1 |
1633 |
jcastillo |
/* * Last edited: Nov 7 23:44 1995 (cort) */
|
2 |
|
|
#ifndef _PPC_PGTABLE_H
|
3 |
|
|
#define _PPC_PGTABLE_H
|
4 |
|
|
|
5 |
|
|
#include <asm/page.h>
|
6 |
|
|
#include <asm/mmu.h>
|
7 |
|
|
|
8 |
|
|
/*
|
9 |
|
|
* Memory management on the PowerPC is a software emulation of the i386
|
10 |
|
|
* MMU folded onto the PowerPC hardware MMU. The emulated version looks
|
11 |
|
|
* and behaves like the two-level i386 MMU. Entries from these tables
|
12 |
|
|
* are merged into the PowerPC hashed MMU tables, on demand, treating the
|
13 |
|
|
* hashed tables like a special cache.
|
14 |
|
|
*
|
15 |
|
|
* Since the PowerPC does not have separate kernel and user address spaces,
|
16 |
|
|
* the user virtual address space must be a [proper] subset of the kernel
|
17 |
|
|
* space. Thus, all tasks will have a specific virtual mapping for the
|
18 |
|
|
* user virtual space and a common mapping for the kernel space. The
|
19 |
|
|
* simplest way to split this was literally in half. Also, life is so
|
20 |
|
|
* much simpler for the kernel if the machine hardware resources are
|
21 |
|
|
* always mapped in. Thus, some additional space is given up to the
|
22 |
|
|
* kernel space to accommodate this.
|
23 |
|
|
*
|
24 |
|
|
* CAUTION! Some of the trade-offs make sense for the PreP platform on
|
25 |
|
|
* which this code was originally developed. When it migrates to other
|
26 |
|
|
* PowerPC environments, some of the assumptions may fail and the whole
|
27 |
|
|
* setup may need to be reevaluated.
|
28 |
|
|
*
|
29 |
|
|
* On the PowerPC, page translations are kept in a hashed table. There
|
30 |
|
|
* is exactly one of these tables [although the architecture supports
|
31 |
|
|
* an arbitrary number]. Page table entries move in/out of this hashed
|
32 |
|
|
* structure on demand, with the kernel filling in entries as they are
|
33 |
|
|
* needed. Just where a page table entry hits in the hashed table is a
|
34 |
|
|
* function of the hashing which is in turn based on the upper 4 bits
|
35 |
|
|
* of the logical address. These 4 bits address a "virtual segment id"
|
36 |
|
|
* which is unique per task/page combination for user addresses and
|
37 |
|
|
* fixed for the kernel addresses. Thus, the kernel space can be simply
|
38 |
|
|
* shared [indeed at low overhead] among all tasks.
|
39 |
|
|
*
|
40 |
|
|
* The basic virtual address space is thus:
|
41 |
|
|
*
|
42 |
|
|
* 0x0XXXXXX --+
|
43 |
|
|
* 0x1XXXXXX |
|
44 |
|
|
* 0x2XXXXXX | User address space.
|
45 |
|
|
* 0x3XXXXXX |
|
46 |
|
|
* 0x4XXXXXX |
|
47 |
|
|
* 0x5XXXXXX |
|
48 |
|
|
* 0x6XXXXXX |
|
49 |
|
|
* 0x7XXXXXX --+
|
50 |
|
|
* 0x8XXXXXX PCI/ISA I/O space
|
51 |
|
|
* 0x9XXXXXX --+
|
52 |
|
|
* 0xAXXXXXX | Kernel virtual memory
|
53 |
|
|
* 0xBXXXXXX --+
|
54 |
|
|
* 0xCXXXXXX PCI/ISA Memory space
|
55 |
|
|
* 0xDXXXXXX
|
56 |
|
|
* 0xEXXXXXX
|
57 |
|
|
* 0xFXXXXXX Board I/O space
|
58 |
|
|
*
|
59 |
|
|
* CAUTION! One of the real problems here is keeping the software
|
60 |
|
|
* managed tables coherent with the hardware hashed tables. When
|
61 |
|
|
* the software decides to update the table, it's normally easy to
|
62 |
|
|
* update the hardware table. But when the hardware tables need
|
63 |
|
|
* changed, e.g. as the result of a page fault, it's more difficult
|
64 |
|
|
* to reflect those changes back into the software entries. Currently,
|
65 |
|
|
* this process is quite crude, with updates causing the entire set
|
66 |
|
|
* of tables to become invalidated. Some performance could certainly
|
67 |
|
|
* be regained by improving this.
