| 1 |
158 |
chris |
//
|
| 2 |
208 |
chris |
// $Id: bindec.S,v 1.2 2001-09-27 12:01:22 chris Exp $
|
| 3 |
158 |
chris |
//
|
| 4 |
|
|
// bindec.sa 3.4 1/3/91
|
| 5 |
|
|
//
|
| 6 |
|
|
// bindec
|
| 7 |
|
|
//
|
| 8 |
|
|
// Description:
|
| 9 |
|
|
// Converts an input in extended precision format
|
| 10 |
|
|
// to bcd format.
|
| 11 |
|
|
//
|
| 12 |
|
|
// Input:
|
| 13 |
|
|
// a0 points to the input extended precision value
|
| 14 |
|
|
// value in memory; d0 contains the k-factor sign-extended
|
| 15 |
|
|
// to 32-bits. The input may be either normalized,
|
| 16 |
|
|
// unnormalized, or denormalized.
|
| 17 |
|
|
//
|
| 18 |
|
|
// Output: result in the FP_SCR1 space on the stack.
|
| 19 |
|
|
//
|
| 20 |
|
|
// Saves and Modifies: D2-D7,A2,FP2
|
| 21 |
|
|
//
|
| 22 |
|
|
// Algorithm:
|
| 23 |
|
|
//
|
| 24 |
|
|
// A1. Set RM and size ext; Set SIGMA = sign of input.
|
| 25 |
|
|
// The k-factor is saved for use in d7. Clear the
|
| 26 |
|
|
// BINDEC_FLG for separating normalized/denormalized
|
| 27 |
|
|
// input. If input is unnormalized or denormalized,
|
| 28 |
|
|
// normalize it.
|
| 29 |
|
|
//
|
| 30 |
|
|
// A2. Set X = abs(input).
|
| 31 |
|
|
//
|
| 32 |
|
|
// A3. Compute ILOG.
|
| 33 |
|
|
// ILOG is the log base 10 of the input value. It is
|
| 34 |
|
|
// approximated by adding e + 0.f when the original
|
| 35 |
|
|
// value is viewed as 2^^e * 1.f in extended precision.
|
| 36 |
|
|
// This value is stored in d6.
|
| 37 |
|
|
//
|
| 38 |
|
|
// A4. Clr INEX bit.
|
| 39 |
|
|
// The operation in A3 above may have set INEX2.
|
| 40 |
|
|
//
|
| 41 |
|
|
// A5. Set ICTR = 0;
|
| 42 |
|
|
// ICTR is a flag used in A13. It must be set before the
|
| 43 |
|
|
// loop entry A6.
|
| 44 |
|
|
//
|
| 45 |
|
|
// A6. Calculate LEN.
|
| 46 |
|
|
// LEN is the number of digits to be displayed. The
|
| 47 |
|
|
// k-factor can dictate either the total number of digits,
|
| 48 |
|
|
// if it is a positive number, or the number of digits
|
| 49 |
|
|
// after the decimal point which are to be included as
|
| 50 |
|
|
// significant. See the 68882 manual for examples.
|
| 51 |
|
|
// If LEN is computed to be greater than 17, set OPERR in
|
| 52 |
|
|
// USER_FPSR. LEN is stored in d4.
|
| 53 |
|
|
//
|
| 54 |
|
|
// A7. Calculate SCALE.
|
| 55 |
|
|
// SCALE is equal to 10^ISCALE, where ISCALE is the number
|
| 56 |
|
|
// of decimal places needed to insure LEN integer digits
|
| 57 |
|
|
// in the output before conversion to bcd. LAMBDA is the
|
| 58 |
|
|
// sign of ISCALE, used in A9. Fp1 contains
|
| 59 |
|
|
// 10^^(abs(ISCALE)) using a rounding mode which is a
|
| 60 |
|
|
// function of the original rounding mode and the signs
|
| 61 |
|
|
// of ISCALE and X. A table is given in the code.
|
| 62 |
|
|
//
|
| 63 |
|
|
// A8. Clr INEX; Force RZ.
|
| 64 |
|
|
// The operation in A3 above may have set INEX2.
|
| 65 |
|
|
// RZ mode is forced for the scaling operation to insure
|
| 66 |
|
|
// only one rounding error. The grs bits are collected in
|
| 67 |
|
|
// the INEX flag for use in A10.
|
| 68 |
|
|
//
|
| 69 |
|
|
// A9. Scale X -> Y.
|
| 70 |
|
|
// The mantissa is scaled to the desired number of
|
| 71 |
|
|
// significant digits. The excess digits are collected
|
| 72 |
|
|
// in INEX2.
|
| 73 |
|
|
//
|
| 74 |
|
|
// A10. Or in INEX.
|
| 75 |
|
|
// If INEX is set, round error occurred. This is
|
| 76 |
|
|
// compensated for by 'or-ing' in the INEX2 flag to
|
| 77 |
|
|
// the lsb of Y.
|
| 78 |
|
|
//
|
| 79 |
|
|
// A11. Restore original FPCR; set size ext.
|
| 80 |
|
|
// Perform FINT operation in the user's rounding mode.
|
| 81 |
|
|
// Keep the size to extended.
|
| 82 |
|
|
//
|
| 83 |
|
|
// A12. Calculate YINT = FINT(Y) according to user's rounding
|
| 84 |
|
|
// mode. The FPSP routine sintd0 is used. The output
|
| 85 |
|
|
// is in fp0.
|
| 86 |
|
|
//
|
| 87 |
|
|
// A13. Check for LEN digits.
|
| 88 |
|
|
// If the int operation results in more than LEN digits,
|
| 89 |
|
|
// or less than LEN -1 digits, adjust ILOG and repeat from
|
| 90 |
|
|
// A6. This test occurs only on the first pass. If the
|
| 91 |
|
|
// result is exactly 10^LEN, decrement ILOG and divide
|
| 92 |
|
|
// the mantissa by 10.
|
| 93 |
|
|
//
|
| 94 |
|
|
// A14. Convert the mantissa to bcd.
|
| 95 |
|
|
// The binstr routine is used to convert the LEN digit
|
| 96 |
|
|
// mantissa to bcd in memory. The input to binstr is
|
| 97 |
|
|
// to be a fraction; i.e. (mantissa)/10^LEN and adjusted
|
| 98 |
|
|
// such that the decimal point is to the left of bit 63.
|
| 99 |
|
|
// The bcd digits are stored in the correct position in
|
| 100 |
|
|
// the final string area in memory.
|
| 101 |
|
|
//
|
| 102 |
|
|
// A15. Convert the exponent to bcd.
|
| 103 |
|
|
// As in A14 above, the exp is converted to bcd and the
|
| 104 |
|
|
// digits are stored in the final string.
|
| 105 |
|
|
// Test the length of the final exponent string. If the
|
| 106 |
|
|
// length is 4, set operr.
|
| 107 |
|
|
//
|
| 108 |
|
|
// A16. Write sign bits to final string.
|
| 109 |
|
|
//
|
| 110 |
|
|
// Implementation Notes:
|
| 111 |
|
|
//
|
| 112 |
|
|
// The registers are used as follows:
|
| 113 |
|
|
//
|
| 114 |
|
|
// d0: scratch; LEN input to binstr
|
| 115 |
|
|
// d1: scratch
|
| 116 |
|
|
// d2: upper 32-bits of mantissa for binstr
|
| 117 |
|
|
// d3: scratch;lower 32-bits of mantissa for binstr
|
| 118 |
|
|
// d4: LEN
|
| 119 |
|
|
// d5: LAMBDA/ICTR
|
| 120 |
|
|
// d6: ILOG
|
| 121 |
|
|
// d7: k-factor
|
| 122 |
|
|
// a0: ptr for original operand/final result
|
| 123 |
|
|
// a1: scratch pointer
|
| 124 |
|
|
// a2: pointer to FP_X; abs(original value) in ext
|
| 125 |
|
|
// fp0: scratch
|
| 126 |
|
|
// fp1: scratch
|
| 127 |
|
|
// fp2: scratch
|
| 128 |
|
|
// F_SCR1:
|
| 129 |
|
|
// F_SCR2:
|
| 130 |
|
|
// L_SCR1:
|
| 131 |
|
|
// L_SCR2:
|
| 132 |
|
|
|
| 133 |
|
|
// Copyright (C) Motorola, Inc. 1990
|
| 134 |
|
|
// All Rights Reserved
|
| 135 |
|
|
//
|
| 136 |
|
|
// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
|
| 137 |
|
|
// The copyright notice above does not evidence any
|
| 138 |
|
|
// actual or intended publication of such source code.
