OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [rtems/] [c/] [src/] [exec/] [score/] [cpu/] [sparc/] [cpu.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 158 chris
/*
2
 *  SPARC Dependent Source
3
 *
4
 *  COPYRIGHT (c) 1989-1999.
5
 *  On-Line Applications Research Corporation (OAR).
6
 *
7
 *  The license and distribution terms for this file may be
8
 *  found in the file LICENSE in this distribution or at
9
 *  http://www.OARcorp.com/rtems/license.html.
10
 *
11
 *  Ported to ERC32 implementation of the SPARC by On-Line Applications
12
 *  Research Corporation (OAR) under contract to the European Space
13
 *  Agency (ESA).
14
 *
15
 *  ERC32 modifications of respective RTEMS file: COPYRIGHT (c) 1995.
16
 *  European Space Agency.
17
 *
18 208 chris
 *  $Id: cpu.c,v 1.2 2001-09-27 11:59:30 chris Exp $
19 158 chris
 */
20
 
21
#include <rtems/system.h>
22
#include <rtems/score/isr.h>
23
 
24
#if defined(erc32)
25
#include <erc32.h>
26
#endif
27
 
28
/*
29
 *  This initializes the set of opcodes placed in each trap
30
 *  table entry.  The routine which installs a handler is responsible
31
 *  for filling in the fields for the _handler address and the _vector
32
 *  trap type.
33
 *
34
 *  The constants following this structure are masks for the fields which
35
 *  must be filled in when the handler is installed.
36
 */
37
 
38
const CPU_Trap_table_entry _CPU_Trap_slot_template = {
39
  0xa1480000,      /* mov   %psr, %l0           */
40
  0x29000000,      /* sethi %hi(_handler), %l4  */
41
  0x81c52000,      /* jmp   %l4 + %lo(_handler) */
42
  0xa6102000       /* mov   _vector, %l3        */
43
};
44
 
45
/*PAGE
46
 *
47
 *  _CPU_Initialize
48
 *
49
 *  This routine performs processor dependent initialization.
50
 *
51
 *  Input Parameters:
52
 *    cpu_table       - CPU table to initialize
53
 *    thread_dispatch - address of disptaching routine
54
 *
55
 *  Output Parameters: NONE
56
 *
57
 *  NOTE: There is no need to save the pointer to the thread dispatch routine.
58
 *        The SPARC's assembly code can reference it directly with no problems.
59
 */
60
 
61
void _CPU_Initialize(
62
  rtems_cpu_table  *cpu_table,
63
  void            (*thread_dispatch)      /* ignored on this CPU */
64
)
65
{
66
  void                  *pointer;
67
 
68
#ifndef NO_TABLE_MOVE
69
  unsigned32             trap_table_start;
70
  unsigned32             tbr_value;
71
  CPU_Trap_table_entry  *old_tbr;
72
  CPU_Trap_table_entry  *trap_table;
73
 
74
  /*
75
   *  Install the executive's trap table.  All entries from the original
76
   *  trap table are copied into the executive's trap table.  This is essential
77
   *  since this preserves critical trap handlers such as the window underflow
78
   *  and overflow handlers.  It is the responsibility of the BSP to provide
79
   *  install these in the initial trap table.
80
   */
81
 
82
 
83
  trap_table_start = (unsigned32) &_CPU_Trap_Table_area;
84
  if (trap_table_start & (SPARC_TRAP_TABLE_ALIGNMENT-1))
85
    trap_table_start = (trap_table_start + SPARC_TRAP_TABLE_ALIGNMENT) &
86
                       ~(SPARC_TRAP_TABLE_ALIGNMENT-1);
87
 
88
  trap_table = (CPU_Trap_table_entry *) trap_table_start;
89
 
90
  sparc_get_tbr( tbr_value );
91
 
92
  old_tbr = (CPU_Trap_table_entry *) (tbr_value & 0xfffff000);
93
 
94
  memcpy( trap_table, (void *) old_tbr, 256 * sizeof( CPU_Trap_table_entry ) );
95
 
96
  sparc_set_tbr( trap_table_start );
97
 
98
#endif
99
 
100
  /*
101
   *  This seems to be the most appropriate way to obtain an initial
102
   *  FP context on the SPARC.  The NULL fp context is copied it to
103
   *  the task's FP context during Context_Initialize.
104
   */
105
 
106
  pointer = &_CPU_Null_fp_context;
107
  _CPU_Context_save_fp( &pointer );
108
 
109
  /*
110
   *  Grab our own copy of the user's CPU table.
111
   */
112
 
113
  _CPU_Table = *cpu_table;
114
 
115
#if defined(erc32)
116
 
117
  /*
118
   *  ERC32 specific initialization
119
   */
120
 
121
  _ERC32_MEC_Timer_Control_Mirror = 0;
122
  ERC32_MEC.Timer_Control = 0;
123
 