|
68 |
|
|
*
|
69 |
|
|
* The Linux memory management assumes a three-level page table setup. On
|
70 |
|
|
* the i386, we use that, but "fold" the mid level into the top-level page
|
71 |
|
|
* table, so that we physically have the same two-level page table as the
|
72 |
|
|
* i386 mmu expects.
|
73 |
|
|
*
|
74 |
|
|
* This file contains the functions and defines necessary to modify and use
|
75 |
|
|
* the i386 page table tree.
|
76 |
|
|
*/
|
77 |
|
|
|
78 |
|
|
/* PMD_SHIFT determines the size of the area a second-level page table can map */
|
79 |
|
|
#define PMD_SHIFT 22
|
80 |
|
|
#define PMD_SIZE (1UL << PMD_SHIFT)
|
81 |
|
|
#define PMD_MASK (~(PMD_SIZE-1))
|
82 |
|
|
|
83 |
|
|
/* PGDIR_SHIFT determines what a third-level page table entry can map */
|
84 |
|
|
#define PGDIR_SHIFT 22
|
85 |
|
|
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
|
86 |
|
|
#define PGDIR_MASK (~(PGDIR_SIZE-1))
|
87 |
|
|
|
88 |
|
|
/*
|
89 |
|
|
* entries per page directory level: the i386 is two-level, so
|
90 |
|
|
* we don't really have any PMD directory physically.
|
91 |
|
|
*/
|
92 |
|
|
#define PTRS_PER_PTE 1024
|
93 |
|
|
#define PTRS_PER_PMD 1
|
94 |
|
|
#define PTRS_PER_PGD 1024
|
95 |
|
|
|
96 |
|
|
/* Just any arbitrary offset to the start of the vmalloc VM area: the
|
97 |
|
|
* current 8MB value just means that there will be a 8MB "hole" after the
|
98 |
|
|
* physical memory until the kernel virtual memory starts. That means that
|
99 |
|
|
* any out-of-bounds memory accesses will hopefully be caught.
|
100 |
|
|
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
|
101 |
|
|
* area for the same reason. ;)
|
102 |
|
|
*/
|
103 |
|
|
#define VMALLOC_OFFSET (8*1024*1024)
|
104 |
|
|
#define VMALLOC_START ((high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
|
105 |
|
|
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
|
106 |
|
|
|
107 |
|
|
#define _PAGE_PRESENT 0x001
|
108 |
|
|
#define _PAGE_RW 0x002
|
109 |
|
|
#define _PAGE_USER 0x004
|
110 |
|
|
#define _PAGE_PCD 0x010
|
111 |
|
|
#define _PAGE_ACCESSED 0x020
|
112 |
|
|
#define _PAGE_DIRTY 0x040
|
113 |
|
|
#define _PAGE_COW 0x200 /* implemented in software (one of the AVL bits) */
|
114 |
|
|
#define _PAGE_NO_CACHE 0x400
|
115 |
|
|
|
116 |
|
|
#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
|
117 |
|
|
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
|
118 |
|
|
|
119 |
|
|
#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
|
120 |
|
|
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
|
121 |
|
|
#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_COW)
|
122 |
|
|
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
|
123 |
|
|
#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
|
124 |
|
|
#define PAGE_KERNEL_NO_CACHE __pgprot(_PAGE_NO_CACHE | _PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
|
125 |
|
|
|
126 |
|
|
/*
|
127 |
|
|
* The i386 can't do page protection for execute, and considers that the same are read.