|
| 139 |
|
|
|
| 140 |
|
|
//BINDEC idnt 2,1 | Motorola 040 Floating Point Software Package
|
| 141 |
|
|
|
| 142 |
|
|
#include "fpsp.defs"
|
| 143 |
|
|
|
| 144 |
|
|
|section 8
|
| 145 |
|
|
|
| 146 |
|
|
// Constants in extended precision
|
| 147 |
|
|
LOG2: .long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000
|
| 148 |
|
|
LOG2UP1: .long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000
|
| 149 |
|
|
|
| 150 |
|
|
// Constants in single precision
|
| 151 |
|
|
FONE: .long 0x3F800000,0x00000000,0x00000000,0x00000000
|
| 152 |
|
|
FTWO: .long 0x40000000,0x00000000,0x00000000,0x00000000
|
| 153 |
|
|
FTEN: .long 0x41200000,0x00000000,0x00000000,0x00000000
|
| 154 |
|
|
F4933: .long 0x459A2800,0x00000000,0x00000000,0x00000000
|
| 155 |
|
|
|
| 156 |
|
|
RBDTBL: .byte 0,0,0,0
|
| 157 |
|
|
.byte 3,3,2,2
|
| 158 |
|
|
.byte 3,2,2,3
|
| 159 |
|
|
.byte 2,3,3,2
|
| 160 |
|
|
|
| 161 |
|
|
|xref binstr
|
| 162 |
|
|
|xref sintdo
|
| 163 |
|
|
|xref ptenrn,ptenrm,ptenrp
|
| 164 |
|
|
|
| 165 |
|
|
.global bindec
|
| 166 |
|
|
.global sc_mul
|
| 167 |
|
|
bindec:
|
| 168 |
|
|
moveml %d2-%d7/%a2,-(%a7)
|
| 169 |
|
|
fmovemx %fp0-%fp2,-(%a7)
|
| 170 |
|
|
|
| 171 |
|
|
// A1. Set RM and size ext. Set SIGMA = sign input;
|
| 172 |
|
|
// The k-factor is saved for use in d7. Clear BINDEC_FLG for
|
| 173 |
|
|
// separating normalized/denormalized input. If the input
|
| 174 |
|
|
// is a denormalized number, set the BINDEC_FLG memory word
|
| 175 |
|
|
// to signal denorm. If the input is unnormalized, normalize
|
| 176 |
|
|
// the input and test for denormalized result.
|
| 177 |
|
|
//
|
| 178 |
|
|
fmovel #rm_mode,%FPCR //set RM and ext
|
| 179 |
|
|
movel (%a0),L_SCR2(%a6) //save exponent for sign check
|
| 180 |
|
|
movel %d0,%d7 //move k-factor to d7
|
| 181 |
|
|
clrb BINDEC_FLG(%a6) //clr norm/denorm flag
|
| 182 |
|
|
movew STAG(%a6),%d0 //get stag
|
| 183 |
|
|
andiw #0xe000,%d0 //isolate stag bits
|
| 184 |
|
|
beq A2_str //if zero, input is norm
|
| 185 |
|
|
//
|
| 186 |
|
|
// Normalize the denorm
|
| 187 |
|
|
//
|
| 188 |
|
|
un_de_norm:
|
| 189 |
|
|
movew (%a0),%d0
|
| 190 |
|
|
andiw #0x7fff,%d0 //strip sign of normalized exp
|
| 191 |
|
|
movel 4(%a0),%d1
|
| 192 |
|
|
movel 8(%a0),%d2
|
| 193 |
|
|
norm_loop:
|
| 194 |
|
|
subw #1,%d0
|
| 195 |
|
|
lsll #1,%d2
|
| 196 |
|
|
roxll #1,%d1
|
| 197 |
|
|
tstl %d1
|
| 198 |
|
|
bges norm_loop
|
| 199 |
|
|
//
|
| 200 |
|
|
// Test if the normalized input is denormalized
|
| 201 |
|
|
//
|
| 202 |
|
|
tstw %d0
|
| 203 |
|
|
bgts pos_exp //if greater than zero, it is a norm
|
| 204 |
|
|
st BINDEC_FLG(%a6) //set flag for denorm
|
| 205 |
|
|
pos_exp:
|
| 206 |
|
|
andiw #0x7fff,%d0 //strip sign of normalized exp
|
| 207 |
|
|
movew %d0,(%a0)
|
| 208 |
|
|
movel %d1,4(%a0)
|
| 209 |
|
|
movel %d2,8(%a0)
|
| 210 |
|
|
|
| 211 |
|
|
// A2. Set X = abs(input).
|
| 212 |
|
|
//
|
| 213 |
|
|
A2_str:
|
| 214 |
|
|
movel (%a0),FP_SCR2(%a6) // move input to work space
|
| 215 |
|
|
movel 4(%a0),FP_SCR2+4(%a6) // move input to work space
|
| 216 |
|
|
movel 8(%a0),FP_SCR2+8(%a6) // move input to work space
|
| 217 |
|
|
andil #0x7fffffff,FP_SCR2(%a6) //create abs(X)
|
| 218 |
|
|
|
| 219 |
|
|
// A3. Compute ILOG.
|
| 220 |
|
|
// ILOG is the log base 10 of the input value. It is approx-
|
| 221 |
|
|
// imated by adding e + 0.f when the original value is viewed
|
| 222 |
|
|
// as 2^^e * 1.f in extended precision. This value is stored
|
| 223 |
|
|
// in d6.
|
| 224 |
|
|
//
|
| 225 |
|
|
// Register usage:
|
| 226 |
|
|
// Input/Output
|
| 227 |
|
|
// d0: k-factor/exponent
|
| 228 |
|
|
// d2: x/x
|
| 229 |
|
|
// d3: x/x
|
| 230 |
|
|
// d4: x/x
|
| 231 |
|
|
// d5: x/x
|
| 232 |
|
|
// d6: x/ILOG
|
| 233 |
|
|
// d7: k-factor/Unchanged
|
| 234 |
|
|
// a0: ptr for original operand/final result
|
| 235 |
|
|
// a1: x/x
|
| 236 |
|
|
// a2: x/x
|
| 237 |
|
|
// fp0: x/float(ILOG)
|
| 238 |
|
|
// fp1: x/x
|
| 239 |
|
|
// fp2: x/x
|
| 240 |
|
|
// F_SCR1:x/x
|
| 241 |
|
|
// F_SCR2:Abs(X)/Abs(X) with $3fff exponent
|
| 242 |
|
|
// L_SCR1:x/x
|
| 243 |
|
|
// L_SCR2:first word of X packed/Unchanged
|
| 244 |
|
|
|
| 245 |
|
|
tstb BINDEC_FLG(%a6) //check for denorm
|
| 246 |
|
|
beqs A3_cont //if clr, continue with norm
|
| 247 |
|
|
movel #-4933,%d6 //force ILOG = -4933
|
| 248 |
|
|
bras A4_str
|
| 249 |
|
|
A3_cont:
|
| 250 |
|
|
movew FP_SCR2(%a6),%d0 //move exp to d0
|
| 251 |
|
|
movew #0x3fff,FP_SCR2(%a6) //replace exponent with 0x3fff
|
| 252 |
|
|
fmovex FP_SCR2(%a6),%fp0 //now fp0 has 1.f
|
| 253 |
|
|
subw #0x3fff,%d0 //strip off bias
|
| 254 |
|
|
faddw %d0,%fp0 //add in exp
|
| 255 |
|
|
fsubs FONE,%fp0 //subtract off 1.0
|
| 256 |
|
|
fbge pos_res //if pos, branch
|
| 257 |
|
|
fmulx LOG2UP1,%fp0 //if neg, mul by LOG2UP1
|
| 258 |
|
|
fmovel %fp0,%d6 //put ILOG in d6 as a lword
|
| 259 |
|
|
bras A4_str //go move out ILOG
|
| 260 |
|
|
pos_res:
|
| 261 |
|
|
fmulx LOG2,%fp0 //if pos, mul by LOG2
|
| 262 |
|
|
fmovel %fp0,%d6 //put ILOG in d6 as a lword
|
| 263 |
|
|
|
| 264 |
|
|
|
| 265 |
|
|
// A4. Clr INEX bit.
