1 |
1633 |
jcastillo |
#ifndef __ASM_MIPS_PGTABLE_H
|
2 |
|
|
#define __ASM_MIPS_PGTABLE_H
|
3 |
|
|
|
4 |
|
|
#ifndef __LANGUAGE_ASSEMBLY__
|
5 |
|
|
|
6 |
|
|
#include <linux/linkage.h>
|
7 |
|
|
#include <asm/cachectl.h>
|
8 |
|
|
|
9 |
|
|
/*
|
10 |
|
|
* The Linux memory management assumes a three-level page table setup. In
|
11 |
|
|
* 32 bit mode we use that, but "fold" the mid level into the top-level page
|
12 |
|
|
* table, so that we physically have the same two-level page table as the
|
13 |
|
|
* i386 mmu expects. The 64 bit version uses a three level setup.
|
14 |
|
|
*
|
15 |
|
|
* This file contains the functions and defines necessary to modify and use
|
16 |
|
|
* the MIPS page table tree. Note the frequent conversion between addresses
|
17 |
|
|
* in KSEG0 and KSEG1.
|
18 |
|
|
*
|
19 |
|
|
* This is required due to the cache aliasing problem of the R4xx0 series.
|
20 |
|
|
* Sometimes doing uncached accesses also to improve the cache performance
|
21 |
|
|
* slightly. The R10000 caching mode "uncached accelerated" will help even
|
22 |
|
|
* further.
|
23 |
|
|
*/
|
24 |
|
|
|
25 |
|
|
/*
|
26 |
|
|
* TLB invalidation:
|
27 |
|
|
*
|
28 |
|
|
* - invalidate() invalidates the current mm struct TLBs
|
29 |
|
|
* - invalidate_all() invalidates all processes TLBs
|
30 |
|
|
* - invalidate_mm(mm) invalidates the specified mm context TLB's
|
31 |
|
|
* - invalidate_page(mm, vmaddr) invalidates one page
|
32 |
|
|
* - invalidate_range(mm, start, end) invalidates a range of pages
|
33 |
|
|
*
|
34 |
|
|
* FIXME: MIPS has full control of all TLB activity in the CPU. Though
|
35 |
|
|
* we just stick with complete flushing of TLBs for now.
|
36 |
|
|
*/
|
37 |
|
|
extern asmlinkage void tlbflush(void);
|
38 |
|
|
#define invalidate() ({sys_cacheflush(0, ~0, BCACHE);tlbflush();})
|
39 |
|
|
|
40 |
|
|
#define invalidate_all() invalidate()
|
41 |
|
|
#define invalidate_mm(mm_struct) \
|
42 |
|
|
do { if ((mm_struct) == current->mm) invalidate(); } while (0)
|
43 |
|
|
#define invalidate_page(mm_struct,addr) \
|
44 |
|
|
do { if ((mm_struct) == current->mm) invalidate(); } while (0)
|
45 |
|
|
#define invalidate_range(mm_struct,start,end) \
|
46 |
|
|
do { if ((mm_struct) == current->mm) invalidate(); } while (0)
|
47 |
|
|
|
48 |
|
|
/*
|
49 |
|
|
* We need a special version of copy_page that can handle virtual caches.
|
50 |
|
|
* While we're at tweaking with caches we can use that to make it faster.
|
51 |
|
|
* The R10000's accelerated caching mode will further accelerate it.
|
52 |
|
|
*/
|
53 |
|
|
extern void __copy_page(unsigned long from, unsigned long to);
|
54 |
|
|
#define copy_page(from,to) __copy_page((unsigned long)from, (unsigned long)to)
|
55 |
|
|
|
56 |
|
|
/* Certain architectures need to do special things when pte's
|
57 |
|
|
* within a page table are directly modified. Thus, the following
|
58 |
|
|
* hook is made available.
|
59 |
|
|
*/
|
60 |
|
|
#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
|
61 |
|
|
|
62 |
|
|
#endif /* !defined (__LANGUAGE_ASSEMBLY__) */
|
63 |
|
|
|
64 |
|
|
/* PMD_SHIFT determines the size of the area a second-level page table can map */
|
65 |
|
|
#define PMD_SHIFT 22
|
66 |
|
|
#define PMD_SIZE (1UL << PMD_SHIFT)
|
67 |
|
|
#define PMD_MASK (~(PMD_SIZE-1))
|
68 |
|
|
|
69 |
|
|
/* PGDIR_SHIFT determines what a third-level page table entry can map */
|
70 |
|
|
#define PGDIR_SHIFT 22
|
71 |
|
|
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
|
72 |
|
|
#define PGDIR_MASK (~(PGDIR_SIZE-1))
|
73 |
|
|
|
74 |
|
|
/*
|
75 |
|
|
* entries per page directory level: we use two-level, so
|
76 |
|
|
* we don't really have any PMD directory physically.
