|
* inside the pgd, so has no extra memory associated with it.
|
442 |
|
|
*/
|
443 |
|
|
extern inline void pmd_free_kernel(pmd_t * pmd)
|
444 |
|
|
{
|
445 |
|
|
pmd_val(*pmd) = 0;
|
446 |
|
|
}
|
447 |
|
|
|
448 |
|
|
extern inline pmd_t * pmd_alloc_kernel(pgd_t * pgd, unsigned long address)
|
449 |
|
|
{
|
450 |
|
|
return (pmd_t *) pgd;
|
451 |
|
|
}
|
452 |
|
|
|
453 |
|
|
extern inline void pte_free(pte_t * pte)
|
454 |
|
|
{
|
455 |
|
|
free_page((unsigned long) pte);
|
456 |
|
|
}
|
457 |
|
|
|
458 |
|
|
extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
|
459 |
|
|
{
|
460 |
|
|
address = (address >> (PAGE_SHIFT-2)) & 4*(PTRS_PER_PTE - 1);
|
461 |
|
|
|
462 |
|
|
repeat:
|
463 |
|
|
if (pmd_none(*pmd))
|
464 |
|
|
goto getnew;
|
465 |
|
|
if (pmd_bad(*pmd))
|
466 |
|
|
goto fix;
|
467 |
|
|
return (pte_t *) (pmd_page(*pmd) + address);
|
468 |
|
|
|
469 |
|
|
getnew:
|
470 |
|
|
{
|
471 |
|
|
unsigned long page = __get_free_page(GFP_KERNEL);
|
472 |
|
|
if (!pmd_none(*pmd))
|
473 |
|
|
goto freenew;
|
474 |
|
|
if (!page)
|
475 |
|
|
goto oom;
|
476 |
|
|
memset((void *) page, 0, PAGE_SIZE);
|
477 |
|
|
pmd_val(*pmd) = _PAGE_TABLE | page;
|
478 |
|
|
return (pte_t *) (page + address);
|
479 |
|
|
freenew:
|
480 |
|
|
free_page(page);
|
481 |
|
|
goto repeat;
|
482 |
|
|
}
|
483 |
|
|
|
484 |
|
|
fix:
|
485 |
|
|
printk(bad_pmd_string, pmd_val(*pmd));
|
486 |
|
|
oom:
|
487 |
|
|
pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
|
488 |
|
|
return NULL;
|
489 |
|
|
}
|
490 |
|
|
|
491 |
|
|
/*
|
492 |
|
|
* allocating and freeing a pmd is trivial: the 1-entry pmd is
|
493 |
|
|
* inside the pgd, so has no extra memory associated with it.
|
494 |
|
|
*/
|
495 |
|
|
extern inline void pmd_free(pmd_t * pmd)
|
496 |
|
|
{
|
497 |
|
|
pmd_val(*pmd) = 0;
|
498 |
|
|
}
|
499 |
|
|
|
500 |
|
|
extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address)
|
501 |
|
|
{
|
502 |
|
|
return (pmd_t *) pgd;
|
503 |
|
|
}
|
504 |
|
|
|
505 |
|
|
extern inline void pgd_free(pgd_t * pgd)
|
506 |
|
|
{
|
507 |
|
|
free_page((unsigned long) pgd);
|
508 |
|
|
}
|
509 |
|
|
|
510 |
|
|
extern inline pgd_t * pgd_alloc(void)
|
511 |
|
|
{
|
512 |
|
|
return (pgd_t *) get_free_page(GFP_KERNEL);
|
513 |
|
|
}
|
514 |
|
|
|
515 |
|
|
extern pgd_t swapper_pg_dir[1024];
|
516 |
|
|
|
517 |
|
|
/*
|
518 |
|
|
* The i386 doesn't have any external MMU info: the kernel page
|
519 |
|
|
* tables contain all the necessary information.
|
520 |
|
|
*/
|
521 |
|
|
extern inline void update_mmu_cache(struct vm_area_struct * vma,
|
522 |
|
|
unsigned long address, pte_t pte)
|
523 |
|
|
{
|
524 |
|
|
}
|
525 |
|
|
|
526 |
|
|
#define SWP_TYPE(entry) (((entry) >> 1) & 0x7f)
|
527 |
|
|
#define SWP_OFFSET(entry) ((entry) >> 8)
|
528 |
|
|
#define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) << 8))
|
529 |
|
|
|
530 |
|
|
#endif /* !__ASSEMBLY__ */
|
531 |
|
|
|
532 |
|
|
#endif /* _I386_PAGE_H */
|