|
| 266 |
|
|
// The operation in A3 above may have set INEX2.
|
| 267 |
|
|
|
| 268 |
|
|
A4_str:
|
| 269 |
|
|
fmovel #0,%FPSR //zero all of fpsr - nothing needed
|
| 270 |
|
|
|
| 271 |
|
|
|
| 272 |
|
|
// A5. Set ICTR = 0;
|
| 273 |
|
|
// ICTR is a flag used in A13. It must be set before the
|
| 274 |
|
|
// loop entry A6. The lower word of d5 is used for ICTR.
|
| 275 |
|
|
|
| 276 |
|
|
clrw %d5 //clear ICTR
|
| 277 |
|
|
|
| 278 |
|
|
|
| 279 |
|
|
// A6. Calculate LEN.
|
| 280 |
|
|
// LEN is the number of digits to be displayed. The k-factor
|
| 281 |
|
|
// can dictate either the total number of digits, if it is
|
| 282 |
|
|
// a positive number, or the number of digits after the
|
| 283 |
|
|
// original decimal point which are to be included as
|
| 284 |
|
|
// significant. See the 68882 manual for examples.
|
| 285 |
|
|
// If LEN is computed to be greater than 17, set OPERR in
|
| 286 |
|
|
// USER_FPSR. LEN is stored in d4.
|
| 287 |
|
|
//
|
| 288 |
|
|
// Register usage:
|
| 289 |
|
|
// Input/Output
|
| 290 |
|
|
// d0: exponent/Unchanged
|
| 291 |
|
|
// d2: x/x/scratch
|
| 292 |
|
|
// d3: x/x
|
| 293 |
|
|
// d4: exc picture/LEN
|
| 294 |
|
|
// d5: ICTR/Unchanged
|
| 295 |
|
|
// d6: ILOG/Unchanged
|
| 296 |
|
|
// d7: k-factor/Unchanged
|
| 297 |
|
|
// a0: ptr for original operand/final result
|
| 298 |
|
|
// a1: x/x
|
| 299 |
|
|
// a2: x/x
|
| 300 |
|
|
// fp0: float(ILOG)/Unchanged
|
| 301 |
|
|
// fp1: x/x
|
| 302 |
|
|
// fp2: x/x
|
| 303 |
|
|
// F_SCR1:x/x
|
| 304 |
|
|
// F_SCR2:Abs(X) with $3fff exponent/Unchanged
|
| 305 |
|
|
// L_SCR1:x/x
|
| 306 |
|
|
// L_SCR2:first word of X packed/Unchanged
|
| 307 |
|
|
|
| 308 |
|
|
A6_str:
|
| 309 |
|
|
tstl %d7 //branch on sign of k
|
| 310 |
|
|
bles k_neg //if k <= 0, LEN = ILOG + 1 - k
|
| 311 |
|
|
movel %d7,%d4 //if k > 0, LEN = k
|
| 312 |
|
|
bras len_ck //skip to LEN check
|
| 313 |
|
|
k_neg:
|
| 314 |
|
|
movel %d6,%d4 //first load ILOG to d4
|
| 315 |
|
|
subl %d7,%d4 //subtract off k
|
| 316 |
|
|
addql #1,%d4 //add in the 1
|
| 317 |
|
|
len_ck:
|
| 318 |
|
|
tstl %d4 //LEN check: branch on sign of LEN
|
| 319 |
|
|
bles LEN_ng //if neg, set LEN = 1
|
| 320 |
|
|
cmpl #17,%d4 //test if LEN > 17
|
| 321 |
|
|
bles A7_str //if not, forget it
|
| 322 |
|
|
movel #17,%d4 //set max LEN = 17
|
| 323 |
|
|
tstl %d7 //if negative, never set OPERR
|
| 324 |
|
|
bles A7_str //if positive, continue
|
| 325 |
|
|
orl #opaop_mask,USER_FPSR(%a6) //set OPERR & AIOP in USER_FPSR
|
| 326 |
|
|
bras A7_str //finished here
|
| 327 |
|
|
LEN_ng:
|
| 328 |
|
|
moveql #1,%d4 //min LEN is 1
|
| 329 |
|
|
|
| 330 |
|
|
|
| 331 |
|
|
// A7. Calculate SCALE.
|
| 332 |
|
|
// SCALE is equal to 10^ISCALE, where ISCALE is the number
|
| 333 |
|
|
// of decimal places needed to insure LEN integer digits
|
| 334 |
|
|
// in the output before conversion to bcd. LAMBDA is the sign
|
| 335 |
|
|
// of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using
|
| 336 |
|
|
// the rounding mode as given in the following table (see
|
| 337 |
|
|
// Coonen, p. 7.23 as ref.; however, the SCALE variable is
|
| 338 |
|
|
// of opposite sign in bindec.sa from Coonen).