|
77 |
|
|
*/
|
78 |
|
|
#define PTRS_PER_PTE 1024
|
79 |
|
|
#define PTRS_PER_PMD 1
|
80 |
|
|
#define PTRS_PER_PGD 1024
|
81 |
|
|
|
82 |
|
|
#define VMALLOC_START KSEG2
|
83 |
|
|
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
|
84 |
|
|
|
85 |
|
|
/*
|
86 |
|
|
* Note that we shift the lower 32bits of each EntryLo[01] entry
|
87 |
|
|
* 6 bits to the left. That way we can convert the PFN into the
|
88 |
|
|
* physical address by a single 'and' operation and gain 6 additional
|
89 |
|
|
* bits for storing information which isn't present in a normal
|
90 |
|
|
* MIPS page table.
|
91 |
|
|
* Since the Mips has chosen some quite misleading names for the
|
92 |
|
|
* valid and dirty bits they're defined here but only their synonyms
|
93 |
|
|
* will be used.
|
94 |
|
|
*/
|
95 |
|
|
#define _PAGE_PRESENT (1<<0) /* implemented in software */
|
96 |
|
|
#define _PAGE_COW (1<<1) /* implemented in software */
|
97 |
|
|
#define _PAGE_READ (1<<2) /* implemented in software */
|
98 |
|
|
#define _PAGE_WRITE (1<<3) /* implemented in software */
|
99 |
|
|
#define _PAGE_ACCESSED (1<<4) /* implemented in software */
|
100 |
|
|
#define _PAGE_MODIFIED (1<<5) /* implemented in software */
|
101 |
|
|
#define _PAGE_GLOBAL (1<<6)
|
102 |
|
|
#define _PAGE_VALID (1<<7)
|
103 |
|
|
#define _PAGE_SILENT_READ (1<<7) /* synonym */
|
104 |
|
|
#define _PAGE_DIRTY (1<<8) /* The MIPS dirty bit */
|
105 |
|
|
#define _PAGE_SILENT_WRITE (1<<8)
|
106 |
|
|
#define _CACHE_CACHABLE_NO_WA (0<<9) /* R4600 only */
|
107 |
|
|
#define _CACHE_CACHABLE_WA (1<<9) /* R4600 only */
|
108 |
|
|
#define _CACHE_UNCACHED (2<<9) /* R4[0246]00 */
|
109 |
|
|
#define _CACHE_CACHABLE_NONCOHERENT (3<<9) /* R4[0246]00 */
|
110 |
|
|
#define _CACHE_CACHABLE_CE (4<<9) /* R4[04]00 only */
|
111 |
|
|
#define _CACHE_CACHABLE_COW (5<<9) /* R4[04]00 only */
|
112 |
|
|
#define _CACHE_CACHABLE_CUW (6<<9) /* R4[04]00 only */
|
113 |
|
|
#define _CACHE_CACHABLE_ACCELERATED (7<<9) /* R10000 only */
|
114 |
|
|
#define _CACHE_MASK (7<<9)
|
115 |
|
|
|
116 |
|
|
#define __READABLE (_PAGE_READ|_PAGE_SILENT_READ|_PAGE_ACCESSED)
|
117 |
|
|
#define __WRITEABLE (_PAGE_WRITE|_PAGE_SILENT_WRITE|_PAGE_MODIFIED)
|
118 |
|
|
|
119 |
|
|
#define _PAGE_TABLE (_PAGE_PRESENT | __READABLE | __WRITEABLE | \
|
120 |
|
|
_PAGE_DIRTY | _CACHE_UNCACHED)
|
121 |
|
|
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _CACHE_MASK)
|
122 |
|
|
|
123 |
|
|
#define PAGE_NONE __pgprot(_PAGE_PRESENT | __READABLE | _CACHE_UNCACHED)
|
124 |
|
|
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | __READABLE | _PAGE_WRITE | \
|
125 |
|
|
_PAGE_ACCESSED | _CACHE_CACHABLE_NONCOHERENT)
|
126 |
|
|
#define PAGE_COPY __pgprot(_PAGE_PRESENT | __READABLE | _PAGE_COW | \
|
127 |
|
|
_CACHE_CACHABLE_NONCOHERENT)
|
128 |
|
|
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | __READABLE | \
|
129 |
|
|
_CACHE_CACHABLE_NONCOHERENT)
|
130 |
|
|
#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | __READABLE | __WRITEABLE | \
|
131 |
|
|
_CACHE_CACHABLE_NONCOHERENT)
|
132 |
|
|
|
133 |
|
|
/*
|
134 |
|
|
* MIPS can't do page protection for execute, and considers that the same like
|
135 |
|
|
* read. Also, write permissions imply read permissions. This is the closest
|
136 |
|
|
* we can get by reasonable means..
