1 |
158 |
chris |
//
|
2 |
208 |
chris |
// $Id: decbin.S,v 1.2 2001-09-27 12:01:22 chris Exp $
|
3 |
158 |
chris |
//
|
4 |
|
|
// decbin.sa 3.3 12/19/90
|
5 |
|
|
//
|
6 |
|
|
// Description: Converts normalized packed bcd value pointed to by
|
7 |
|
|
// register A6 to extended-precision value in FP0.
|
8 |
|
|
//
|
9 |
|
|
// Input: Normalized packed bcd value in ETEMP(a6).
|
10 |
|
|
//
|
11 |
|
|
// Output: Exact floating-point representation of the packed bcd value.
|
12 |
|
|
//
|
13 |
|
|
// Saves and Modifies: D2-D5
|
14 |
|
|
//
|
15 |
|
|
// Speed: The program decbin takes ??? cycles to execute.
|
16 |
|
|
//
|
17 |
|
|
// Object Size:
|
18 |
|
|
//
|
19 |
|
|
// External Reference(s): None.
|
20 |
|
|
//
|
21 |
|
|
// Algorithm:
|
22 |
|
|
// Expected is a normal bcd (i.e. non-exceptional; all inf, zero,
|
23 |
|
|
// and NaN operands are dispatched without entering this routine)
|
24 |
|
|
// value in 68881/882 format at location ETEMP(A6).
|
25 |
|
|
//
|
26 |
|
|
// A1. Convert the bcd exponent to binary by successive adds and muls.
|
27 |
|
|
// Set the sign according to SE. Subtract 16 to compensate
|
28 |
|
|
// for the mantissa which is to be interpreted as 17 integer
|
29 |
|
|
// digits, rather than 1 integer and 16 fraction digits.
|
30 |
|
|
// Note: this operation can never overflow.
|
31 |
|
|
//
|
32 |
|
|
// A2. Convert the bcd mantissa to binary by successive
|
33 |
|
|
// adds and muls in FP0. Set the sign according to SM.
|
34 |
|
|
// The mantissa digits will be converted with the decimal point
|
35 |
|
|
// assumed following the least-significant digit.
|
36 |
|
|
// Note: this operation can never overflow.
|
37 |
|
|
//
|
38 |
|
|
// A3. Count the number of leading/trailing zeros in the
|
39 |
|
|
// bcd string. If SE is positive, count the leading zeros;
|
40 |
|
|
// if negative, count the trailing zeros. Set the adjusted
|
41 |
|
|
// exponent equal to the exponent from A1 and the zero count
|
42 |
|
|
// added if SM = 1 and subtracted if SM = 0. Scale the
|
43 |
|
|
// mantissa the equivalent of forcing in the bcd value:
|
44 |
|
|
//
|
45 |
|
|
// SM = 0 a non-zero digit in the integer position
|
46 |
|
|
// SM = 1 a non-zero digit in Mant0, lsd of the fraction
|
47 |
|
|
//
|
48 |
|
|
// this will insure that any value, regardless of its
|
49 |
|
|
// representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted
|
50 |
|
|
// consistently.
|
51 |
|
|
//
|
52 |
|
|
// A4. Calculate the factor 10^exp in FP1 using a table of
|
53 |
|
|
// 10^(2^n) values. To reduce the error in forming factors
|
54 |
|
|
// greater than 10^27, a directed rounding scheme is used with
|
55 |
|
|
// tables rounded to RN, RM, and RP, according to the table
|
56 |
|
|
// in the comments of the pwrten section.
|
57 |
|
|
//
|
58 |
|
|
// A5. Form the final binary number by scaling the mantissa by
|
59 |
|
|
// the exponent factor. This is done by multiplying the
|
60 |
|
|
// mantissa in FP0 by the factor in FP1 if the adjusted
|
61 |
|
|
// exponent sign is positive, and dividing FP0 by FP1 if
|
62 |
|
|
// it is negative.