|
| 339 |
|
|
//
|
| 340 |
|
|
// Initial USE
|
| 341 |
|
|
// FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5]
|
| 342 |
|
|
// ----------------------------------------------
|
| 343 |
|
|
// RN 00 0 0 00/0 RN
|
| 344 |
|
|
// RN 00 0 1 00/0 RN
|
| 345 |
|
|
// RN 00 1 0 00/0 RN
|
| 346 |
|
|
// RN 00 1 1 00/0 RN
|
| 347 |
|
|
// RZ 01 0 0 11/3 RP
|
| 348 |
|
|
// RZ 01 0 1 11/3 RP
|
| 349 |
|
|
// RZ 01 1 0 10/2 RM
|
| 350 |
|
|
// RZ 01 1 1 10/2 RM
|
| 351 |
|
|
// RM 10 0 0 11/3 RP
|
| 352 |
|
|
// RM 10 0 1 10/2 RM
|
| 353 |
|
|
// RM 10 1 0 10/2 RM
|
| 354 |
|
|
// RM 10 1 1 11/3 RP
|
| 355 |
|
|
// RP 11 0 0 10/2 RM
|
| 356 |
|
|
// RP 11 0 1 11/3 RP
|
| 357 |
|
|
// RP 11 1 0 11/3 RP
|
| 358 |
|
|
// RP 11 1 1 10/2 RM
|
| 359 |
|
|
//
|
| 360 |
|
|
// Register usage:
|
| 361 |
|
|
// Input/Output
|
| 362 |
|
|
// d0: exponent/scratch - final is 0
|
| 363 |
|
|
// d2: x/0 or 24 for A9
|
| 364 |
|
|
// d3: x/scratch - offset ptr into PTENRM array
|
| 365 |
|
|
// d4: LEN/Unchanged
|
| 366 |
|
|
// d5: 0/ICTR:LAMBDA
|
| 367 |
|
|
// d6: ILOG/ILOG or k if ((k<=0)&(ILOG
|
| 368 |
|
|
// d7: k-factor/Unchanged
|
| 369 |
|
|
// a0: ptr for original operand/final result
|
| 370 |
|
|
// a1: x/ptr to PTENRM array
|
| 371 |
|
|
// a2: x/x
|
| 372 |
|
|
// fp0: float(ILOG)/Unchanged
|
| 373 |
|
|
// fp1: x/10^ISCALE
|
| 374 |
|
|
// fp2: x/x
|
| 375 |
|
|
// F_SCR1:x/x
|
| 376 |
|
|
// F_SCR2:Abs(X) with $3fff exponent/Unchanged
|
| 377 |
|
|
// L_SCR1:x/x
|
| 378 |
|
|
// L_SCR2:first word of X packed/Unchanged
|
| 379 |
|
|
|
| 380 |
|
|
A7_str:
|
| 381 |
|
|
tstl %d7 //test sign of k
|
| 382 |
|
|
bgts k_pos //if pos and > 0, skip this
|
| 383 |
|
|
cmpl %d6,%d7 //test k - ILOG
|
| 384 |
|
|
blts k_pos //if ILOG >= k, skip this
|
| 385 |
|
|
movel %d7,%d6 //if ((k<0) & (ILOG < k)) ILOG = k
|
| 386 |
|
|
k_pos:
|
| 387 |
|
|
movel %d6,%d0 //calc ILOG + 1 - LEN in d0
|
| 388 |
|
|
addql #1,%d0 //add the 1
|
| 389 |
|
|
subl %d4,%d0 //sub off LEN
|
| 390 |
|
|
swap %d5 //use upper word of d5 for LAMBDA
|
| 391 |
|
|
clrw %d5 //set it zero initially
|
| 392 |
|
|
clrw %d2 //set up d2 for very small case
|
| 393 |
|
|
tstl %d0 //test sign of ISCALE
|
| 394 |
|
|
bges iscale //if pos, skip next inst
|
| 395 |
|
|
addqw #1,%d5 //if neg, set LAMBDA true
|
| 396 |
|
|
cmpl #0xffffecd4,%d0 //test iscale <= -4908
|
| 397 |
|
|
bgts no_inf //if false, skip rest
|
| 398 |
|
|
addil #24,%d0 //add in 24 to iscale
|
| 399 |
|
|
movel #24,%d2 //put 24 in d2 for A9
|
| 400 |
|
|
no_inf:
|
| 401 |
|
|
negl %d0 //and take abs of ISCALE
|
| 402 |
|
|
iscale:
|
| 403 |
|
|
fmoves FONE,%fp1 //init fp1 to 1
|
| 404 |
|
|
bfextu USER_FPCR(%a6){#26:#2},%d1 //get initial rmode bits
|
| 405 |
|
|
lslw #1,%d1 //put them in bits 2:1
|
| 406 |
|
|
addw %d5,%d1 //add in LAMBDA
|
| 407 |
|
|
lslw #1,%d1 //put them in bits 3:1
|
| 408 |
|
|
tstl L_SCR2(%a6) //test sign of original x
|
| 409 |
|
|
bges x_pos //if pos, don't set bit 0
|
| 410 |
|
|
addql #1,%d1 //if neg, set bit 0
|
| 411 |
|
|
x_pos:
|
| 412 |
|
|
leal RBDTBL,%a2 //load rbdtbl base
|
| 413 |
|
|
moveb (%a2,%d1),%d3 //load d3 with new rmode
|
| 414 |
|
|
lsll #4,%d3 //put bits in proper position
|
| 415 |
|
|
fmovel %d3,%fpcr //load bits into fpu
|
| 416 |
|
|
lsrl #4,%d3 //put bits in proper position
|
| 417 |
|
|
tstb %d3 //decode new rmode for pten table
|
| 418 |
|
|
bnes not_rn //if zero, it is RN
|
| 419 |
|
|
leal PTENRN,%a1 //load a1 with RN table base
|
| 420 |
|
|
bras rmode //exit decode
|
| 421 |
|
|
not_rn:
|
| 422 |
|
|
lsrb #1,%d3 //get lsb in carry
|
| 423 |
|
|
bccs not_rp //if carry clear, it is RM
|
| 424 |
|
|
leal PTENRP,%a1 //load a1 with RP table base
|
| 425 |
|
|
bras rmode //exit decode
|
| 426 |
|
|
not_rp:
|
| 427 |
|
|
leal PTENRM,%a1 //load a1 with RM table base
|
| 428 |
|
|
rmode:
|
| 429 |
|
|
clrl %d3 //clr table index
|
| 430 |
|
|
e_loop:
|
| 431 |
|
|
lsrl #1,%d0 //shift next bit into carry
|
| 432 |
|
|
bccs e_next //if zero, skip the mul
|
| 433 |
|
|
fmulx (%a1,%d3),%fp1 //mul by 10**(d3_bit_no)
|
| 434 |
|
|
e_next:
|
| 435 |
|
|
addl #12,%d3 //inc d3 to next pwrten table entry
|
| 436 |
|
|
tstl %d0 //test if ISCALE is zero
|
| 437 |
|
|
bnes e_loop //if not, loop
|
| 438 |
|
|
|
| 439 |
|
|
|
| 440 |
|
|
// A8. Clr INEX; Force RZ.
|
| 441 |
|
|
// The operation in A3 above may have set INEX2.
|
| 442 |
|
|
// RZ mode is forced for the scaling operation to insure
|
| 443 |
|
|
// only one rounding error. The grs bits are collected in
|
| 444 |
|
|
// the INEX flag for use in A10.
|
| 445 |
|
|
//
|
| 446 |
|
|
// Register usage:
|
| 447 |
|
|
// Input/Output
|
| 448 |
|
|
|
| 449 |
|
|
fmovel #0,%FPSR //clr INEX
|
| 450 |
|
|
fmovel #rz_mode,%FPCR //set RZ rounding mode
|
| 451 |
|
|
|
| 452 |
|
|
|
| 453 |
|
|
// A9. Scale X -> Y.
|
| 454 |
|
|
// The mantissa is scaled to the desired number of significant
|
| 455 |
|
|
// digits. The excess digits are collected in INEX2. If mul,
|
| 456 |
|
|
// Check d2 for excess 10 exponential value. If not zero,
|
| 457 |
|
|
// the iscale value would have caused the pwrten calculation
|
| 458 |
|
|
// to overflow. Only a negative iscale can cause this, so
|
| 459 |
|
|
// multiply by 10^(d2), which is now only allowed to be 24,
|
| 460 |
|
|
// with a multiply by 10^8 and 10^16, which is exact since
|
| 461 |
|
|
// 10^24 is exact. If the input was denormalized, we must
|
| 462 |
|
|
// create a busy stack frame with the mul command and the
|
| 463 |
|
|
// two operands, and allow the fpu to complete the multiply.