|
137 |
|
|
*/
|
138 |
|
|
#define __P000 PAGE_NONE
|
139 |
|
|
#define __P001 PAGE_READONLY
|
140 |
|
|
#define __P010 PAGE_COPY
|
141 |
|
|
#define __P011 PAGE_COPY
|
142 |
|
|
#define __P100 PAGE_READONLY
|
143 |
|
|
#define __P101 PAGE_READONLY
|
144 |
|
|
#define __P110 PAGE_COPY
|
145 |
|
|
#define __P111 PAGE_COPY
|
146 |
|
|
|
147 |
|
|
#define __S000 PAGE_NONE
|
148 |
|
|
#define __S001 PAGE_READONLY
|
149 |
|
|
#define __S010 PAGE_SHARED
|
150 |
|
|
#define __S011 PAGE_SHARED
|
151 |
|
|
#define __S100 PAGE_READONLY
|
152 |
|
|
#define __S101 PAGE_READONLY
|
153 |
|
|
#define __S110 PAGE_SHARED
|
154 |
|
|
#define __S111 PAGE_SHARED
|
155 |
|
|
|
156 |
|
|
#if !defined (__LANGUAGE_ASSEMBLY__)
|
157 |
|
|
|
158 |
|
|
/* page table for 0-4MB for everybody */
|
159 |
|
|
extern unsigned long pg0[1024];
|
160 |
|
|
|
161 |
|
|
/*
|
162 |
|
|
* BAD_PAGETABLE is used when we need a bogus page-table, while
|
163 |
|
|
* BAD_PAGE is used for a bogus page.
|
164 |
|
|
*
|
165 |
|
|
* ZERO_PAGE is a global shared page that is always zero: used
|
166 |
|
|
* for zero-mapped memory areas etc..
|
167 |
|
|
*/
|
168 |
|
|
extern pte_t __bad_page(void);
|
169 |
|
|
extern pte_t * __bad_pagetable(void);
|
170 |
|
|
|
171 |
|
|
extern unsigned long __zero_page(void);
|
172 |
|
|
|
173 |
|
|
#define BAD_PAGETABLE __bad_pagetable()
|
174 |
|
|
#define BAD_PAGE __bad_page()
|
175 |
|
|
#define ZERO_PAGE __zero_page()
|
176 |
|
|
|
177 |
|
|
/* number of bits that fit into a memory pointer */
|
178 |
|
|
#define BITS_PER_PTR (8*sizeof(unsigned long))
|
179 |
|
|
|
180 |
|
|
/* to align the pointer to a pointer address */
|
181 |
|
|
#define PTR_MASK (~(sizeof(void*)-1))
|
182 |
|
|
|
183 |
|
|
/*
|
184 |
|
|
* sizeof(void*)==1<<SIZEOF_PTR_LOG2
|
185 |
|
|
*/
|
186 |
|
|
#if __mips == 3
|
187 |
|
|
#define SIZEOF_PTR_LOG2 3
|
188 |
|
|
#else
|
189 |
|
|
#define SIZEOF_PTR_LOG2 2
|
190 |
|
|
#endif
|
191 |
|
|
|
192 |
|
|
/* to find an entry in a page-table */
|
193 |
|
|
#define PAGE_PTR(address) \
|
194 |
|
|
((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
|
195 |
|
|
|
196 |
|
|
/* to set the page-dir */
|
197 |
|
|
#define SET_PAGE_DIR(tsk,pgdir) \
|
198 |
|
|
do { \
|
199 |
|
|
(tsk)->tss.pg_dir = ((unsigned long) (pgdir)) - PT_OFFSET; \
|
200 |
|
|
if ((tsk) == current) \
|
201 |
|
|
{ \
|
202 |
|
|
void load_pgd(unsigned long pg_dir); \
|
203 |
|
|
\
|
204 |
|
|
load_pgd((tsk)->tss.pg_dir); \
|
205 |
|
|
} \
|
206 |
|
|
} while (0)
|
207 |
|
|
|
208 |
|
|
extern unsigned long high_memory;
|
209 |
|
|
extern pmd_t invalid_pte_table[PAGE_SIZE/sizeof(pmd_t)];
|
210 |
|
|
|
211 |
|
|
/*
|
212 |
|
|
* Conversion functions: convert a page and protection to a page entry,
|
213 |
|
|
* and a page entry and page directory to the page they refer to.