|
63 |
|
|
//
|
64 |
|
|
// Clean up and return. Check if the final mul or div resulted
|
65 |
|
|
// in an inex2 exception. If so, set inex1 in the fpsr and
|
66 |
|
|
// check if the inex1 exception is enabled. If so, set d7 upper
|
67 |
|
|
// word to $0100. This will signal unimp.sa that an enabled inex1
|
68 |
|
|
// exception occurred. Unimp will fix the stack.
|
69 |
|
|
//
|
70 |
|
|
|
71 |
|
|
// Copyright (C) Motorola, Inc. 1990
|
72 |
|
|
// All Rights Reserved
|
73 |
|
|
//
|
74 |
|
|
// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
|
75 |
|
|
// The copyright notice above does not evidence any
|
76 |
|
|
// actual or intended publication of such source code.
|
77 |
|
|
|
78 |
|
|
//DECBIN idnt 2,1 | Motorola 040 Floating Point Software Package
|
79 |
|
|
|
80 |
|
|
|section 8
|
81 |
|
|
|
82 |
|
|
#include "fpsp.defs"
|
83 |
|
|
|
84 |
|
|
//
|
85 |
|
|
// PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded
|
86 |
|
|
// to nearest, minus, and plus, respectively. The tables include
|
87 |
|
|
// 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding
|
88 |
|
|
// is required until the power is greater than 27, however, all
|
89 |
|
|
// tables include the first 5 for ease of indexing.
|
90 |
|
|
//
|
91 |
|
|
|xref PTENRN
|
92 |
|
|
|xref PTENRM
|
93 |
|
|
|xref PTENRP
|
94 |
|
|
|
95 |
|
|
RTABLE: .byte 0,0,0,0
|
96 |
|
|
.byte 2,3,2,3
|
97 |
|
|
.byte 2,3,3,2
|
98 |
|
|
.byte 3,2,2,3
|
99 |
|
|
|
100 |
|
|
.global decbin
|
101 |
|
|
.global calc_e
|
102 |
|
|
.global pwrten
|
103 |
|
|
.global calc_m
|
104 |
|
|
.global norm
|
105 |
|
|
.global ap_st_z
|
106 |
|
|
.global ap_st_n
|
107 |
|
|
//
|
108 |
|
|
.set FNIBS,7
|
109 |
|
|
.set FSTRT,0
|
110 |
|
|
//
|
111 |
|
|
.set ESTRT,4
|
112 |
|
|
.set EDIGITS,2 //
|
113 |
|
|
//
|
114 |
|
|
// Constants in single precision
|
115 |
|
|
FZERO: .long 0x00000000
|
116 |
|
|
FONE: .long 0x3F800000
|
117 |
|
|
FTEN: .long 0x41200000
|
118 |
|
|
|
119 |
|
|
.set TEN,10
|
120 |
|
|
|
121 |
|
|
//
|
122 |
|
|
decbin:
|
123 |
|
|
| fmovel #0,FPCR ;clr real fpcr
|
124 |
|
|
moveml %d2-%d5,-(%a7)
|
125 |
|
|
//
|
126 |
|
|
// Calculate exponent:
|
127 |
|
|
// 1. Copy bcd value in memory for use as a working copy.
|
128 |
|
|
// 2. Calculate absolute value of exponent in d1 by mul and add.
|
129 |
|
|
// 3. Correct for exponent sign.
|
130 |
|
|
// 4. Subtract 16 to compensate for interpreting the mant as all integer digits.
|
131 |
|
|
// (i.e., all digits assumed left of the decimal point.)