|
| 464 |
|
|
//
|
| 465 |
|
|
// Register usage:
|
| 466 |
|
|
// Input/Output
|
| 467 |
|
|
// d0: FPCR with RZ mode/Unchanged
|
| 468 |
|
|
// d2: 0 or 24/unchanged
|
| 469 |
|
|
// d3: x/x
|
| 470 |
|
|
// d4: LEN/Unchanged
|
| 471 |
|
|
// d5: ICTR:LAMBDA
|
| 472 |
|
|
// d6: ILOG/Unchanged
|
| 473 |
|
|
// d7: k-factor/Unchanged
|
| 474 |
|
|
// a0: ptr for original operand/final result
|
| 475 |
|
|
// a1: ptr to PTENRM array/Unchanged
|
| 476 |
|
|
// a2: x/x
|
| 477 |
|
|
// fp0: float(ILOG)/X adjusted for SCALE (Y)
|
| 478 |
|
|
// fp1: 10^ISCALE/Unchanged
|
| 479 |
|
|
// fp2: x/x
|
| 480 |
|
|
// F_SCR1:x/x
|
| 481 |
|
|
// F_SCR2:Abs(X) with $3fff exponent/Unchanged
|
| 482 |
|
|
// L_SCR1:x/x
|
| 483 |
|
|
// L_SCR2:first word of X packed/Unchanged
|
| 484 |
|
|
|
| 485 |
|
|
A9_str:
|
| 486 |
|
|
fmovex (%a0),%fp0 //load X from memory
|
| 487 |
|
|
fabsx %fp0 //use abs(X)
|
| 488 |
|
|
tstw %d5 //LAMBDA is in lower word of d5
|
| 489 |
|
|
bne sc_mul //if neg (LAMBDA = 1), scale by mul
|
| 490 |
|
|
fdivx %fp1,%fp0 //calculate X / SCALE -> Y to fp0
|
| 491 |
|
|
bras A10_st //branch to A10
|
| 492 |
|
|
|
| 493 |
|
|
sc_mul:
|
| 494 |
|
|
tstb BINDEC_FLG(%a6) //check for denorm
|
| 495 |
|
|
beqs A9_norm //if norm, continue with mul
|
| 496 |
|
|
fmovemx %fp1-%fp1,-(%a7) //load ETEMP with 10^ISCALE
|
| 497 |
|
|
movel 8(%a0),-(%a7) //load FPTEMP with input arg
|
| 498 |
|
|
movel 4(%a0),-(%a7)
|
| 499 |
|
|
movel (%a0),-(%a7)
|
| 500 |
|
|
movel #18,%d3 //load count for busy stack
|
| 501 |
|
|
A9_loop:
|
| 502 |
|
|
clrl -(%a7) //clear lword on stack
|
| 503 |
|
|
dbf %d3,A9_loop
|
| 504 |
|
|
moveb VER_TMP(%a6),(%a7) //write current version number
|
| 505 |
|
|
moveb #BUSY_SIZE-4,1(%a7) //write current busy size
|
| 506 |
|
|
moveb #0x10,0x44(%a7) //set fcefpte[15] bit
|
| 507 |
|
|
movew #0x0023,0x40(%a7) //load cmdreg1b with mul command
|
| 508 |
|
|
moveb #0xfe,0x8(%a7) //load all 1s to cu savepc
|
| 509 |
|
|
frestore (%a7)+ //restore frame to fpu for completion
|
| 510 |
|
|
fmulx 36(%a1),%fp0 //multiply fp0 by 10^8
|
| 511 |
|
|
fmulx 48(%a1),%fp0 //multiply fp0 by 10^16
|
| 512 |
|
|
bras A10_st
|
| 513 |
|
|
A9_norm:
|
| 514 |
|
|
tstw %d2 //test for small exp case
|
| 515 |
|
|
beqs A9_con //if zero, continue as normal
|
| 516 |
|
|
fmulx 36(%a1),%fp0 //multiply fp0 by 10^8
|
| 517 |
|
|
fmulx 48(%a1),%fp0 //multiply fp0 by 10^16
|
| 518 |
|
|
A9_con:
|
| 519 |
|
|
fmulx %fp1,%fp0 //calculate X * SCALE -> Y to fp0
|
| 520 |
|
|
|
| 521 |
|
|
|
| 522 |
|
|
// A10. Or in INEX.
|
| 523 |
|
|
// If INEX is set, round error occurred. This is compensated
|
| 524 |
|
|
// for by 'or-ing' in the INEX2 flag to the lsb of Y.
|
| 525 |
|
|
//
|
| 526 |
|
|
// Register usage:
|
| 527 |
|
|
// Input/Output
|
| 528 |
|
|
// d0: FPCR with RZ mode/FPSR with INEX2 isolated
|
| 529 |
|
|
// d2: x/x
|
| 530 |
|
|
// d3: x/x
|
| 531 |
|
|
// d4: LEN/Unchanged
|
| 532 |
|
|
// d5: ICTR:LAMBDA
|
| 533 |
|
|
// d6: ILOG/Unchanged
|
| 534 |
|
|
// d7: k-factor/Unchanged
|
| 535 |
|
|
// a0: ptr for original operand/final result
|
| 536 |
|
|
// a1: ptr to PTENxx array/Unchanged
|
| 537 |
|
|
// a2: x/ptr to FP_SCR2(a6)
|
| 538 |
|
|
// fp0: Y/Y with lsb adjusted
|
| 539 |
|
|
// fp1: 10^ISCALE/Unchanged
|
| 540 |
|
|
// fp2: x/x
|
| 541 |
|
|
|
| 542 |
|
|
A10_st:
|
| 543 |
|
|
fmovel %FPSR,%d0 //get FPSR
|
| 544 |
|
|
fmovex %fp0,FP_SCR2(%a6) //move Y to memory
|
| 545 |
|
|
leal FP_SCR2(%a6),%a2 //load a2 with ptr to FP_SCR2
|
| 546 |
|
|
btstl #9,%d0 //check if INEX2 set
|
| 547 |
|
|
beqs A11_st //if clear, skip rest
|
| 548 |
|
|
oril #1,8(%a2) //or in 1 to lsb of mantissa
|
| 549 |
|
|
fmovex FP_SCR2(%a6),%fp0 //write adjusted Y back to fpu
|
| 550 |
|
|
|
| 551 |
|
|
|
| 552 |
|
|
// A11. Restore original FPCR; set size ext.
|
| 553 |
|
|
// Perform FINT operation in the user's rounding mode. Keep
|
| 554 |
|
|
// the size to extended. The sintdo entry point in the sint
|
| 555 |
|
|
// routine expects the FPCR value to be in USER_FPCR for
|
| 556 |
|
|
// mode and precision. The original FPCR is saved in L_SCR1.
|
| 557 |
|
|
|
| 558 |
|
|
A11_st:
|
| 559 |
|
|
movel USER_FPCR(%a6),L_SCR1(%a6) //save it for later
|
| 560 |
|
|
andil #0x00000030,USER_FPCR(%a6) //set size to ext,
|
| 561 |
|
|
// ;block exceptions
|
| 562 |
|
|
|
| 563 |
|
|
|
| 564 |
|
|
// A12. Calculate YINT = FINT(Y) according to user's rounding mode.
|
| 565 |
|
|
// The FPSP routine sintd0 is used. The output is in fp0.
|
| 566 |
|
|
//
|
| 567 |
|
|
// Register usage:
|
| 568 |
|
|
// Input/Output
|
| 569 |
|
|
// d0: FPSR with AINEX cleared/FPCR with size set to ext
|
| 570 |
|
|
// d2: x/x/scratch
|
| 571 |
|
|
// d3: x/x
|
| 572 |
|
|
// d4: LEN/Unchanged
|
| 573 |
|
|
// d5: ICTR:LAMBDA/Unchanged
|
| 574 |
|
|
// d6: ILOG/Unchanged
|
| 575 |
|
|
// d7: k-factor/Unchanged
|
| 576 |
|
|
// a0: ptr for original operand/src ptr for sintdo
|
| 577 |
|
|
// a1: ptr to PTENxx array/Unchanged
|
| 578 |
|
|
// a2: ptr to FP_SCR2(a6)/Unchanged
|
| 579 |
|
|
// a6: temp pointer to FP_SCR2(a6) - orig value saved and restored
|
| 580 |
|
|
// fp0: Y/YINT
|
| 581 |
|
|
// fp1: 10^ISCALE/Unchanged
|
| 582 |
|
|
// fp2: x/x
|
| 583 |
|
|
// F_SCR1:x/x
|
| 584 |
|
|
// F_SCR2:Y adjusted for inex/Y with original exponent
|
| 585 |
|
|
// L_SCR1:x/original USER_FPCR
|
| 586 |
|
|
// L_SCR2:first word of X packed/Unchanged
|
| 587 |
|
|
|
| 588 |
|
|
A12_st:
|
| 589 |
|
|
moveml %d0-%d1/%a0-%a1,-(%a7) //save regs used by sintd0
|
| 590 |
|
|
movel L_SCR1(%a6),-(%a7)
|
| 591 |
|
|
movel L_SCR2(%a6),-(%a7)
|
| 592 |
|
|
leal FP_SCR2(%a6),%a0 //a0 is ptr to F_SCR2(a6)
|
| 593 |
|
|
fmovex %fp0,(%a0) //move Y to memory at FP_SCR2(a6)
|
| 594 |
|
|
tstl L_SCR2(%a6) //test sign of original operand
|
| 595 |
|
|
bges do_fint //if pos, use Y
|
| 596 |
|
|
orl #0x80000000,(%a0) //if neg, use -Y
|
| 597 |
|
|
do_fint:
|
| 598 |
|
|
movel USER_FPSR(%a6),-(%a7)
|
| 599 |
|
|
bsr sintdo //sint routine returns int in fp0
|
| 600 |
|
|
moveb (%a7),USER_FPSR(%a6)
|
| 601 |
|
|
addl #4,%a7
|
| 602 |
|
|
movel (%a7)+,L_SCR2(%a6)
|
| 603 |
|
|
movel (%a7)+,L_SCR1(%a6)
|
| 604 |
|
|
moveml (%a7)+,%d0-%d1/%a0-%a1 //restore regs used by sint
|
| 605 |
|
|
movel L_SCR2(%a6),FP_SCR2(%a6) //restore original exponent
|
| 606 |
|
|
movel L_SCR1(%a6),USER_FPCR(%a6) //restore user's FPCR
|
| 607 |
|
|
|
| 608 |
|
|
|
| 609 |
|
|
// A13. Check for LEN digits.