|
214 |
|
|
*/
|
215 |
|
|
extern inline unsigned long pte_page(pte_t pte)
|
216 |
|
|
{ return PAGE_OFFSET + (pte_val(pte) & PAGE_MASK); }
|
217 |
|
|
|
218 |
|
|
extern inline unsigned long pmd_page(pmd_t pmd)
|
219 |
|
|
{ return PAGE_OFFSET + (pmd_val(pmd) & PAGE_MASK); }
|
220 |
|
|
|
221 |
|
|
extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
|
222 |
|
|
{ pmd_val(*pmdp) = _PAGE_TABLE | ((unsigned long) ptep - PT_OFFSET); }
|
223 |
|
|
|
224 |
|
|
extern inline int pte_none(pte_t pte) { return !pte_val(pte); }
|
225 |
|
|
extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; }
|
226 |
|
|
extern inline int pte_inuse(pte_t *ptep) { return mem_map[MAP_NR(ptep)].reserved || mem_map[MAP_NR(ptep)].count != 1; }
|
227 |
|
|
extern inline void pte_clear(pte_t *ptep) { pte_val(*ptep) = 0; }
|
228 |
|
|
extern inline void pte_reuse(pte_t * ptep)
|
229 |
|
|
{
|
230 |
|
|
if (!mem_map[MAP_NR(ptep)].reserved)
|
231 |
|
|
mem_map[MAP_NR(ptep)].count++;
|
232 |
|
|
}
|
233 |
|
|
|
234 |
|
|
/*
|
235 |
|
|
* Empty pgd/pmd entries point to the invalid_pte_table.
|
236 |
|
|
*/
|
237 |
|
|
extern inline int pmd_none(pmd_t pmd) { return (pmd_val(pmd) & PAGE_MASK) == ((unsigned long) invalid_pte_table - PAGE_OFFSET); }
|
238 |
|
|
|
239 |
|
|
extern inline int pmd_bad(pmd_t pmd)
|
240 |
|
|
{
|
241 |
|
|
return (pmd_val(pmd) & ~PAGE_MASK) != _PAGE_TABLE ||
|
242 |
|
|
pmd_page(pmd) > high_memory ||
|
243 |
|
|
pmd_page(pmd) < PAGE_OFFSET;
|
244 |
|
|
}
|
245 |
|
|
extern inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _PAGE_PRESENT; }
|
246 |
|
|
extern inline int pmd_inuse(pmd_t *pmdp) { return 0; }
|
247 |
|
|
extern inline void pmd_clear(pmd_t * pmdp) { pmd_val(*pmdp) = ((unsigned long) invalid_pte_table - PAGE_OFFSET); }
|
248 |
|
|
extern inline void pmd_reuse(pmd_t * pmdp) { }
|
249 |
|
|
|
250 |
|
|
/*
|
251 |
|
|
* The "pgd_xxx()" functions here are trivial for a folded two-level
|
252 |
|
|
* setup: the pgd is never bad, and a pmd always exists (as it's folded
|
253 |
|
|
* into the pgd entry)
|
254 |
|
|
*/
|
255 |
|
|
extern inline int pgd_none(pgd_t pgd) { return 0; }
|
256 |
|
|
extern inline int pgd_bad(pgd_t pgd) { return 0; }
|
257 |
|
|
extern inline int pgd_present(pgd_t pgd) { return 1; }
|
258 |
|
|
extern inline int pgd_inuse(pgd_t * pgdp) { return mem_map[MAP_NR(pgdp)].reserved; }
|
259 |
|
|
extern inline void pgd_clear(pgd_t * pgdp) { }
|
260 |
|
|
|
261 |
|
|
/*
|
262 |
|
|
* The following only work if pte_present() is true.