|
128 |
|
|
* Also, write permissions imply read permissions. This is the closest we can get..
|
129 |
|
|
*/
|
130 |
|
|
#define __P000 PAGE_NONE
|
131 |
|
|
#define __P001 PAGE_READONLY
|
132 |
|
|
#define __P010 PAGE_COPY
|
133 |
|
|
#define __P011 PAGE_COPY
|
134 |
|
|
#define __P100 PAGE_READONLY
|
135 |
|
|
#define __P101 PAGE_READONLY
|
136 |
|
|
#define __P110 PAGE_COPY
|
137 |
|
|
#define __P111 PAGE_COPY
|
138 |
|
|
|
139 |
|
|
#define __S000 PAGE_NONE
|
140 |
|
|
#define __S001 PAGE_READONLY
|
141 |
|
|
#define __S010 PAGE_SHARED
|
142 |
|
|
#define __S011 PAGE_SHARED
|
143 |
|
|
#define __S100 PAGE_READONLY
|
144 |
|
|
#define __S101 PAGE_READONLY
|
145 |
|
|
#define __S110 PAGE_SHARED
|
146 |
|
|
#define __S111 PAGE_SHARED
|
147 |
|
|
|
148 |
|
|
/*
|
149 |
|
|
* TLB invalidation:
|
150 |
|
|
*
|
151 |
|
|
* - invalidate() invalidates the current mm struct TLBs
|
152 |
|
|
* - invalidate_all() invalidates all processes TLBs
|
153 |
|
|
* - invalidate_mm(mm) invalidates the specified mm context TLB's
|
154 |
|
|
* - invalidate_page(mm, vmaddr) invalidates one page
|
155 |
|
|
* - invalidate_range(mm, start, end) invalidates a range of pages
|
156 |
|
|
*
|
157 |
|
|
* FIXME: This could be done much better!
|
158 |
|
|
*/
|
159 |
|
|
|
160 |
|
|
#define invalidate_all() printk("invalidate_all()\n");invalidate()
|
161 |
|
|
#if 0
|
162 |
|
|
#define invalidate_mm(mm_struct) \
|
163 |
|
|
do { if ((mm_struct) == current->mm) invalidate(); else printk("Can't invalidate_mm(%x)\n", mm_struct);} while (0)
|
164 |
|
|
#define invalidate_page(mm_struct,addr) \
|
165 |
|
|
do { if ((mm_struct) == current->mm) invalidate(); else printk("Can't invalidate_page(%x,%x)\n", mm_struct, addr);} while (0)
|
166 |
|
|
#define invalidate_range(mm_struct,start,end) \
|
167 |
|
|
do { if ((mm_struct) == current->mm) invalidate(); else printk("Can't invalidate_range(%x,%x,%x)\n", mm_struct, start, end);} while (0)
|
168 |
|
|
#endif
|
169 |
|
|
|
170 |
|
|
/*
|
171 |
|
|
* Define this if things work differently on a i386 and a i486:
|
172 |
|
|
* it will (on a i486) warn about kernel memory accesses that are
|
173 |
|
|
* done without a 'verify_area(VERIFY_WRITE,..)'
|
174 |
|
|
*/
|
175 |
|
|
#undef CONFIG_TEST_VERIFY_AREA
|
176 |
|
|
|
177 |
|
|
/* page table for 0-4MB for everybody */
|
178 |
|
|
extern unsigned long pg0[1024];
|
179 |
|
|
|
180 |
|
|
/*
|
181 |
|
|
* BAD_PAGETABLE is used when we need a bogus page-table, while
|
182 |
|
|
* BAD_PAGE is used for a bogus page.
|
183 |
|
|
*
|
184 |
|
|
* ZERO_PAGE is a global shared page that is always zero: used
|
185 |
|
|
* for zero-mapped memory areas etc..