|
| 610 |
|
|
// If the int operation results in more than LEN digits,
|
| 611 |
|
|
// or less than LEN -1 digits, adjust ILOG and repeat from
|
| 612 |
|
|
// A6. This test occurs only on the first pass. If the
|
| 613 |
|
|
// result is exactly 10^LEN, decrement ILOG and divide
|
| 614 |
|
|
// the mantissa by 10. The calculation of 10^LEN cannot
|
| 615 |
|
|
// be inexact, since all powers of ten upto 10^27 are exact
|
| 616 |
|
|
// in extended precision, so the use of a previous power-of-ten
|
| 617 |
|
|
// table will introduce no error.
|
| 618 |
|
|
//
|
| 619 |
|
|
//
|
| 620 |
|
|
// Register usage:
|
| 621 |
|
|
// Input/Output
|
| 622 |
|
|
// d0: FPCR with size set to ext/scratch final = 0
|
| 623 |
|
|
// d2: x/x
|
| 624 |
|
|
// d3: x/scratch final = x
|
| 625 |
|
|
// d4: LEN/LEN adjusted
|
| 626 |
|
|
// d5: ICTR:LAMBDA/LAMBDA:ICTR
|
| 627 |
|
|
// d6: ILOG/ILOG adjusted
|
| 628 |
|
|
// d7: k-factor/Unchanged
|
| 629 |
|
|
// a0: pointer into memory for packed bcd string formation
|
| 630 |
|
|
// a1: ptr to PTENxx array/Unchanged
|
| 631 |
|
|
// a2: ptr to FP_SCR2(a6)/Unchanged
|
| 632 |
|
|
// fp0: int portion of Y/abs(YINT) adjusted
|
| 633 |
|
|
// fp1: 10^ISCALE/Unchanged
|
| 634 |
|
|
// fp2: x/10^LEN
|
| 635 |
|
|
// F_SCR1:x/x
|
| 636 |
|
|
// F_SCR2:Y with original exponent/Unchanged
|
| 637 |
|
|
// L_SCR1:original USER_FPCR/Unchanged
|
| 638 |
|
|
// L_SCR2:first word of X packed/Unchanged
|
| 639 |
|
|
|
| 640 |
|
|
A13_st:
|
| 641 |
|
|
swap %d5 //put ICTR in lower word of d5
|
| 642 |
|
|
tstw %d5 //check if ICTR = 0
|
| 643 |
|
|
bne not_zr //if non-zero, go to second test
|
| 644 |
|
|
//
|
| 645 |
|
|
// Compute 10^(LEN-1)
|
| 646 |
|
|
//
|
| 647 |
|
|
fmoves FONE,%fp2 //init fp2 to 1.0
|
| 648 |
|
|
movel %d4,%d0 //put LEN in d0
|
| 649 |
|
|
subql #1,%d0 //d0 = LEN -1
|
| 650 |
|
|
clrl %d3 //clr table index
|
| 651 |
|
|
l_loop:
|
| 652 |
|
|
lsrl #1,%d0 //shift next bit into carry
|
| 653 |
|
|
bccs l_next //if zero, skip the mul
|
| 654 |
|
|
fmulx (%a1,%d3),%fp2 //mul by 10**(d3_bit_no)
|
| 655 |
|
|
l_next:
|
| 656 |
|
|
addl #12,%d3 //inc d3 to next pwrten table entry
|
| 657 |
|
|
tstl %d0 //test if LEN is zero
|
| 658 |
|
|
bnes l_loop //if not, loop
|
| 659 |
|
|
//
|
| 660 |
|
|
// 10^LEN-1 is computed for this test and A14. If the input was
|
| 661 |
|
|
// denormalized, check only the case in which YINT > 10^LEN.
|
| 662 |
|
|
//
|
| 663 |
|
|
tstb BINDEC_FLG(%a6) //check if input was norm
|
| 664 |
|
|
beqs A13_con //if norm, continue with checking
|
| 665 |
|
|
fabsx %fp0 //take abs of YINT
|
| 666 |
|
|
bra test_2
|
| 667 |
|
|
//
|
| 668 |
|
|
// Compare abs(YINT) to 10^(LEN-1) and 10^LEN
|
| 669 |
|
|
//
|
| 670 |
|
|
A13_con:
|
| 671 |
|
|
fabsx %fp0 //take abs of YINT
|
| 672 |
|
|
fcmpx %fp2,%fp0 //compare abs(YINT) with 10^(LEN-1)
|
| 673 |
|
|
fbge test_2 //if greater, do next test
|
| 674 |
|
|
subql #1,%d6 //subtract 1 from ILOG
|
| 675 |
|
|
movew #1,%d5 //set ICTR
|
| 676 |
|
|
fmovel #rm_mode,%FPCR //set rmode to RM
|
| 677 |
|
|
fmuls FTEN,%fp2 //compute 10^LEN
|
| 678 |
|
|
bra A6_str //return to A6 and recompute YINT
|
| 679 |
|
|
test_2:
|
| 680 |
|
|
fmuls FTEN,%fp2 //compute 10^LEN
|
| 681 |
|
|
fcmpx %fp2,%fp0 //compare abs(YINT) with 10^LEN
|
| 682 |
|
|
fblt A14_st //if less, all is ok, go to A14
|
| 683 |
|
|
fbgt fix_ex //if greater, fix and redo
|
| 684 |
|
|
fdivs FTEN,%fp0 //if equal, divide by 10
|
| 685 |
|
|
addql #1,%d6 // and inc ILOG
|
| 686 |
|
|
bras A14_st // and continue elsewhere
|
| 687 |
|
|
fix_ex:
|
| 688 |
|
|
addql #1,%d6 //increment ILOG by 1
|
| 689 |
|
|
movew #1,%d5 //set ICTR
|
| 690 |
|
|
fmovel #rm_mode,%FPCR //set rmode to RM
|
| 691 |
|
|
bra A6_str //return to A6 and recompute YINT
|
| 692 |
|
|
//
|
| 693 |
|
|
// Since ICTR <> 0, we have already been through one adjustment,
|
| 694 |
|
|
// and shouldn't have another; this is to check if abs(YINT) = 10^LEN
|
| 695 |
|
|
// 10^LEN is again computed using whatever table is in a1 since the
|
| 696 |
|
|
// value calculated cannot be inexact.