|
263 |
|
|
* Undefined behaviour if not..
|
264 |
|
|
*/
|
265 |
|
|
extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
|
266 |
|
|
extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
|
267 |
|
|
extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
|
268 |
|
|
extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_MODIFIED; }
|
269 |
|
|
extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
|
270 |
|
|
extern inline int pte_cow(pte_t pte) { return pte_val(pte) & _PAGE_COW; }
|
271 |
|
|
|
272 |
|
|
extern inline pte_t pte_wrprotect(pte_t pte)
|
273 |
|
|
{
|
274 |
|
|
pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE);
|
275 |
|
|
return pte;
|
276 |
|
|
}
|
277 |
|
|
extern inline pte_t pte_rdprotect(pte_t pte)
|
278 |
|
|
{
|
279 |
|
|
pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ); return pte;
|
280 |
|
|
}
|
281 |
|
|
extern inline pte_t pte_exprotect(pte_t pte)
|
282 |
|
|
{
|
283 |
|
|
pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ); return pte;
|
284 |
|
|
}
|
285 |
|
|
extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~(_PAGE_MODIFIED|_PAGE_SILENT_WRITE); return pte; }
|
286 |
|
|
extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~(_PAGE_ACCESSED|_PAGE_SILENT_READ|_PAGE_SILENT_WRITE); return pte; }
|
287 |
|
|
extern inline pte_t pte_uncow(pte_t pte) { pte_val(pte) &= ~_PAGE_COW; return pte; }
|
288 |
|
|
extern inline pte_t pte_mkwrite(pte_t pte)
|
289 |
|
|
{
|
290 |
|
|
pte_val(pte) |= _PAGE_WRITE;
|
291 |
|
|
if (pte_val(pte) & _PAGE_MODIFIED)
|
292 |
|
|
pte_val(pte) |= _PAGE_SILENT_WRITE;
|
293 |
|
|
return pte;
|
294 |
|
|
}
|
295 |
|
|
extern inline pte_t pte_mkread(pte_t pte)
|
296 |
|
|
{
|
297 |
|
|
pte_val(pte) |= _PAGE_READ;
|
298 |
|
|
if (pte_val(pte) & _PAGE_ACCESSED)
|
299 |
|
|
pte_val(pte) |= _PAGE_SILENT_READ;
|
300 |
|
|
return pte;
|
301 |
|
|
}
|
302 |
|
|
extern inline pte_t pte_mkexec(pte_t pte)
|
303 |
|
|
{
|
304 |
|
|
pte_val(pte) |= _PAGE_READ;
|
305 |
|
|
if (pte_val(pte) & _PAGE_ACCESSED)
|
306 |
|
|
pte_val(pte) |= _PAGE_SILENT_READ;
|
307 |
|
|
return pte;
|
308 |
|
|
}
|
309 |
|
|
extern inline pte_t pte_mkdirty(pte_t pte)
|
310 |
|
|
{
|
311 |
|
|
pte_val(pte) |= _PAGE_MODIFIED;
|
312 |
|
|
if (pte_val(pte) & _PAGE_WRITE)
|
313 |
|
|
pte_val(pte) |= _PAGE_SILENT_WRITE;
|
314 |
|
|
return pte;
|
315 |
|
|
}
|
316 |
|
|
extern inline pte_t pte_mkyoung(pte_t pte)
|
317 |
|
|
{
|
318 |
|
|
pte_val(pte) |= _PAGE_ACCESSED;
|
319 |
|
|
if (pte_val(pte) & _PAGE_READ)
|
320 |
|
|
{
|
321 |
|
|
pte_val(pte) |= _PAGE_SILENT_READ;
|
322 |
|
|
if ((pte_val(pte) & (_PAGE_WRITE|_PAGE_MODIFIED)) == (_PAGE_WRITE|_PAGE_MODIFIED))
|
323 |
|
|
pte_val(pte) |= _PAGE_SILENT_WRITE;
|
324 |
|
|
}
|
325 |
|
|
return pte;
|
326 |
|
|
}
|
327 |
|
|
extern inline pte_t pte_mkcow(pte_t pte)
|
328 |
|
|
{
|
329 |
|
|
pte_val(pte) |= _PAGE_COW;
|
330 |
|
|
return pte;
|
331 |
|
|
}
|
332 |
|
|
|
333 |
|
|
/*
|
334 |
|
|
* Conversion functions: convert a page and protection to a page entry,
|
335 |
|
|
* and a page entry and page directory to the page they refer to.