|
132 |
|
|
//
|
133 |
|
|
// Register usage:
|
134 |
|
|
//
|
135 |
|
|
// calc_e:
|
136 |
|
|
// (*) d0: temp digit storage
|
137 |
|
|
// (*) d1: accumulator for binary exponent
|
138 |
|
|
// (*) d2: digit count
|
139 |
|
|
// (*) d3: offset pointer
|
140 |
|
|
// ( ) d4: first word of bcd
|
141 |
|
|
// ( ) a0: pointer to working bcd value
|
142 |
|
|
// ( ) a6: pointer to original bcd value
|
143 |
|
|
// (*) FP_SCR1: working copy of original bcd value
|
144 |
|
|
// (*) L_SCR1: copy of original exponent word
|
145 |
|
|
//
|
146 |
|
|
calc_e:
|
147 |
|
|
movel #EDIGITS,%d2 //# of nibbles (digits) in fraction part
|
148 |
|
|
moveql #ESTRT,%d3 //counter to pick up digits
|
149 |
|
|
leal FP_SCR1(%a6),%a0 //load tmp bcd storage address
|
150 |
|
|
movel ETEMP(%a6),(%a0) //save input bcd value
|
151 |
|
|
movel ETEMP_HI(%a6),4(%a0) //save words 2 and 3
|
152 |
|
|
movel ETEMP_LO(%a6),8(%a0) //and work with these
|
153 |
|
|
movel (%a0),%d4 //get first word of bcd
|
154 |
|
|
clrl %d1 //zero d1 for accumulator
|
155 |
|
|
e_gd:
|
156 |
|
|
mulul #TEN,%d1 //mul partial product by one digit place
|
157 |
|
|
bfextu %d4{%d3:#4},%d0 //get the digit and zero extend into d0
|
158 |
|
|
addl %d0,%d1 //d1 = d1 + d0
|
159 |
|
|
addqb #4,%d3 //advance d3 to the next digit
|
160 |
|
|
dbf %d2,e_gd //if we have used all 3 digits, exit loop
|
161 |
|
|
btst #30,%d4 //get SE
|
162 |
|
|
beqs e_pos //don't negate if pos
|
163 |
|
|
negl %d1 //negate before subtracting
|
164 |
|
|
e_pos:
|
165 |
|
|
subl #16,%d1 //sub to compensate for shift of mant
|
166 |
|
|
bges e_save //if still pos, do not neg
|
167 |
|
|
negl %d1 //now negative, make pos and set SE
|
168 |
|
|
orl #0x40000000,%d4 //set SE in d4,
|
169 |
|
|
orl #0x40000000,(%a0) //and in working bcd
|
170 |
|
|
e_save:
|
171 |
|
|
movel %d1,L_SCR1(%a6) //save exp in memory
|
172 |
|
|
//
|
173 |
|
|
//
|
174 |
|
|
// Calculate mantissa:
|
175 |
|
|
// 1. Calculate absolute value of mantissa in fp0 by mul and add.
|
176 |
|
|
// 2. Correct for mantissa sign.
|
177 |
|
|
// (i.e., all digits assumed left of the decimal point.)
|
178 |
|
|
//
|
179 |
|
|
// Register usage:
|
180 |
|
|
//
|
181 |
|
|
// calc_m:
|
182 |
|
|
// (*) d0: temp digit storage
|
183 |
|
|
// (*) d1: lword counter
|
184 |
|
|
// (*) d2: digit count
|
185 |
|
|
// (*) d3: offset pointer
|
186 |
|
|
// ( ) d4: words 2 and 3 of bcd
|
187 |
|
|
// ( ) a0: pointer to working bcd value
|
188 |
|
|
// ( ) a6: pointer to original bcd value
|
189 |
|
|
// (*) fp0: mantissa accumulator
|
190 |
|
|
// ( ) FP_SCR1: working copy of original bcd value
|
191 |
|
|
// ( ) L_SCR1: copy of original exponent word
|
192 |
|
|
//
|
193 |
|
|
calc_m:
|
194 |
|
|
moveql #1,%d1 //word counter, init to 1
|
195 |
|
|
fmoves FZERO,%fp0 //accumulator
|
196 |
|
|
//
|
197 |
|
|
//
|
198 |
|
|
// Since the packed number has a long word between the first & second parts,
|
199 |
|
|
// get the integer digit then skip down & get the rest of the
|
200 |
|
|
// mantissa. We will unroll the loop once.