|
| 697 |
|
|
//
|
| 698 |
|
|
not_zr:
|
| 699 |
|
|
fmoves FONE,%fp2 //init fp2 to 1.0
|
| 700 |
|
|
movel %d4,%d0 //put LEN in d0
|
| 701 |
|
|
clrl %d3 //clr table index
|
| 702 |
|
|
z_loop:
|
| 703 |
|
|
lsrl #1,%d0 //shift next bit into carry
|
| 704 |
|
|
bccs z_next //if zero, skip the mul
|
| 705 |
|
|
fmulx (%a1,%d3),%fp2 //mul by 10**(d3_bit_no)
|
| 706 |
|
|
z_next:
|
| 707 |
|
|
addl #12,%d3 //inc d3 to next pwrten table entry
|
| 708 |
|
|
tstl %d0 //test if LEN is zero
|
| 709 |
|
|
bnes z_loop //if not, loop
|
| 710 |
|
|
fabsx %fp0 //get abs(YINT)
|
| 711 |
|
|
fcmpx %fp2,%fp0 //check if abs(YINT) = 10^LEN
|
| 712 |
|
|
fbne A14_st //if not, skip this
|
| 713 |
|
|
fdivs FTEN,%fp0 //divide abs(YINT) by 10
|
| 714 |
|
|
addql #1,%d6 //and inc ILOG by 1
|
| 715 |
|
|
addql #1,%d4 // and inc LEN
|
| 716 |
|
|
fmuls FTEN,%fp2 // if LEN++, the get 10^^LEN
|
| 717 |
|
|
|
| 718 |
|
|
|
| 719 |
|
|
// A14. Convert the mantissa to bcd.
|
| 720 |
|
|
// The binstr routine is used to convert the LEN digit
|
| 721 |
|
|
// mantissa to bcd in memory. The input to binstr is
|
| 722 |
|
|
// to be a fraction; i.e. (mantissa)/10^LEN and adjusted
|
| 723 |
|
|
// such that the decimal point is to the left of bit 63.
|
| 724 |
|
|
// The bcd digits are stored in the correct position in
|
| 725 |
|
|
// the final string area in memory.
|
| 726 |
|
|
//
|
| 727 |
|
|
//
|
| 728 |
|
|
// Register usage:
|
| 729 |
|
|
// Input/Output
|
| 730 |
|
|
// d0: x/LEN call to binstr - final is 0
|
| 731 |
|
|
// d1: x/0
|
| 732 |
|
|
// d2: x/ms 32-bits of mant of abs(YINT)
|
| 733 |
|
|
// d3: x/ls 32-bits of mant of abs(YINT)
|
| 734 |
|
|
// d4: LEN/Unchanged
|
| 735 |
|
|
// d5: ICTR:LAMBDA/LAMBDA:ICTR
|
| 736 |
|
|
// d6: ILOG
|
| 737 |
|
|
// d7: k-factor/Unchanged
|
| 738 |
|
|
// a0: pointer into memory for packed bcd string formation
|
| 739 |
|
|
// /ptr to first mantissa byte in result string
|
| 740 |
|
|
// a1: ptr to PTENxx array/Unchanged
|
| 741 |
|
|
// a2: ptr to FP_SCR2(a6)/Unchanged
|
| 742 |
|
|
// fp0: int portion of Y/abs(YINT) adjusted
|
| 743 |
|
|
// fp1: 10^ISCALE/Unchanged
|
| 744 |
|
|
// fp2: 10^LEN/Unchanged
|
| 745 |
|
|
// F_SCR1:x/Work area for final result
|
| 746 |
|
|
// F_SCR2:Y with original exponent/Unchanged
|
| 747 |
|
|
// L_SCR1:original USER_FPCR/Unchanged
|
| 748 |
|
|
// L_SCR2:first word of X packed/Unchanged
|
| 749 |
|
|
|
| 750 |
|
|
A14_st:
|
| 751 |
|
|
fmovel #rz_mode,%FPCR //force rz for conversion
|
| 752 |
|
|
fdivx %fp2,%fp0 //divide abs(YINT) by 10^LEN
|
| 753 |
|
|
leal FP_SCR1(%a6),%a0
|
| 754 |
|
|
fmovex %fp0,(%a0) //move abs(YINT)/10^LEN to memory
|
| 755 |
|
|
movel 4(%a0),%d2 //move 2nd word of FP_RES to d2
|
| 756 |
|
|
movel 8(%a0),%d3 //move 3rd word of FP_RES to d3
|
| 757 |
|
|
clrl 4(%a0) //zero word 2 of FP_RES
|
| 758 |
|
|
clrl 8(%a0) //zero word 3 of FP_RES
|
| 759 |
|
|
movel (%a0),%d0 //move exponent to d0
|
| 760 |
|
|
swap %d0 //put exponent in lower word
|
| 761 |
|
|
beqs no_sft //if zero, don't shift
|
| 762 |
|
|
subil #0x3ffd,%d0 //sub bias less 2 to make fract
|
| 763 |
|
|
tstl %d0 //check if > 1
|
| 764 |
|
|
bgts no_sft //if so, don't shift
|
| 765 |
|
|
negl %d0 //make exp positive
|
| 766 |
|
|
m_loop:
|
| 767 |
|
|
lsrl #1,%d2 //shift d2:d3 right, add 0s
|
| 768 |
|
|
roxrl #1,%d3 //the number of places
|
| 769 |
|
|
dbf %d0,m_loop //given in d0
|
| 770 |
|
|
no_sft:
|
| 771 |
|
|
tstl %d2 //check for mantissa of zero
|
| 772 |
|
|
bnes no_zr //if not, go on
|
| 773 |
|
|
tstl %d3 //continue zero check
|
| 774 |
|
|
beqs zer_m //if zero, go directly to binstr
|
| 775 |
|
|
no_zr:
|
| 776 |
|
|
clrl %d1 //put zero in d1 for addx
|
| 777 |
|
|
addil #0x00000080,%d3 //inc at bit 7
|
| 778 |
|
|
addxl %d1,%d2 //continue inc
|
| 779 |
|
|
andil #0xffffff80,%d3 //strip off lsb not used by 882
|
| 780 |
|
|
zer_m:
|
| 781 |
|
|
movel %d4,%d0 //put LEN in d0 for binstr call
|
| 782 |
|
|
addql #3,%a0 //a0 points to M16 byte in result
|
| 783 |
|
|
bsr binstr //call binstr to convert mant
|
| 784 |
|
|
|
| 785 |
|
|
|
| 786 |
|
|
// A15. Convert the exponent to bcd.
|
| 787 |
|
|
// As in A14 above, the exp is converted to bcd and the
|
| 788 |
|
|
// digits are stored in the final string.
|
| 789 |
|
|
//
|
| 790 |
|
|
// Digits are stored in L_SCR1(a6) on return from BINDEC as:
|
| 791 |
|
|
//
|
| 792 |
|
|
// 32 16 15 0
|
| 793 |
|
|
// -----------------------------------------
|
| 794 |
|
|
// | 0 | e3 | e2 | e1 | e4 | X | X | X |
|
| 795 |
|
|
// -----------------------------------------
|
| 796 |
|
|
//
|
| 797 |
|
|
// And are moved into their proper places in FP_SCR1. If digit e4
|
| 798 |
|
|
// is non-zero, OPERR is signaled. In all cases, all 4 digits are
|
| 799 |
|
|
// written as specified in the 881/882 manual for packed decimal.