|
186 |
|
|
*/
|
187 |
|
|
extern pte_t __bad_page(void);
|
188 |
|
|
extern pte_t * __bad_pagetable(void);
|
189 |
|
|
|
190 |
|
|
extern unsigned long __zero_page(void);
|
191 |
|
|
|
192 |
|
|
#define BAD_PAGETABLE __bad_pagetable()
|
193 |
|
|
#define BAD_PAGE __bad_page()
|
194 |
|
|
#define ZERO_PAGE __zero_page()
|
195 |
|
|
|
196 |
|
|
/* number of bits that fit into a memory pointer */
|
197 |
|
|
#define BITS_PER_PTR (8*sizeof(unsigned long))
|
198 |
|
|
|
199 |
|
|
/* to align the pointer to a pointer address */
|
200 |
|
|
#define PTR_MASK (~(sizeof(void*)-1))
|
201 |
|
|
|
202 |
|
|
/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
|
203 |
|
|
/* 64-bit machines, beware! SRB. */
|
204 |
|
|
#define SIZEOF_PTR_LOG2 2
|
205 |
|
|
|
206 |
|
|
/* to find an entry in a page-table */
|
207 |
|
|
#define PAGE_PTR(address) \
|
208 |
|
|
((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
|
209 |
|
|
|
210 |
|
|
/* to set the page-dir */
|
211 |
|
|
/* tsk is a task_struct and pgdir is a pte_t */
|
212 |
|
|
#define SET_PAGE_DIR(tsk,pgdir) \
|
213 |
|
|
do { \
|
214 |
|
|
(tsk)->tss.pg_tables = (unsigned long *)(pgdir); \
|
215 |
|
|
if ((tsk) == current) \
|
216 |
|
|
{ \
|
217 |
|
|
/*_printk("Change page tables = %x\n", pgdir);*/ \
|
218 |
|
|
} \
|
219 |
|
|
} while (0)
|
220 |
|
|
|
221 |
|
|
extern unsigned long high_memory;
|
222 |
|
|
|
223 |
|
|
extern inline int pte_none(pte_t pte) { return !pte_val(pte); }
|
224 |
|
|
extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; }
|
225 |
|
|
#if 0
|
226 |
|
|
extern inline int pte_inuse(pte_t *ptep) { return mem_map[MAP_NR(ptep)].reserved; }
|
227 |
|
|
/*extern inline int pte_inuse(pte_t *ptep) { return mem_map[MAP_NR(ptep)] != 1; }*/
|
228 |
|
|
#endif
|
229 |
|
|
extern inline void pte_clear(pte_t *ptep) { pte_val(*ptep) = 0; }
|
230 |
|
|
#if 0
|
231 |
|
|
extern inline void pte_reuse(pte_t * ptep)
|
232 |
|
|
{
|
233 |
|
|
if (!mem_map[MAP_NR(ptep)].reserved)
|
234 |
|
|
mem_map[MAP_NR(ptep)].count++;
|
235 |
|
|
}
|
236 |
|
|
#endif
|
237 |
|
|
/*
|
238 |
|
|
extern inline void pte_reuse(pte_t * ptep)
|
239 |
|
|
{
|
240 |
|
|
if (!(mem_map[MAP_NR(ptep)] & MAP_PAGE_RESERVED))
|
241 |
|
|
mem_map[MAP_NR(ptep)]++;
|
242 |
|
|
}
|
243 |
|
|
*/
|
244 |
|
|
extern inline int pmd_none(pmd_t pmd) { return !pmd_val(pmd); }
|
245 |
|
|
extern inline int pmd_bad(pmd_t pmd) { return (pmd_val(pmd) & ~PAGE_MASK) != _PAGE_TABLE; }
|
246 |
|
|
extern inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _PAGE_PRESENT; }
|
247 |
|
|
extern inline int pmd_inuse(pmd_t *pmdp) { return 0; }
|
248 |
|
|
extern inline void pmd_clear(pmd_t * pmdp) { pmd_val(*pmdp) = 0; }
|
249 |
|
|