|
201 |
|
|
//
|
202 |
|
|
bfextu (%a0){#28:#4},%d0 //integer part is ls digit in long word
|
203 |
|
|
faddb %d0,%fp0 //add digit to sum in fp0
|
204 |
|
|
//
|
205 |
|
|
//
|
206 |
|
|
// Get the rest of the mantissa.
|
207 |
|
|
//
|
208 |
|
|
loadlw:
|
209 |
|
|
movel (%a0,%d1.L*4),%d4 //load mantissa longword into d4
|
210 |
|
|
moveql #FSTRT,%d3 //counter to pick up digits
|
211 |
|
|
moveql #FNIBS,%d2 //reset number of digits per a0 ptr
|
212 |
|
|
md2b:
|
213 |
|
|
fmuls FTEN,%fp0 //fp0 = fp0 * 10
|
214 |
|
|
bfextu %d4{%d3:#4},%d0 //get the digit and zero extend
|
215 |
|
|
faddb %d0,%fp0 //fp0 = fp0 + digit
|
216 |
|
|
//
|
217 |
|
|
//
|
218 |
|
|
// If all the digits (8) in that long word have been converted (d2=0),
|
219 |
|
|
// then inc d1 (=2) to point to the next long word and reset d3 to 0
|
220 |
|
|
// to initialize the digit offset, and set d2 to 7 for the digit count;
|
221 |
|
|
// else continue with this long word.
|
222 |
|
|
//
|
223 |
|
|
addqb #4,%d3 //advance d3 to the next digit
|
224 |
|
|
dbf %d2,md2b //check for last digit in this lw
|
225 |
|
|
nextlw:
|
226 |
|
|
addql #1,%d1 //inc lw pointer in mantissa
|
227 |
|
|
cmpl #2,%d1 //test for last lw
|
228 |
|
|
ble loadlw //if not, get last one
|
229 |
|
|
|
230 |
|
|
//
|
231 |
|
|
// Check the sign of the mant and make the value in fp0 the same sign.
|
232 |
|
|
//
|
233 |
|
|
m_sign:
|
234 |
|
|
btst #31,(%a0) //test sign of the mantissa
|
235 |
|
|
beq ap_st_z //if clear, go to append/strip zeros
|
236 |
|
|
fnegx %fp0 //if set, negate fp0
|
237 |
|
|
|
238 |
|
|
//
|
239 |
|
|
// Append/strip zeros:
|
240 |
|
|
//
|
241 |
|
|
// For adjusted exponents which have an absolute value greater than 27*,
|
242 |
|
|
// this routine calculates the amount needed to normalize the mantissa
|
243 |
|
|
// for the adjusted exponent. That number is subtracted from the exp
|
244 |
|
|
// if the exp was positive, and added if it was negative. The purpose
|
245 |
|
|
// of this is to reduce the value of the exponent and the possibility
|
246 |
|
|
// of error in calculation of pwrten.
|
247 |
|
|
//
|
248 |
|
|
// 1. Branch on the sign of the adjusted exponent.
|
249 |
|
|
// 2p.(positive exp)
|
250 |
|
|
// 2. Check M16 and the digits in lwords 2 and 3 in descending order.
|
251 |
|
|
// 3. Add one for each zero encountered until a non-zero digit.
|
252 |
|
|
// 4. Subtract the count from the exp.
|
253 |
|
|
// 5. Check if the exp has crossed zero in #3 above; make the exp abs
|
254 |
|
|
// and set SE.
|
255 |
|
|
// 6. Multiply the mantissa by 10**count.
|
256 |
|
|
// 2n.(negative exp)
|
257 |
|
|
// 2. Check the digits in lwords 3 and 2 in descending order.
|
258 |
|
|
// 3. Add one for each zero encountered until a non-zero digit.
|
259 |
|
|
// 4. Add the count to the exp.
|
260 |
|
|
// 5. Check if the exp has crossed zero in #3 above; clear SE.