|
336 |
|
|
*/
|
337 |
|
|
extern inline pte_t mk_pte(unsigned long page, pgprot_t pgprot)
|
338 |
|
|
{ pte_t pte; pte_val(pte) = (page - PAGE_OFFSET) | pgprot_val(pgprot); return pte; }
|
339 |
|
|
|
340 |
|
|
extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
341 |
|
|
{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
|
342 |
|
|
|
343 |
|
|
/* to find an entry in a page-table-directory */
|
344 |
|
|
extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
|
345 |
|
|
{
|
346 |
|
|
return mm->pgd + (address >> PGDIR_SHIFT);
|
347 |
|
|
}
|
348 |
|
|
|
349 |
|
|
/* Find an entry in the second-level page table.. */
|
350 |
|
|
extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
|
351 |
|
|
{
|
352 |
|
|
return (pmd_t *) dir;
|
353 |
|
|
}
|
354 |
|
|
|
355 |
|
|
/* Find an entry in the third-level page table.. */
|
356 |
|
|
extern inline pte_t * pte_offset(pmd_t * dir, unsigned long address)
|
357 |
|
|
{
|
358 |
|
|
return (pte_t *) (pmd_page(*dir) + (PT_OFFSET - PAGE_OFFSET)) +
|
359 |
|
|
((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
|
360 |
|
|
}
|
361 |
|
|
|
362 |
|
|
/*
|
363 |
|
|
* Allocate and free page tables. The xxx_kernel() versions are
|
364 |
|
|
* used to allocate a kernel page table - this turns on ASN bits
|
365 |
|
|
* if any, and marks the page tables reserved.
|
366 |
|
|
*/
|
367 |
|
|
extern inline void pte_free_kernel(pte_t * pte)
|
368 |
|
|
{
|
369 |
|
|
unsigned long page = (unsigned long) pte;
|
370 |
|
|
|
371 |
|
|
mem_map[MAP_NR(pte)].reserved = 0;
|
372 |
|
|
if(!page)
|
373 |
|
|
return;
|
374 |
|
|
page -= (PT_OFFSET - PAGE_OFFSET);
|
375 |
|
|
free_page(page);
|
376 |
|
|
}
|
377 |
|
|
|
378 |
|
|
extern inline pte_t * pte_alloc_kernel(pmd_t *pmd, unsigned long address)
|
379 |
|
|
{
|
380 |
|
|
address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
|
381 |
|
|
if (pmd_none(*pmd)) {
|
382 |
|
|
unsigned long page = __get_free_page(GFP_KERNEL);
|
383 |
|
|
if (pmd_none(*pmd)) {
|
384 |
|
|
if (page) {
|
385 |
|
|
mem_map[MAP_NR(page)].reserved = 1;
|
386 |
|
|
memset((void *) page, 0, PAGE_SIZE);
|
387 |
|
|
sys_cacheflush((void *)page, PAGE_SIZE, DCACHE);
|
388 |
|
|
sync_mem();
|
389 |
|
|
page += (PT_OFFSET - PAGE_OFFSET);
|
390 |
|
|
pmd_set(pmd, (pte_t *)page);
|
391 |
|
|
return ((pte_t *)page) + address;
|
392 |
|
|
}
|
393 |
|
|
pmd_set(pmd, (pte_t *) BAD_PAGETABLE);
|
394 |
|
|
return NULL;
|
395 |
|
|
}
|
396 |
|
|
free_page(page);
|
397 |
|
|
}
|
398 |
|
|
if (pmd_bad(*pmd)) {
|
399 |
|
|
printk("Bad pmd in pte_alloc_kernel: %08lx\n", pmd_val(*pmd));
|
400 |
|
|
pmd_set(pmd, (pte_t *) BAD_PAGETABLE);
|
401 |
|
|
return NULL;
|
402 |
|
|
}
|
403 |
|
|
return (pte_t *) (pmd_page(*pmd) + (PT_OFFSET - PAGE_OFFSET)) + address;
|
404 |
|
|
}
|
405 |
|
|
|
406 |
|
|
/*
|
407 |
|
|
* allocating and freeing a pmd is trivial: the 1-entry pmd is
|
408 |
|
|
* inside the pgd, so has no extra memory associated with it.