extern inline void pmd_reuse(pmd_t * pmdp) { }
|
250 |
|
|
|
251 |
|
|
/*
|
252 |
|
|
* The "pgd_xxx()" functions here are trivial for a folded two-level
|
253 |
|
|
* setup: the pgd is never bad, and a pmd always exists (as it's folded
|
254 |
|
|
* into the pgd entry)
|
255 |
|
|
*/
|
256 |
|
|
extern inline int pgd_none(pgd_t pgd) { return 0; }
|
257 |
|
|
extern inline int pgd_bad(pgd_t pgd) { return 0; }
|
258 |
|
|
extern inline int pgd_present(pgd_t pgd) { return 1; }
|
259 |
|
|
#if 0
|
260 |
|
|
/*extern inline int pgd_inuse(pgd_t * pgdp) { return mem_map[MAP_NR(pgdp)] != 1; }*/
|
261 |
|
|
extern inline int pgd_inuse(pgd_t *pgdp) { return mem_map[MAP_NR(pgdp)].reserved; }
|
262 |
|
|
#endif
|
263 |
|
|
extern inline void pgd_clear(pgd_t * pgdp) { }
|
264 |
|
|
|
265 |
|
|
/*
|
266 |
|
|
extern inline void pgd_reuse(pgd_t * pgdp)
|
267 |
|
|
{
|
268 |
|
|
if (!mem_map[MAP_NR(pgdp)].reserved)
|
269 |
|
|
mem_map[MAP_NR(pgdp)].count++;
|
270 |
|
|
}
|
271 |
|
|
*/
|
272 |
|
|
|
273 |
|
|
/*
|
274 |
|
|
* The following only work if pte_present() is true.
|
275 |
|
|
* Undefined behaviour if not..
|
276 |
|
|
*/
|
277 |
|
|
extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
|
278 |
|
|
extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
|
279 |
|
|
extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
|
280 |
|
|
extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
|
281 |
|
|
extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
|
282 |
|
|
extern inline int pte_cow(pte_t pte) { return pte_val(pte) & _PAGE_COW; }
|
283 |
|
|
|
284 |
|
|
extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_RW; return pte; }
|
285 |
|
|
extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; }
|
286 |
|
|
extern inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; }
|
287 |
|
|
extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
|
288 |
|
|
extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
|
289 |
|
|
extern inline pte_t pte_uncow(pte_t pte) { pte_val(pte) &= ~_PAGE_COW; return pte; }
|
290 |
|
|
extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; }
|
291 |
|
|
extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
|
292 |
|
|
extern inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
|
293 |
|
|
extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
|
294 |
|
|
extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
|
295 |
|
|
extern inline pte_t pte_mkcow(pte_t pte) { pte_val(pte) |= _PAGE_COW; return pte; }
|
296 |
|
|
|
297 |
|
|
/*
|
298 |
|
|
* Conversion functions: convert a page and protection to a page entry,
|
299 |
|
|
* and a page entry and page directory to the page they refer to.