|
261 |
|
|
// 6. Divide the mantissa by 10**count.
|
262 |
|
|
//
|
263 |
|
|
// *Why 27? If the adjusted exponent is within -28 < expA < 28, than
|
264 |
|
|
// any adjustment due to append/strip zeros will drive the resultant
|
265 |
|
|
// exponent towards zero. Since all pwrten constants with a power
|
266 |
|
|
// of 27 or less are exact, there is no need to use this routine to
|
267 |
|
|
// attempt to lessen the resultant exponent.
|
268 |
|
|
//
|
269 |
|
|
// Register usage:
|
270 |
|
|
//
|
271 |
|
|
// ap_st_z:
|
272 |
|
|
// (*) d0: temp digit storage
|
273 |
|
|
// (*) d1: zero count
|
274 |
|
|
// (*) d2: digit count
|
275 |
|
|
// (*) d3: offset pointer
|
276 |
|
|
// ( ) d4: first word of bcd
|
277 |
|
|
// (*) d5: lword counter
|
278 |
|
|
// ( ) a0: pointer to working bcd value
|
279 |
|
|
// ( ) FP_SCR1: working copy of original bcd value
|
280 |
|
|
// ( ) L_SCR1: copy of original exponent word
|
281 |
|
|
//
|
282 |
|
|
//
|
283 |
|
|
// First check the absolute value of the exponent to see if this
|
284 |
|
|
// routine is necessary. If so, then check the sign of the exponent
|
285 |
|
|
// and do append (+) or strip (-) zeros accordingly.
|
286 |
|
|
// This section handles a positive adjusted exponent.
|
287 |
|
|
//
|
288 |
|
|
ap_st_z:
|
289 |
|
|
movel L_SCR1(%a6),%d1 //load expA for range test
|
290 |
|
|
cmpl #27,%d1 //test is with 27
|
291 |
|
|
ble pwrten //if abs(expA) <28, skip ap/st zeros
|
292 |
|
|
btst #30,(%a0) //check sign of exp
|
293 |
|
|
bne ap_st_n //if neg, go to neg side
|
294 |
|
|
clrl %d1 //zero count reg
|
295 |
|
|
movel (%a0),%d4 //load lword 1 to d4
|
296 |
|
|
bfextu %d4{#28:#4},%d0 //get M16 in d0
|
297 |
|
|
bnes ap_p_fx //if M16 is non-zero, go fix exp
|
298 |
|
|
addql #1,%d1 //inc zero count
|
299 |
|
|
moveql #1,%d5 //init lword counter
|
300 |
|
|
movel (%a0,%d5.L*4),%d4 //get lword 2 to d4
|
301 |
|
|
bnes ap_p_cl //if lw 2 is zero, skip it
|
302 |
|
|
addql #8,%d1 //and inc count by 8
|
303 |
|
|
addql #1,%d5 //inc lword counter
|
304 |
|
|
movel (%a0,%d5.L*4),%d4 //get lword 3 to d4
|
305 |
|
|
ap_p_cl:
|
306 |
|
|
clrl %d3 //init offset reg
|
307 |
|
|
moveql #7,%d2 //init digit counter
|
308 |
|
|
ap_p_gd:
|
309 |
|
|
bfextu %d4{%d3:#4},%d0 //get digit
|
310 |
|
|
bnes ap_p_fx //if non-zero, go to fix exp
|
311 |
|
|
addql #4,%d3 //point to next digit
|
312 |
|
|
addql #1,%d1 //inc digit counter
|
313 |
|
|
dbf %d2,ap_p_gd //get next digit
|
314 |
|
|
ap_p_fx:
|
315 |
|
|
movel %d1,%d0 //copy counter to d2
|
316 |
|
|
movel L_SCR1(%a6),%d1 //get adjusted exp from memory
|
317 |
|
|
subl %d0,%d1 //subtract count from exp
|
318 |
|
|
bges ap_p_fm //if still pos, go to pwrten
|
319 |
|
|
negl %d1 //now its neg; get abs
|
320 |
|
|
movel (%a0),%d4 //load lword 1 to d4
|
321 |
|
|
orl #0x40000000,%d4 // and set SE in d4
|
322 |
|
|
orl #0x40000000,(%a0) // and in memory
|
323 |
|
|
//
|
324 |
|
|
// Calculate the mantissa multiplier to compensate for the striping of
|
325 |
|
|
// zeros from the mantissa.