|
409 |
|
|
*/
|
410 |
|
|
extern inline void pmd_free_kernel(pmd_t * pmd)
|
411 |
|
|
{
|
412 |
|
|
}
|
413 |
|
|
|
414 |
|
|
extern inline pmd_t * pmd_alloc_kernel(pgd_t * pgd, unsigned long address)
|
415 |
|
|
{
|
416 |
|
|
return (pmd_t *) pgd;
|
417 |
|
|
}
|
418 |
|
|
|
419 |
|
|
extern inline void pte_free(pte_t * pte)
|
420 |
|
|
{
|
421 |
|
|
unsigned long page = (unsigned long) pte;
|
422 |
|
|
|
423 |
|
|
if(!page)
|
424 |
|
|
return;
|
425 |
|
|
page -= (PT_OFFSET - PAGE_OFFSET);
|
426 |
|
|
free_page(page);
|
427 |
|
|
}
|
428 |
|
|
|
429 |
|
|
extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
|
430 |
|
|
{
|
431 |
|
|
address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
|
432 |
|
|
if (pmd_none(*pmd)) {
|
433 |
|
|
unsigned long page = __get_free_page(GFP_KERNEL);
|
434 |
|
|
if (pmd_none(*pmd)) {
|
435 |
|
|
if (page) {
|
436 |
|
|
memset((void *) page, 0, PAGE_SIZE);
|
437 |
|
|
sys_cacheflush((void *)page, PAGE_SIZE, DCACHE);
|
438 |
|
|
sync_mem();
|
439 |
|
|
page += (PT_OFFSET - PAGE_OFFSET);
|
440 |
|
|
pmd_set(pmd, (pte_t *)page);
|
441 |
|
|
return ((pte_t *)page) + address;
|
442 |
|
|
}
|
443 |
|
|
pmd_set(pmd, (pte_t *) BAD_PAGETABLE);
|
444 |
|
|
return NULL;
|
445 |
|
|
}
|
446 |
|
|
free_page(page);
|
447 |
|
|
}
|
448 |
|
|
if (pmd_bad(*pmd)) {
|
449 |
|
|
printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
|
450 |
|
|
pmd_set(pmd, (pte_t *) BAD_PAGETABLE);
|
451 |
|
|
return NULL;
|
452 |
|
|
}
|
453 |
|
|
return (pte_t *) (pmd_page(*pmd) + (PT_OFFSET - PAGE_OFFSET)) + address;
|
454 |
|
|
}
|
455 |
|
|
|
456 |
|
|
/*
|
457 |
|
|
* allocating and freeing a pmd is trivial: the 1-entry pmd is
|
458 |
|
|
* inside the pgd, so has no extra memory associated with it.
|
459 |
|
|
*/
|
460 |
|
|
extern inline void pmd_free(pmd_t * pmd)
|
461 |
|
|
{
|
462 |
|
|
}
|
463 |
|
|
|
464 |
|
|
extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address)
|
465 |
|
|
{
|
466 |
|
|
return (pmd_t *) pgd;
|
467 |
|
|
}
|
468 |
|
|
|
469 |
|
|
extern inline void pgd_free(pgd_t * pgd)
|
470 |
|
|
{
|
471 |
|
|
unsigned long page = (unsigned long) pgd;
|
472 |
|
|
|
473 |
|
|
if(!page)
|
474 |
|
|
return;
|
475 |
|
|
page -= (PT_OFFSET - PAGE_OFFSET);
|
476 |
|
|
free_page(page);
|
477 |
|
|
}
|
478 |
|
|
|
479 |
|
|
/*
|
480 |
|
|
* Initialize new page directory with pointers to invalid ptes
|
481 |
|
|
*/
|
482 |
|
|
extern inline void pgd_init(unsigned long page)
|
483 |
|
|
{
|
484 |
|
|
unsigned long dummy1, dummy2;
|
485 |
|
|
|
486 |
|
|
page += (PT_OFFSET - PAGE_OFFSET);
|
487 |
|
|
#if __mips >= 3
|
488 |
|
|
/*
|
489 |
|
|
* Ich will Spass - ich geb Gas ich geb Gas...