|
300 |
|
|
*/
|
301 |
|
|
extern inline pte_t mk_pte(unsigned long page, pgprot_t pgprot)
|
302 |
|
|
{ pte_t pte; pte_val(pte) = page | pgprot_val(pgprot); return pte; }
|
303 |
|
|
|
304 |
|
|
extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
305 |
|
|
{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
|
306 |
|
|
|
307 |
|
|
/*extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
|
308 |
|
|
{ pmd_val(*pmdp) = _PAGE_TABLE | ((((unsigned long) ptep) - PAGE_OFFSET) << (32-PAGE_SHIFT)); }
|
309 |
|
|
*/
|
310 |
|
|
extern inline unsigned long pte_page(pte_t pte)
|
311 |
|
|
{ return pte_val(pte) & PAGE_MASK; }
|
312 |
|
|
|
313 |
|
|
extern inline unsigned long pmd_page(pmd_t pmd)
|
314 |
|
|
{ return pmd_val(pmd) & PAGE_MASK; }
|
315 |
|
|
|
316 |
|
|
|
317 |
|
|
/* to find an entry in a page-table-directory */
|
318 |
|
|
extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
|
319 |
|
|
{
|
320 |
|
|
return mm->pgd + (address >> PGDIR_SHIFT);
|
321 |
|
|
}
|
322 |
|
|
|
323 |
|
|
/* Find an entry in the second-level page table.. */
|
324 |
|
|
extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
|
325 |
|
|
{
|
326 |
|
|
return (pmd_t *) dir;
|
327 |
|
|
}
|
328 |
|
|
|
329 |
|
|
/* Find an entry in the third-level page table.. */
|
330 |
|
|
extern inline pte_t * pte_offset(pmd_t * dir, unsigned long address)
|
331 |
|
|
{
|
332 |
|
|
return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
|
333 |
|
|
}
|
334 |
|
|
|
335 |
|
|
|
336 |
|
|
/*
|
337 |
|
|
* Allocate and free page tables. The xxx_kernel() versions are
|
338 |
|
|
* used to allocate a kernel page table - this turns on ASN bits
|
339 |
|
|
* if any, and marks the page tables reserved.
|
340 |
|
|
*/
|
341 |
|
|
extern inline void pte_free_kernel(pte_t * pte)
|
342 |
|
|
{
|
343 |
|
|
free_page((unsigned long) pte);
|
344 |
|
|
}
|
345 |
|
|
/*extern inline void pte_free_kernel(pte_t * pte)
|
346 |
|
|
{
|
347 |
|
|
mem_map[MAP_NR(pte)] = 1;
|
348 |
|
|
free_page((unsigned long) pte);
|
349 |
|
|
}
|
350 |
|
|
*/
|
351 |
|
|
|
352 |
|
|
/*
|
353 |
|
|
extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address)
|
354 |
|
|
{
|
355 |
|
|
address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
|
356 |
|
|
if (pmd_none(*pmd)) {
|
357 |
|
|
pte_t * page = (pte_t *) get_free_page(GFP_KERNEL);
|
358 |
|
|
if (pmd_none(*pmd)) {
|
359 |
|
|
if (page) {
|
360 |
|
|
pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) page;
|
361 |
|
|
mem_map[MAP_NR(page)] = MAP_PAGE_RESERVED;
|
362 |
|
|
return page + address;
|
363 |
|
|
}
|
364 |
|
|
pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
|
365 |
|
|
return NULL;
|
366 |
|
|
}
|
367 |
|
|
free_page((unsigned long) page);
|
368 |
|
|
}
|
369 |
|
|
if (pmd_bad(*pmd)) {
|
370 |
|
|
printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
|
371 |
|
|
pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