|
326 |
|
|
//
|
327 |
|
|
ap_p_fm:
|
328 |
|
|
movel #PTENRN,%a1 //get address of power-of-ten table
|
329 |
|
|
clrl %d3 //init table index
|
330 |
|
|
fmoves FONE,%fp1 //init fp1 to 1
|
331 |
|
|
moveql #3,%d2 //init d2 to count bits in counter
|
332 |
|
|
ap_p_el:
|
333 |
|
|
asrl #1,%d0 //shift lsb into carry
|
334 |
|
|
bccs ap_p_en //if 1, mul fp1 by pwrten factor
|
335 |
|
|
fmulx (%a1,%d3),%fp1 //mul by 10**(d3_bit_no)
|
336 |
|
|
ap_p_en:
|
337 |
|
|
addl #12,%d3 //inc d3 to next rtable entry
|
338 |
|
|
tstl %d0 //check if d0 is zero
|
339 |
|
|
bnes ap_p_el //if not, get next bit
|
340 |
|
|
fmulx %fp1,%fp0 //mul mantissa by 10**(no_bits_shifted)
|
341 |
|
|
bra pwrten //go calc pwrten
|
342 |
|
|
//
|
343 |
|
|
// This section handles a negative adjusted exponent.
|
344 |
|
|
//
|
345 |
|
|
ap_st_n:
|
346 |
|
|
clrl %d1 //clr counter
|
347 |
|
|
moveql #2,%d5 //set up d5 to point to lword 3
|
348 |
|
|
movel (%a0,%d5.L*4),%d4 //get lword 3
|
349 |
|
|
bnes ap_n_cl //if not zero, check digits
|
350 |
|
|
subl #1,%d5 //dec d5 to point to lword 2
|
351 |
|
|
addql #8,%d1 //inc counter by 8
|
352 |
|
|
movel (%a0,%d5.L*4),%d4 //get lword 2
|
353 |
|
|
ap_n_cl:
|
354 |
|
|
movel #28,%d3 //point to last digit
|
355 |
|
|
moveql #7,%d2 //init digit counter
|
356 |
|
|
ap_n_gd:
|
357 |
|
|
bfextu %d4{%d3:#4},%d0 //get digit
|
358 |
|
|
bnes ap_n_fx //if non-zero, go to exp fix
|
359 |
|
|
subql #4,%d3 //point to previous digit
|
360 |
|
|
addql #1,%d1 //inc digit counter
|
361 |
|
|
dbf %d2,ap_n_gd //get next digit
|
362 |
|
|
ap_n_fx:
|
363 |
|
|
movel %d1,%d0 //copy counter to d0
|
364 |
|
|
movel L_SCR1(%a6),%d1 //get adjusted exp from memory
|
365 |
|
|
subl %d0,%d1 //subtract count from exp
|
366 |
|
|
bgts ap_n_fm //if still pos, go fix mantissa
|
367 |
|
|
negl %d1 //take abs of exp and clr SE
|
368 |
|
|
movel (%a0),%d4 //load lword 1 to d4
|
369 |
|
|
andl #0xbfffffff,%d4 // and clr SE in d4
|
370 |
|
|
andl #0xbfffffff,(%a0) // and in memory
|
371 |
|
|
//
|
372 |
|
|
// Calculate the mantissa multiplier to compensate for the appending of
|
373 |
|
|
// zeros to the mantissa.
