1 |
158 |
chris |
//
|
2 |
208 |
chris |
// $Id: stan.S,v 1.2 2001-09-27 12:01:22 chris Exp $
|
3 |
158 |
chris |
//
|
4 |
|
|
// stan.sa 3.3 7/29/91
|
5 |
|
|
//
|
6 |
|
|
// The entry point stan computes the tangent of
|
7 |
|
|
// an input argument;
|
8 |
|
|
// stand does the same except for denormalized input.
|
9 |
|
|
//
|
10 |
|
|
// Input: Double-extended number X in location pointed to
|
11 |
|
|
// by address register a0.
|
12 |
|
|
//
|
13 |
|
|
// Output: The value tan(X) returned in floating-point register Fp0.
|
14 |
|
|
//
|
15 |
|
|
// Accuracy and Monotonicity: The returned result is within 3 ulp in
|
16 |
|
|
// 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
|
17 |
|
|
// result is subsequently rounded to double precision. The
|
18 |
|
|
// result is provably monotonic in double precision.
|
19 |
|
|
//
|
20 |
|
|
// Speed: The program sTAN takes approximately 170 cycles for
|
21 |
|
|
// input argument X such that |X| < 15Pi, which is the the usual
|
22 |
|
|
// situation.
|
23 |
|
|
//
|
24 |
|
|
// Algorithm:
|
25 |
|
|
//
|
26 |
|
|
// 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
|
27 |
|
|
//
|
28 |
|
|
// 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
|
29 |
|
|
// k = N mod 2, so in particular, k = 0 or 1.
|
30 |
|
|
//
|
31 |
|
|
// 3. If k is odd, go to 5.
|
32 |
|
|
//
|
33 |
|
|
// 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a
|
34 |
|
|
// rational function U/V where
|
35 |
|
|
// U = r + r*s*(P1 + s*(P2 + s*P3)), and
|
36 |
|
|
// V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r.
|
37 |
|
|
// Exit.
|
38 |
|
|
//
|
39 |
|
|
// 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by a
|
40 |
|
|
// rational function U/V where
|
41 |
|
|
// U = r + r*s*(P1 + s*(P2 + s*P3)), and
|
42 |
|
|
// V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r,
|
43 |
|
|
// -Cot(r) = -V/U. Exit.
|
44 |
|
|
//
|
45 |
|
|
// 6. If |X| > 1, go to 8.
|
46 |
|
|
//
|
47 |
|
|
// 7. (|X|<2**(-40)) Tan(X) = X. Exit.
|
48 |
|
|
//
|
49 |
|
|
// 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
|
50 |
|
|
//
|
51 |
|
|
|
52 |
|
|
// Copyright (C) Motorola, Inc. 1990
|
53 |
|
|
// All Rights Reserved
|
54 |
|
|
//
|
55 |
|
|
// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
|
56 |
|
|
// The copyright notice above does not evidence any
|
57 |
|
|
// actual or intended publication of such source code.
|
58 |
|
|
|
59 |
|
|
//STAN idnt 2,1 | Motorola 040 Floating Point Software Package
|
60 |
|
|
|
61 |
|
|
|section 8
|
62 |
|
|
|
63 |
|
|
#include "fpsp.defs"
|
64 |
|
|
|
65 |
|
|
BOUNDS1: .long 0x3FD78000,0x4004BC7E
|
66 |
|
|
TWOBYPI: .long 0x3FE45F30,0x6DC9C883
|
67 |
|
|
|
68 |
|
|
TANQ4: .long 0x3EA0B759,0xF50F8688
|
69 |
|
|
TANP3: .long 0xBEF2BAA5,0xA8924F04
|
70 |
|
|
|
71 |
|
|
TANQ3: .long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000
|
72 |
|
|
|
73 |
|
|
TANP2: .long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000
|
74 |
|
|
|
75 |
|
|
TANQ2: .long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000
|
76 |
|
|
|
77 |
|
|
TANP1: .long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000
|
78 |
|
|
|
79 |
|
|
TANQ1: .long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000
|
80 |
|
|
|
81 |
|
|
INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000
|
82 |
|
|
|
83 |
|
|
TWOPI1: .long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
|
84 |
|
|
TWOPI2: .long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000
|
85 |
|
|
|
86 |
|
|
//--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING
|
87 |
|
|
//--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT
|
88 |
|
|
//--MOST 69 BITS LONG.