|
372 |
|
|
return NULL;
|
373 |
|
|
}
|
374 |
|
|
return (pte_t *) pmd_page(*pmd) + address;
|
375 |
|
|
}*/
|
376 |
|
|
/*
|
377 |
|
|
extern inline pte_t * pte_alloc_kernel(pmd_t *pmd, unsigned long address)
|
378 |
|
|
{
|
379 |
|
|
printk("pte_alloc_kernel pmd = %08X, address = %08X\n", pmd, address);
|
380 |
|
|
address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
|
381 |
|
|
printk("address now = %08X\n", address);
|
382 |
|
|
if (pmd_none(*pmd)) {
|
383 |
|
|
pte_t *page;
|
384 |
|
|
printk("pmd_none(*pmd) true\n");
|
385 |
|
|
page = (pte_t *) get_free_page(GFP_KERNEL);
|
386 |
|
|
printk("page = %08X after get_free_page(%08X)\n",page,GFP_KERNEL);
|
387 |
|
|
if (pmd_none(*pmd)) {
|
388 |
|
|
printk("pmd_none(*pmd=%08X) still\n",*pmd);
|
389 |
|
|
if (page) {
|
390 |
|
|
printk("page true = %08X\n",page);
|
391 |
|
|
pmd_set(pmd, page);
|
392 |
|
|
printk("pmd_set(%08X,%08X)\n",pmd,page);
|
393 |
|
|
mem_map[MAP_NR(page)].reserved = 1;
|
394 |
|
|
printk("did mem_map\n",pmd,page);
|
395 |
|
|
return page + address;
|
396 |
|
|
}
|
397 |
|
|
printk("did pmd_set(%08X, %08X\n",pmd,BAD_PAGETABLE);
|
398 |
|
|
pmd_set(pmd, (pte_t *) BAD_PAGETABLE);
|
399 |
|
|
return NULL;
|
400 |
|
|
}
|
401 |
|
|
printk("did free_page(%08X)\n",page);
|
402 |
|
|
free_page((unsigned long) page);
|
403 |
|
|
}
|
404 |
|
|
if (pmd_bad(*pmd)) {
|
405 |
|
|
printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
|
406 |
|
|
pmd_set(pmd, (pte_t *) BAD_PAGETABLE);
|
407 |
|
|
return NULL;
|
408 |
|
|
}
|
409 |
|
|
printk("returning pmd_page(%08X) + %08X\n",pmd_page(*pmd) , address);
|
410 |
|
|
|
411 |
|
|
return (pte_t *) pmd_page(*pmd) + address;
|
412 |
|
|
}
|
413 |
|
|
*/
|
414 |
|
|
extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address)
|
415 |
|
|
{
|
416 |
|
|
address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
|
417 |
|
|
if (pmd_none(*pmd)) {
|
418 |
|
|
pte_t * page = (pte_t *) get_free_page(GFP_KERNEL);
|
419 |
|
|
if (pmd_none(*pmd)) {
|
420 |
|
|
if (page) {
|
421 |
|
|
/* pmd_set(pmd,page);*/
|
422 |
|
|
pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) page;
|
423 |
|
|
return page + address;
|
424 |
|
|
}
|
425 |
|
|
/* pmd_set(pmd, BAD_PAGETABLE);*/
|
426 |
|
|
pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
|
427 |
|
|
return NULL;
|
428 |
|
|
}
|
429 |
|
|
free_page((unsigned long) page);
|
430 |
|
|
}
|
431 |
|
|
if (pmd_bad(*pmd)) {
|
432 |
|
|
printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
|
433 |
|
|
/* pmd_set(pmd, (pte_t *) BAD_PAGETABLE); */
|
434 |
|
|
pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
|
435 |
|
|
return NULL;
|
436 |
|
|
}
|
437 |
|
|
return (pte_t *) pmd_page(*pmd) + address;
|
438 |
|
|
}
|
439 |
|
|
|
440 |
|
|
/*
|
441 |
|
|
* allocating and freeing a pmd is trivial: the 1-entry pmd is
|
442 |
|
|
* inside the pgd, so has no extra memory associated with it.