|
374 |
|
|
//
|
375 |
|
|
ap_n_fm:
|
376 |
|
|
movel #PTENRN,%a1 //get address of power-of-ten table
|
377 |
|
|
clrl %d3 //init table index
|
378 |
|
|
fmoves FONE,%fp1 //init fp1 to 1
|
379 |
|
|
moveql #3,%d2 //init d2 to count bits in counter
|
380 |
|
|
ap_n_el:
|
381 |
|
|
asrl #1,%d0 //shift lsb into carry
|
382 |
|
|
bccs ap_n_en //if 1, mul fp1 by pwrten factor
|
383 |
|
|
fmulx (%a1,%d3),%fp1 //mul by 10**(d3_bit_no)
|
384 |
|
|
ap_n_en:
|
385 |
|
|
addl #12,%d3 //inc d3 to next rtable entry
|
386 |
|
|
tstl %d0 //check if d0 is zero
|
387 |
|
|
bnes ap_n_el //if not, get next bit
|
388 |
|
|
fdivx %fp1,%fp0 //div mantissa by 10**(no_bits_shifted)
|
389 |
|
|
//
|
390 |
|
|
//
|
391 |
|
|
// Calculate power-of-ten factor from adjusted and shifted exponent.
|
392 |
|
|
//
|
393 |
|
|
// Register usage:
|
394 |
|
|
//
|
395 |
|
|
// pwrten:
|
396 |
|
|
// (*) d0: temp
|
397 |
|
|
// ( ) d1: exponent
|
398 |
|
|
// (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp
|
399 |
|
|
// (*) d3: FPCR work copy
|
400 |
|
|
// ( ) d4: first word of bcd
|
401 |
|
|
// (*) a1: RTABLE pointer
|
402 |
|
|
// calc_p:
|
403 |
|
|
// (*) d0: temp
|
404 |
|
|
// ( ) d1: exponent
|
405 |
|
|
// (*) d3: PWRTxx table index
|
406 |
|
|
// ( ) a0: pointer to working copy of bcd
|
407 |
|
|
// (*) a1: PWRTxx pointer
|
408 |
|
|
// (*) fp1: power-of-ten accumulator
|
409 |
|
|
//
|
410 |
|
|
// Pwrten calculates the exponent factor in the selected rounding mode
|
411 |
|
|
// according to the following table:
|
412 |
|
|
//
|
413 |
|
|
// Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode
|
414 |
|
|
//
|
415 |
|
|
// ANY ANY RN RN
|
416 |
|
|
//
|
417 |
|
|
// + + RP RP
|
418 |
|
|
// - + RP RM
|
419 |
|
|
// + - RP RM
|
420 |
|
|
// - - RP RP
|
421 |
|
|
//
|
422 |
|
|
// + + RM RM
|
423 |
|
|
// - + RM RP
|
424 |
|
|
// + - RM RP
|
425 |
|
|
// - - RM RM
|
426 |
|
|
//
|
427 |
|
|
// + + RZ RM
|
428 |
|
|
// - + RZ RM
|
429 |
|
|
// + - RZ RP
|
430 |
|
|
// - - RZ RP
|
431 |
|
|
//
|
432 |
|
|
//
|
433 |
|
|
pwrten:
|
434 |
|
|
movel USER_FPCR(%a6),%d3 //get user's FPCR
|
435 |
|
|
bfextu %d3{#26:#2},%d2 //isolate rounding mode bits
|
436 |
|
|
movel (%a0),%d4 //reload 1st bcd word to d4
|
437 |
|
|
asll #2,%d2 //format d2 to be
|
438 |
|
|
bfextu %d4{#0:#2},%d0 // {FPCR[6],FPCR[5],SM,SE}
|
439 |
|
|
addl %d0,%d2 //in d2 as index into RTABLE
|
440 |
|
|
leal RTABLE,%a1 //load rtable base
|
441 |
|
|
moveb (%a1,%d2),%d0 //load new rounding bits from table
|
442 |
|
|
clrl %d3 //clear d3 to force no exc and extended
|
443 |
|
|