|
89 |
|
|
.global PITBL
|
90 |
|
|
PITBL:
|
91 |
|
|
.long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000
|
92 |
|
|
.long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000
|
93 |
|
|
.long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000
|
94 |
|
|
.long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000
|
95 |
|
|
.long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000
|
96 |
|
|
.long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000
|
97 |
|
|
.long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000
|
98 |
|
|
.long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000
|
99 |
|
|
.long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000
|
100 |
|
|
.long 0xC0040000,0x90836524,0x88034B96,0x20B00000
|
101 |
|
|
.long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000
|
102 |
|
|
.long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000
|
103 |
|
|
.long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000
|
104 |
|
|
.long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000
|
105 |
|
|
.long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000
|
106 |
|
|
.long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000
|
107 |
|
|
.long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000
|
108 |
|
|
.long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000
|
109 |
|
|
.long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000
|
110 |
|
|
.long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000
|
111 |
|
|
.long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000
|
112 |
|
|
.long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000
|
113 |
|
|
.long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000
|
114 |
|
|
.long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000
|
115 |
|
|
.long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000
|
116 |
|
|
.long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000
|
117 |
|
|
.long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000
|
118 |
|
|
.long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000
|
119 |
|
|
.long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000
|
120 |
|
|
.long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000
|
121 |
|
|
.long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000
|
122 |
|
|
.long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000
|
123 |
|
|
.long 0x00000000,0x00000000,0x00000000,0x00000000
|
124 |
|
|
.long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000
|
125 |
|
|
.long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000
|
126 |
|
|
.long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000
|
127 |
|
|
.long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000
|
128 |
|
|
.long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000
|
129 |
|
|
.long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000
|
130 |
|
|
.long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000
|
131 |
|
|
.long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000
|
132 |
|
|
.long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000
|
133 |
|
|
.long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000
|
134 |
|
|
.long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000
|
135 |
|
|
.long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000
|
136 |
|
|
.long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000
|
137 |
|
|
.long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000
|
138 |
|
|
.long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000
|
139 |
|
|
.long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000
|
140 |
|
|
.long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000
|
141 |
|
|
.long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000
|
142 |
|
|
.long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000
|
143 |
|
|
.long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000
|
144 |
|
|
.long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000
|
145 |
|
|
.long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000
|
146 |
|
|
.long 0x40040000,0x90836524,0x88034B96,0xA0B00000
|
147 |
|
|
.long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000
|
148 |
|
|
.long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000
|
149 |
|
|
.long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000
|
150 |
|
|
.long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000
|
151 |
|
|
.long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000
|
152 |
|
|
.long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000
|
153 |
|
|
.long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000
|
154 |
|
|
.long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000
|
155 |
|
|
.long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000
|
156 |
|
|
|
157 |
|
|
.set INARG,FP_SCR4
|
158 |
|
|
|
159 |
|
|
.set TWOTO63,L_SCR1
|
160 |
|
|
.set ENDFLAG,L_SCR2
|
161 |
|
|
.set N,L_SCR3
|
162 |
|
|
|
163 |
|
|
| xref t_frcinx
|
164 |
|
|
|xref t_extdnrm
|
165 |
|
|
|
166 |
|
|
.global stand
|
167 |
|
|
stand:
|
168 |
|
|
//--TAN(X) = X FOR DENORMALIZED X
|
169 |
|
|
|
170 |
|
|
bra t_extdnrm
|
171 |
|
|
|
172 |
|
|
.global stan
|
173 |
|
|
stan:
|
174 |
|
|
fmovex (%a0),%fp0 // ...LOAD INPUT
|
175 |
|
|
|
176 |
|
|
movel (%a0),%d0
|
177 |
|
|
movew 4(%a0),%d0
|
178 |
|
|
andil #0x7FFFFFFF,%d0
|
179 |
|
|
|
180 |
|
|
cmpil #0x3FD78000,%d0 // ...|X| >= 2**(-40)?
|
181 |
|
|
bges TANOK1
|
182 |
|
|
bra TANSM
|
183 |
|
|
TANOK1:
|
184 |
|
|
cmpil #0x4004BC7E,%d0 // ...|X| < 15 PI?
|
185 |
|
|
blts TANMAIN
|
186 |
|
|
bra REDUCEX
|
187 |
|
|
|
188 |
|
|
|
189 |
|
|
TANMAIN:
|
190 |
|
|
//--THIS IS THE USUAL CASE, |X| <= 15 PI.