|
443 |
|
|
*/
|
444 |
|
|
extern inline void pmd_free_kernel(pmd_t * pmd)
|
445 |
|
|
{
|
446 |
|
|
}
|
447 |
|
|
|
448 |
|
|
extern inline pmd_t * pmd_alloc_kernel(pgd_t * pgd, unsigned long address)
|
449 |
|
|
{
|
450 |
|
|
return (pmd_t *) pgd;
|
451 |
|
|
}
|
452 |
|
|
|
453 |
|
|
extern inline void pte_free(pte_t * pte)
|
454 |
|
|
{
|
455 |
|
|
free_page((unsigned long) pte);
|
456 |
|
|
}
|
457 |
|
|
|
458 |
|
|
extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
|
459 |
|
|
{
|
460 |
|
|
address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
|
461 |
|
|
if (pmd_none(*pmd)) {
|
462 |
|
|
pte_t * page = (pte_t *) get_free_page(GFP_KERNEL);
|
463 |
|
|
if (pmd_none(*pmd)) {
|
464 |
|
|
if (page) {
|
465 |
|
|
pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) page;
|
466 |
|
|
return page + address;
|
467 |
|
|
}
|
468 |
|
|
pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
|
469 |
|
|
return NULL;
|
470 |
|
|
}
|
471 |
|
|
free_page((unsigned long) page);
|
472 |
|
|
}
|
473 |
|
|
if (pmd_bad(*pmd)) {
|
474 |
|
|
printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
|
475 |
|
|
pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
|
476 |
|
|
return NULL;
|
477 |
|
|
}
|
478 |
|
|
return (pte_t *) pmd_page(*pmd) + address;
|
479 |
|
|
}
|
480 |
|
|
|
481 |
|
|
/*
|
482 |
|
|
* allocating and freeing a pmd is trivial: the 1-entry pmd is
|
483 |
|
|
* inside the pgd, so has no extra memory associated with it.
|
484 |
|
|
*/
|
485 |
|
|
extern inline void pmd_free(pmd_t * pmd)
|
486 |
|
|
{
|
487 |
|
|
}
|
488 |
|
|
|
489 |
|
|
extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address)
|
490 |
|
|
{
|
491 |
|
|
return (pmd_t *) pgd;
|
492 |
|
|
}
|
493 |
|
|
|
494 |
|
|
extern inline void pgd_free(pgd_t * pgd)
|
495 |
|
|
{
|
496 |
|
|
free_page((unsigned long) pgd);
|
497 |
|
|
}
|
498 |
|
|
|
499 |
|
|
extern inline pgd_t * pgd_alloc(void)
|
500 |
|
|
{
|
501 |
|
|
return (pgd_t *) get_free_page(GFP_KERNEL);
|
502 |
|
|
}
|
503 |
|
|
|
504 |
|
|
extern pgd_t swapper_pg_dir[1024*8];
|
505 |
|
|
/*extern pgd_t *swapper_pg_dir;*/
|
506 |
|
|
|
507 |
|
|
/*
|
508 |
|
|
* Software maintained MMU tables may have changed -- update the
|
509 |
|
|
* hardware [aka cache]
|
510 |
|
|
*/
|
511 |
|
|
extern inline void update_mmu_cache(struct vm_area_struct * vma,
|
512 |
|
|
unsigned long address, pte_t _pte)
|
513 |
|
|
{
|
514 |
|
|
#if 0
|
515 |
|
|
printk("Update MMU cache - VMA: %x, Addr: %x, PTE: %x\n", vma, address, *(long *)&_pte);
|
516 |
|
|
_printk("Update MMU cache - VMA: %x, Addr: %x, PTE: %x\n", vma, address, *(long *)&_pte);
|
517 |
|
|
/* MMU_hash_page(&(vma->vm_task)->tss, address & PAGE_MASK, (pte *)&_pte);*/
|
518 |
|
|
#endif
|
519 |
|
|
MMU_hash_page(&(current)->tss, address & PAGE_MASK, (pte *)&_pte);
|
520 |
|
|
|
521 |
|
|
}
|
522 |
|
|
|
523 |
|
|
|
524 |
|
|
#ifdef _SCHED_INIT_
|
525 |
|
|
#define INIT_MMAP { &init_task, 0, 0x40000000, PAGE_SHARED, VM_READ | VM_WRITE | VM_EXEC }
|
526 |
|
|
|
527 |
|
|
#endif
|
528 |
|
|
|
529 |
|
|
#define SWP_TYPE(entry) (((entry) >> 1) & 0x7f)
|
530 |
|
|
#define SWP_OFFSET(entry) ((entry) >> 8)
|
531 |
|
|
#define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) << 8))
|
532 |
|
|
|
533 |
|
|
#endif /* _PPC_PAGE_H */
|