bfins %d0,%d3{#26:#2} //stuff new rounding bits in FPCR
|
444 |
|
|
fmovel %d3,%FPCR //write new FPCR
|
445 |
|
|
asrl #1,%d0 //write correct PTENxx table
|
446 |
|
|
bccs not_rp //to a1
|
447 |
|
|
leal PTENRP,%a1 //it is RP
|
448 |
|
|
bras calc_p //go to init section
|
449 |
|
|
not_rp:
|
450 |
|
|
asrl #1,%d0 //keep checking
|
451 |
|
|
bccs not_rm
|
452 |
|
|
leal PTENRM,%a1 //it is RM
|
453 |
|
|
bras calc_p //go to init section
|
454 |
|
|
not_rm:
|
455 |
|
|
leal PTENRN,%a1 //it is RN
|
456 |
|
|
calc_p:
|
457 |
|
|
movel %d1,%d0 //copy exp to d0;use d0
|
458 |
|
|
bpls no_neg //if exp is negative,
|
459 |
|
|
negl %d0 //invert it
|
460 |
|
|
orl #0x40000000,(%a0) //and set SE bit
|
461 |
|
|
no_neg:
|
462 |
|
|
clrl %d3 //table index
|
463 |
|
|
fmoves FONE,%fp1 //init fp1 to 1
|
464 |
|
|
e_loop:
|
465 |
|
|
asrl #1,%d0 //shift next bit into carry
|
466 |
|
|
bccs e_next //if zero, skip the mul
|
467 |
|
|
fmulx (%a1,%d3),%fp1 //mul by 10**(d3_bit_no)
|
468 |
|
|
e_next:
|
469 |
|
|
addl #12,%d3 //inc d3 to next rtable entry
|
470 |
|
|
tstl %d0 //check if d0 is zero
|
471 |
|
|
bnes e_loop //not zero, continue shifting
|
472 |
|
|
//
|
473 |
|
|
//
|
474 |
|
|
// Check the sign of the adjusted exp and make the value in fp0 the
|
475 |
|
|
// same sign. If the exp was pos then multiply fp1*fp0;
|
476 |
|
|
// else divide fp0/fp1.
|
477 |
|
|
//
|
478 |
|
|
// Register Usage:
|
479 |
|
|
// norm:
|
480 |
|
|
// ( ) a0: pointer to working bcd value
|
481 |
|
|
// (*) fp0: mantissa accumulator
|
482 |
|
|
// ( ) fp1: scaling factor - 10**(abs(exp))
|
483 |
|
|
//
|
484 |
|
|
norm:
|
485 |
|
|
btst #30,(%a0) //test the sign of the exponent
|
486 |
|
|
beqs mul //if clear, go to multiply
|
487 |
|
|
div:
|
488 |
|
|
fdivx %fp1,%fp0 //exp is negative, so divide mant by exp
|
489 |
|
|
bras end_dec
|
490 |
|
|
mul:
|
491 |
|
|
fmulx %fp1,%fp0 //exp is positive, so multiply by exp
|
492 |
|
|
//
|
493 |
|
|
//
|
494 |
|
|
// Clean up and return with result in fp0.
|
495 |
|
|
//
|
496 |
|
|
// If the final mul/div in decbin incurred an inex exception,
|
497 |
|
|
// it will be inex2, but will be reported as inex1 by get_op.
|
498 |
|
|
//
|
499 |
|
|
end_dec:
|
500 |
|
|
fmovel %FPSR,%d0 //get status register
|
501 |
|
|
bclrl #inex2_bit+8,%d0 //test for inex2 and clear it
|
502 |
|
|
fmovel %d0,%FPSR //return status reg w/o inex2
|
503 |
|
|
beqs no_exc //skip this if no exc
|
504 |
|
|
orl #inx1a_mask,USER_FPSR(%a6) //set inex1/ainex
|
505 |
|
|
no_exc:
|
506 |
|
|
moveml (%a7)+,%d2-%d5
|
507 |
|
|
rts
|
508 |
|
|
|end
|