|
| 800 |
|
|
//
|
| 801 |
|
|
// Register usage:
|
| 802 |
|
|
// Input/Output
|
| 803 |
|
|
// d0: x/LEN call to binstr - final is 0
|
| 804 |
|
|
// d1: x/scratch (0);shift count for final exponent packing
|
| 805 |
|
|
// d2: x/ms 32-bits of exp fraction/scratch
|
| 806 |
|
|
// d3: x/ls 32-bits of exp fraction
|
| 807 |
|
|
// d4: LEN/Unchanged
|
| 808 |
|
|
// d5: ICTR:LAMBDA/LAMBDA:ICTR
|
| 809 |
|
|
// d6: ILOG
|
| 810 |
|
|
// d7: k-factor/Unchanged
|
| 811 |
|
|
// a0: ptr to result string/ptr to L_SCR1(a6)
|
| 812 |
|
|
// a1: ptr to PTENxx array/Unchanged
|
| 813 |
|
|
// a2: ptr to FP_SCR2(a6)/Unchanged
|
| 814 |
|
|
// fp0: abs(YINT) adjusted/float(ILOG)
|
| 815 |
|
|
// fp1: 10^ISCALE/Unchanged
|
| 816 |
|
|
// fp2: 10^LEN/Unchanged
|
| 817 |
|
|
// F_SCR1:Work area for final result/BCD result
|
| 818 |
|
|
// F_SCR2:Y with original exponent/ILOG/10^4
|
| 819 |
|
|
// L_SCR1:original USER_FPCR/Exponent digits on return from binstr
|
| 820 |
|
|
// L_SCR2:first word of X packed/Unchanged
|
| 821 |
|
|
|
| 822 |
|
|
A15_st:
|
| 823 |
|
|
tstb BINDEC_FLG(%a6) //check for denorm
|
| 824 |
|
|
beqs not_denorm
|
| 825 |
|
|
ftstx %fp0 //test for zero
|
| 826 |
|
|
fbeq den_zero //if zero, use k-factor or 4933
|
| 827 |
|
|
fmovel %d6,%fp0 //float ILOG
|
| 828 |
|
|
fabsx %fp0 //get abs of ILOG
|
| 829 |
|
|
bras convrt
|
| 830 |
|
|
den_zero:
|
| 831 |
|
|
tstl %d7 //check sign of the k-factor
|
| 832 |
|
|
blts use_ilog //if negative, use ILOG
|
| 833 |
|
|
fmoves F4933,%fp0 //force exponent to 4933
|
| 834 |
|
|
bras convrt //do it
|
| 835 |
|
|
use_ilog:
|
| 836 |
|
|
fmovel %d6,%fp0 //float ILOG
|
| 837 |
|
|
fabsx %fp0 //get abs of ILOG
|
| 838 |
|
|
bras convrt
|
| 839 |
|
|
not_denorm:
|
| 840 |
|
|
ftstx %fp0 //test for zero
|
| 841 |
|
|
fbne not_zero //if zero, force exponent
|
| 842 |
|
|
fmoves FONE,%fp0 //force exponent to 1
|
| 843 |
|
|
bras convrt //do it
|
| 844 |
|
|
not_zero:
|
| 845 |
|
|
fmovel %d6,%fp0 //float ILOG
|
| 846 |
|
|
fabsx %fp0 //get abs of ILOG
|
| 847 |
|
|
convrt:
|
| 848 |
|
|
fdivx 24(%a1),%fp0 //compute ILOG/10^4
|
| 849 |
|
|
fmovex %fp0,FP_SCR2(%a6) //store fp0 in memory
|
| 850 |
|
|
movel 4(%a2),%d2 //move word 2 to d2
|
| 851 |
|
|
movel 8(%a2),%d3 //move word 3 to d3
|
| 852 |
|
|
movew (%a2),%d0 //move exp to d0
|
| 853 |
|
|
beqs x_loop_fin //if zero, skip the shift
|
| 854 |
|
|
subiw #0x3ffd,%d0 //subtract off bias
|
| 855 |
|
|
negw %d0 //make exp positive
|
| 856 |
|
|
x_loop:
|
| 857 |
|
|
lsrl #1,%d2 //shift d2:d3 right
|
| 858 |
|
|
roxrl #1,%d3 //the number of places
|
| 859 |
|
|
dbf %d0,x_loop //given in d0
|
| 860 |
|
|
x_loop_fin:
|
| 861 |
|
|
clrl %d1 //put zero in d1 for addx
|
| 862 |
|
|
addil #0x00000080,%d3 //inc at bit 6
|
| 863 |
|
|
addxl %d1,%d2 //continue inc
|
| 864 |
|
|
andil #0xffffff80,%d3 //strip off lsb not used by 882
|
| 865 |
|
|
movel #4,%d0 //put 4 in d0 for binstr call
|
| 866 |
|
|
leal L_SCR1(%a6),%a0 //a0 is ptr to L_SCR1 for exp digits
|
| 867 |
|
|
bsr binstr //call binstr to convert exp
|
| 868 |
|
|
movel L_SCR1(%a6),%d0 //load L_SCR1 lword to d0
|
| 869 |
|
|
movel #12,%d1 //use d1 for shift count
|
| 870 |
|
|
lsrl %d1,%d0 //shift d0 right by 12
|
| 871 |
|
|
bfins %d0,FP_SCR1(%a6){#4:#12} //put e3:e2:e1 in FP_SCR1
|
| 872 |
|
|
lsrl %d1,%d0 //shift d0 right by 12
|
| 873 |
|
|
bfins %d0,FP_SCR1(%a6){#16:#4} //put e4 in FP_SCR1
|
| 874 |
|
|
tstb %d0 //check if e4 is zero
|
| 875 |
|
|
beqs A16_st //if zero, skip rest
|
| 876 |
|
|
orl #opaop_mask,USER_FPSR(%a6) //set OPERR & AIOP in USER_FPSR
|
| 877 |
|
|
|
| 878 |
|
|
|
| 879 |
|
|
// A16. Write sign bits to final string.
|
| 880 |
|
|
// Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG).
|
| 881 |
|
|
//
|
| 882 |
|
|
// Register usage:
|
| 883 |
|
|
// Input/Output
|
| 884 |
|
|
// d0: x/scratch - final is x
|
| 885 |
|
|
// d2: x/x
|
| 886 |
|
|
// d3: x/x
|
| 887 |
|
|
// d4: LEN/Unchanged
|
| 888 |
|
|
// d5: ICTR:LAMBDA/LAMBDA:ICTR
|
| 889 |
|
|
// d6: ILOG/ILOG adjusted
|
| 890 |
|
|
// d7: k-factor/Unchanged
|
| 891 |
|
|
// a0: ptr to L_SCR1(a6)/Unchanged
|
| 892 |
|
|
// a1: ptr to PTENxx array/Unchanged
|
| 893 |
|
|
// a2: ptr to FP_SCR2(a6)/Unchanged
|
| 894 |
|
|
// fp0: float(ILOG)/Unchanged
|
| 895 |
|
|
// fp1: 10^ISCALE/Unchanged
|
| 896 |
|
|
// fp2: 10^LEN/Unchanged
|
| 897 |
|
|
// F_SCR1:BCD result with correct signs
|
| 898 |
|
|
// F_SCR2:ILOG/10^4
|
| 899 |
|
|
// L_SCR1:Exponent digits on return from binstr
|
| 900 |
|
|
// L_SCR2:first word of X packed/Unchanged
|
| 901 |
|
|
|
| 902 |
|
|
A16_st:
|
| 903 |
|
|
clrl %d0 //clr d0 for collection of signs
|
| 904 |
|
|
andib #0x0f,FP_SCR1(%a6) //clear first nibble of FP_SCR1
|
| 905 |
|
|
tstl L_SCR2(%a6) //check sign of original mantissa
|
| 906 |
|
|
bges mant_p //if pos, don't set SM
|
| 907 |
|
|
moveql #2,%d0 //move 2 in to d0 for SM
|
| 908 |
|
|
mant_p:
|
| 909 |
|
|
tstl %d6 //check sign of ILOG
|
| 910 |
|
|
bges wr_sgn //if pos, don't set SE
|
| 911 |
|
|
addql #1,%d0 //set bit 0 in d0 for SE
|
| 912 |
|
|
wr_sgn:
|
| 913 |
|
|
bfins %d0,FP_SCR1(%a6){#0:#2} //insert SM and SE into FP_SCR1
|
| 914 |
|
|
|
| 915 |
|
|
// Clean up and restore all registers used.
|
| 916 |
|
|
|
| 917 |
|
|
fmovel #0,%FPSR //clear possible inex2/ainex bits
|
| 918 |
|
|
fmovemx (%a7)+,%fp0-%fp2
|
| 919 |
|
|
moveml (%a7)+,%d2-%d7/%a2
|
| 920 |
|
|
rts
|
| 921 |
|
|
|
| 922 |
|
|
|end
|