124
  ERC32_MEC.Control |= ERC32_CONFIGURATION_POWER_DOWN_ALLOWED;
125
 
126
#endif
127
 
128
}
129
 
130
/*PAGE
131
 *
132
 *  _CPU_ISR_Get_level
133
 *
134
 *  Input Parameters: NONE
135
 *
136
 *  Output Parameters:
137
 *    returns the current interrupt level (PIL field of the PSR)
138
 */
139
 
140
unsigned32 _CPU_ISR_Get_level( void )
141
{
142
  unsigned32 level;
143
 
144
  sparc_get_interrupt_level( level );
145
 
146
  return level;
147
}
148
 
149
/*PAGE
150
 *
151
 *  _CPU_ISR_install_raw_handler
152
 *
153
 *  This routine installs the specified handler as a "raw" non-executive
154
 *  supported trap handler (a.k.a. interrupt service routine).
155
 *
156
 *  Input Parameters:
157
 *    vector      - trap table entry number plus synchronous
158
 *                    vs. asynchronous information
159
 *    new_handler - address of the handler to be installed
160
 *    old_handler - pointer to an address of the handler previously installed
161
 *
162
 *  Output Parameters: NONE
163
 *    *new_handler - address of the handler previously installed
164
 *
165
 *  NOTE:
166
 *
167
 *  On the SPARC, there are really only 256 vectors.  However, the executive
168
 *  has no easy, fast, reliable way to determine which traps are synchronous
169
 *  and which are asynchronous.  By default, synchronous traps return to the
170
 *  instruction which caused the interrupt.  So if you install a software
171
 *  trap handler as an executive interrupt handler (which is desirable since
172
 *  RTEMS takes care of window and register issues), then the executive needs
173
 *  to know that the return address is to the trap rather than the instruction
174
 *  following the trap.
175
 *
176
 *  So vectors 0 through 255 are treated as regular asynchronous traps which
177
 *  provide the "correct" return address.  Vectors 256 through 512 are assumed
178
 *  by the executive to be synchronous and to require that the return address
179
 *  be fudged.
180
 *
181
 *  If you use this mechanism to install a trap handler which must reexecute
182
 *  the instruction which caused the trap, then it should be installed as
183
 *  an asynchronous trap.  This will avoid the executive changing the return
184
 *  address.
185
 */
186
 
187
void _CPU_ISR_install_raw_handler(
188
  unsigned32  vector,
189
  proc_ptr    new_handler,
190
  proc_ptr   *old_handler
191
)
192
{
193
  unsigned32             real_vector;
194
  CPU_Trap_table_entry  *tbr;
195
  CPU_Trap_table_entry  *slot;
196
  unsigned32             u32_tbr;
197
  unsigned32             u32_handler;
198
 
199
  /*
200
   *  Get the "real" trap number for this vector ignoring the synchronous
201
   *  versus asynchronous indicator included with our vector numbers.
202
   */
203
 
204
  real_vector = SPARC_REAL_TRAP_NUMBER( vector );
205
 
206
  /*
207
   *  Get the current base address of the trap table and calculate a pointer
208
   *  to the slot we are interested in.
209
   */
210
 
211
  sparc_get_tbr( u32_tbr );
212
 
213
  u32_tbr &= 0xfffff000;
214
 
215
  tbr = (CPU_Trap_table_entry *) u32_tbr;
216
 
217
  slot = &tbr[ real_vector ];
218
 
219
  /*
220
   *  Get the address of the old_handler from the trap table.
221
   *
222
   *  NOTE: The old_handler returned will be bogus if it does not follow
223
   *        the RTEMS model.
224
   */
225
 
226
#define HIGH_BITS_MASK   0xFFFFFC00
227
#define HIGH_BITS_SHIFT  10
228
#define LOW_BITS_MASK    0x000003FF
229
 
230
  if ( slot->mov_psr_l0 == _CPU_Trap_slot_template.mov_psr_l0 ) {
231
    u32_handler =
232
      ((slot->sethi_of_handler_to_l4 & HIGH_BITS_MASK) << HIGH_BITS_SHIFT) |
233
      (slot->jmp_to_low_of_handler_plus_l4 & LOW_BITS_MASK);
234
    *old_handler = (proc_ptr) u32_handler;
235
  } else
236
    *old_handler = 0;
237
 
238
  /*
239
   *  Copy the template to the slot and then fix it.
240
   */
241
 
242
  *slot = _CPU_Trap_slot_template;
243
 
244
  u32_handler = (unsigned32) new_handler;
245
 
246
  slot->mov_vector_l3 |= vector;
247
  slot->sethi_of_handler_to_l4 |=
248
    (u32_handler & HIGH_BITS_MASK) >> HIGH_BITS_SHIFT;
249
  slot->jmp_to_low_of_handler_plus_l4 |= (u32_handler & LOW_BITS_MASK);
250
}
251
 
252
/*PAGE
253
 *
254
 *  _CPU_ISR_install_vector
255
 *
256
 *  This kernel routine installs the RTEMS handler for the
257
 *  specified vector.
258
 *
259
 *  Input parameters:
260
 *    vector       - interrupt vector number
261
 *    new_handler  - replacement ISR for this vector number
262
 *    old_handler  - pointer to former ISR for this vector number
263
 *
264
 *  Output parameters:
265
 *    *old_handler - former ISR for this vector number
266
 *
267
 */
268
 