|
490 |
|
|
*/
|
491 |
|
|
__asm__ __volatile__(
|
492 |
|
|
".set\tnoreorder\n\t"
|
493 |
|
|
".set\tnoat\n\t"
|
494 |
|
|
".set\tmips3\n\t"
|
495 |
|
|
"dsll32\t$1,%2,0\n\t"
|
496 |
|
|
"dsrl32\t%2,$1,0\n\t"
|
497 |
|
|
"or\t%2,$1\n"
|
498 |
|
|
"1:\tsd\t%2,(%0)\n\t"
|
499 |
|
|
"subu\t%1,1\n\t"
|
500 |
|
|
"bnez\t%1,1b\n\t"
|
501 |
|
|
"addiu\t%0,8\n\t"
|
502 |
|
|
".set\tmips0\n\t"
|
503 |
|
|
".set\tat\n\t"
|
504 |
|
|
".set\treorder"
|
505 |
|
|
:"=r" (dummy1),
|
506 |
|
|
"=r" (dummy2)
|
507 |
|
|
:"r" (((unsigned long) invalid_pte_table - PAGE_OFFSET) |
|
508 |
|
|
_PAGE_TABLE),
|
509 |
|
|
"0" (page),
|
510 |
|
|
"1" (PAGE_SIZE/(sizeof(pmd_t)*2))
|
511 |
|
|
:"$1");
|
512 |
|
|
#else
|
513 |
|
|
__asm__ __volatile__(
|
514 |
|
|
".set\tnoreorder\n"
|
515 |
|
|
"1:\tsw\t%2,(%0)\n\t"
|
516 |
|
|
"subu\t%1,1\n\t"
|
517 |
|
|
"bnez\t%1,1b\n\t"
|
518 |
|
|
"addiu\t%0,4\n\t"
|
519 |
|
|
".set\treorder"
|
520 |
|
|
:"=r" (dummy1),
|
521 |
|
|
"=r" (dummy2)
|
522 |
|
|
:"r" (((unsigned long) invalid_pte_table - PAGE_OFFSET) |
|
523 |
|
|
_PAGE_TABLE),
|
524 |
|
|
"0" (page),
|
525 |
|
|
"1" (PAGE_SIZE/sizeof(pmd_t)));
|
526 |
|
|
#endif
|
527 |
|
|
}
|
528 |
|
|
|
529 |
|
|
extern inline pgd_t * pgd_alloc(void)
|
530 |
|
|
{
|
531 |
|
|
unsigned long page;
|
532 |
|
|
|
533 |
|
|
if(!(page = __get_free_page(GFP_KERNEL)))
|
534 |
|
|
return NULL;
|
535 |
|
|
|
536 |
|
|
sys_cacheflush((void *)page, PAGE_SIZE, DCACHE);
|
537 |
|
|
sync_mem();
|
538 |
|
|
pgd_init(page);
|
539 |
|
|
|
540 |
|
|
return (pgd_t *) (page + (PT_OFFSET - PAGE_OFFSET));
|
541 |
|
|
}
|
542 |
|
|
|
543 |
|
|
extern pgd_t swapper_pg_dir[1024];
|
544 |
|
|
|
545 |
|
|
/*
|
546 |
|
|
* MIPS doesn't need any external MMU info: the kernel page tables contain
|
547 |
|
|
* all the necessary information. We use this hook though to load the
|
548 |
|
|
* TLB as early as possible with uptodate information avoiding unnecessary
|
549 |
|
|
* exceptions.
|
550 |
|
|
*/
|
551 |
|
|
extern void update_mmu_cache(struct vm_area_struct * vma,
|
552 |
|
|
unsigned long address, pte_t pte);
|
553 |
|
|
|
554 |
|
|
#if __mips >= 3
|
555 |
|
|
|
556 |
|
|
#define SWP_TYPE(entry) (((entry) >> 32) & 0xff)
|
557 |
|
|
#define SWP_OFFSET(entry) ((entry) >> 40)
|
558 |
|
|
#define SWP_ENTRY(type,offset) pte_val(mk_swap_pte((type),(offset)))
|
559 |
|
|
|
560 |
|
|
#else
|
561 |
|
|
|
562 |
|
|
#define SWP_TYPE(entry) (((entry) >> 1) & 0x7f)
|
563 |
|
|
#define SWP_OFFSET(entry) ((entry) >> 8)
|
564 |
|
|
#define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) << 8))
|
565 |
|
|
|
566 |
|
|
#endif
|
567 |
|
|
|
568 |
|
|
#endif /* !defined (__LANGUAGE_ASSEMBLY__) */
|
569 |
|
|
|
570 |
|
|
#endif /* __ASM_MIPS_PGTABLE_H */
|