269
void _CPU_ISR_install_vector(
270
  unsigned32  vector,
271
  proc_ptr    new_handler,
272
  proc_ptr   *old_handler
273
)
274
{
275
   unsigned32 real_vector;
276
   proc_ptr   ignored;
277
 
278
  /*
279
   *  Get the "real" trap number for this vector ignoring the synchronous
280
   *  versus asynchronous indicator included with our vector numbers.
281
   */
282
 
283
   real_vector = SPARC_REAL_TRAP_NUMBER( vector );
284
 
285
   /*
286
    *  Return the previous ISR handler.
287
    */
288
 
289
   *old_handler = _ISR_Vector_table[ real_vector ];
290
 
291
   /*
292
    *  Install the wrapper so this ISR can be invoked properly.
293
    */
294
 
295
   _CPU_ISR_install_raw_handler( vector, _ISR_Handler, &ignored );
296
 
297
   /*
298
    *  We put the actual user ISR address in '_ISR_vector_table'.  This will
299
    *  be used by the _ISR_Handler so the user gets control.
300
    */
301
 
302
    _ISR_Vector_table[ real_vector ] = new_handler;
303
}
304
 
305
/*PAGE
306
 *
307
 *  _CPU_Context_Initialize
308
 *
309
 *  This kernel routine initializes the basic non-FP context area associated
310
 *  with each thread.
311
 *
312
 *  Input parameters:
313
 *    the_context  - pointer to the context area
314
 *    stack_base   - address of memory for the SPARC
315
 *    size         - size in bytes of the stack area
316
 *    new_level    - interrupt level for this context area
317
 *    entry_point  - the starting execution point for this this context
318
 *    is_fp        - TRUE if this context is associated with an FP thread
319
 *
320
 *  Output parameters: NONE
321
 */
322
 
323
void _CPU_Context_Initialize(
324
  Context_Control  *the_context,
325
  unsigned32       *stack_base,
326
  unsigned32        size,
327
  unsigned32        new_level,
328
  void             *entry_point,
329
  boolean           is_fp
330
)
331
{
332
    unsigned32   stack_high;  /* highest "stack aligned" address */
333
    unsigned32   the_size;
334
    unsigned32   tmp_psr;
335
 
336
    /*
337
     *  On CPUs with stacks which grow down (i.e. SPARC), we build the stack
338
     *  based on the stack_high address.
339
     */
340
 
341
    stack_high = ((unsigned32)(stack_base) + size);
342
    stack_high &= ~(CPU_STACK_ALIGNMENT - 1);
343
 
344
    the_size = size & ~(CPU_STACK_ALIGNMENT - 1);
345
 
346
    /*
347
     *  See the README in this directory for a diagram of the stack.
348
     */
349
 
350
    the_context->o7    = ((unsigned32) entry_point) - 8;
351
    the_context->o6_sp = stack_high - CPU_MINIMUM_STACK_FRAME_SIZE;
352
    the_context->i6_fp = stack_high;
353
 
354
    /*
355
     *  Build the PSR for the task.  Most everything can be 0 and the
356
     *  CWP is corrected during the context switch.
357
     *
358
     *  The EF bit determines if the floating point unit is available.
359
     *  The FPU is ONLY enabled if the context is associated with an FP task
360
     *  and this SPARC model has an FPU.
361
     */
362
 
363
    sparc_get_psr( tmp_psr );
364
    tmp_psr &= ~SPARC_PSR_PIL_MASK;
365
    tmp_psr |= (new_level << 8) & SPARC_PSR_PIL_MASK;
366
    tmp_psr &= ~SPARC_PSR_EF_MASK;      /* disabled by default */
367
 
368
#if (SPARC_HAS_FPU == 1)
369
    /*
370
     *  If this bit is not set, then a task gets a fault when it accesses
371
     *  a floating point register.  This is a nice way to detect floating
372
     *  point tasks which are not currently declared as such.
373
     */
374
 
375
    if ( is_fp )
376
      tmp_psr |= SPARC_PSR_EF_MASK;
377
#endif
378
    the_context->psr = tmp_psr;
379
}
380
 
381
/*PAGE
382
 *
383
 *  _CPU_Thread_Idle_body
384
 *
385
 *  Some SPARC implementations have low power, sleep, or idle modes.  This
386
 *  tries to take advantage of those models.
387
 */
388
 
389
#if (CPU_PROVIDES_IDLE_THREAD_BODY == TRUE)
390
 
391
/*
392
 *  This is the implementation for the erc32.
393
 *
394
 *  NOTE: Low power mode was enabled at initialization time.
395
 */
396
 
397
#if defined(erc32)
398
 
399
void _CPU_Thread_Idle_body( void )
400
{
401
  while (1) {
402
    ERC32_MEC.Power_Down = 0;   /* value is irrelevant */
403
  }
404
}
405
 
406
#endif
407
 
408
#endif /* CPU_PROVIDES_IDLE_THREAD_BODY */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.