|
191 |
|
|
//--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
|
192 |
|
|
fmovex %fp0,%fp1
|
193 |
|
|
fmuld TWOBYPI,%fp1 // ...X*2/PI
|
194 |
|
|
|
195 |
|
|
//--HIDE THE NEXT TWO INSTRUCTIONS
|
196 |
|
|
leal PITBL+0x200,%a1 // ...TABLE OF N*PI/2, N = -32,...,32
|
197 |
|
|
|
198 |
|
|
//--FP1 IS NOW READY
|
199 |
|
|
fmovel %fp1,%d0 // ...CONVERT TO INTEGER
|
200 |
|
|
|
201 |
|
|
asll #4,%d0
|
202 |
|
|
addal %d0,%a1 // ...ADDRESS N*PIBY2 IN Y1, Y2
|
203 |
|
|
|
204 |
|
|
fsubx (%a1)+,%fp0 // ...X-Y1
|
205 |
|
|
//--HIDE THE NEXT ONE
|
206 |
|
|
|
207 |
|
|
fsubs (%a1),%fp0 // ...FP0 IS R = (X-Y1)-Y2
|
208 |
|
|
|
209 |
|
|
rorl #5,%d0
|
210 |
|
|
andil #0x80000000,%d0 // ...D0 WAS ODD IFF D0 < 0
|
211 |
|
|
|
212 |
|
|
TANCONT:
|
213 |
|
|
|
214 |
|
|
cmpil #0,%d0
|
215 |
|
|
blt NODD
|
216 |
|
|
|
217 |
|
|
fmovex %fp0,%fp1
|
218 |
|
|
fmulx %fp1,%fp1 // ...S = R*R
|
219 |
|
|
|
220 |
|
|
fmoved TANQ4,%fp3
|
221 |
|
|
fmoved TANP3,%fp2
|
222 |
|
|
|
223 |
|
|
fmulx %fp1,%fp3 // ...SQ4
|
224 |
|
|
fmulx %fp1,%fp2 // ...SP3
|
225 |
|
|
|
226 |
|
|
faddd TANQ3,%fp3 // ...Q3+SQ4
|
227 |
|
|
faddx TANP2,%fp2 // ...P2+SP3
|
228 |
|
|
|
229 |
|
|
fmulx %fp1,%fp3 // ...S(Q3+SQ4)
|
230 |
|
|
fmulx %fp1,%fp2 // ...S(P2+SP3)
|
231 |
|
|
|
232 |
|
|
faddx TANQ2,%fp3 // ...Q2+S(Q3+SQ4)
|
233 |
|
|
faddx TANP1,%fp2 // ...P1+S(P2+SP3)
|
234 |
|
|
|
235 |
|
|
fmulx %fp1,%fp3 // ...S(Q2+S(Q3+SQ4))
|
236 |
|
|
fmulx %fp1,%fp2 // ...S(P1+S(P2+SP3))
|
237 |
|
|
|
238 |
|
|
faddx TANQ1,%fp3 // ...Q1+S(Q2+S(Q3+SQ4))
|
239 |
|
|
fmulx %fp0,%fp2 // ...RS(P1+S(P2+SP3))
|
240 |
|
|
|
241 |
|
|
fmulx %fp3,%fp1 // ...S(Q1+S(Q2+S(Q3+SQ4)))
|
242 |
|
|
|
243 |
|
|
|
244 |
|
|
faddx %fp2,%fp0 // ...R+RS(P1+S(P2+SP3))
|
245 |
|
|
|
246 |
|
|
|
247 |
|
|
fadds #0x3F800000,%fp1 // ...1+S(Q1+...)
|
248 |
|
|
|
249 |
|
|
fmovel %d1,%fpcr //restore users exceptions
|
250 |
|
|
fdivx %fp1,%fp0 //last inst - possible exception set
|
251 |
|
|
|
252 |
|
|
bra t_frcinx
|
253 |
|
|
|
254 |
|
|
NODD:
|
255 |
|
|
fmovex %fp0,%fp1
|
256 |
|
|
fmulx %fp0,%fp0 // ...S = R*R
|
257 |
|
|
|
258 |
|
|
fmoved TANQ4,%fp3
|
259 |
|
|
fmoved TANP3,%fp2
|
260 |
|
|
|
261 |
|
|
fmulx %fp0,%fp3 // ...SQ4
|
262 |
|
|
fmulx %fp0,%fp2 // ...SP3
|
263 |
|
|
|
264 |
|
|
faddd TANQ3,%fp3 // ...Q3+SQ4
|
265 |
|
|
faddx TANP2,%fp2 // ...P2+SP3
|
266 |
|
|
|
267 |
|
|
fmulx %fp0,%fp3 // ...S(Q3+SQ4)
|
268 |
|
|
fmulx %fp0,%fp2 // ...S(P2+SP3)
|
269 |
|
|
|
270 |
|
|
faddx TANQ2,%fp3 // ...Q2+S(Q3+SQ4)
|
271 |
|
|
faddx TANP1,%fp2 // ...P1+S(P2+SP3)
|
272 |
|
|
|
273 |
|
|
fmulx %fp0,%fp3 // ...S(Q2+S(Q3+SQ4))
|
274 |
|
|
fmulx %fp0,%fp2 // ...S(P1+S(P2+SP3))
|
275 |
|
|
|
276 |
|
|
faddx TANQ1,%fp3 // ...Q1+S(Q2+S(Q3+SQ4))
|
277 |
|
|
fmulx %fp1,%fp2 // ...RS(P1+S(P2+SP3))
|
278 |
|
|
|
279 |
|
|
fmulx %fp3,%fp0 // ...S(Q1+S(Q2+S(Q3+SQ4)))
|
280 |
|
|
|
281 |
|
|
|
282 |
|
|
faddx %fp2,%fp1 // ...R+RS(P1+S(P2+SP3))
|
283 |
|
|
fadds #0x3F800000,%fp0 // ...1+S(Q1+...)
|
284 |
|
|
|
285 |
|
|
|
286 |
|
|
fmovex %fp1,-(%sp)
|
287 |
|
|
eoril #0x80000000,(%sp)
|
288 |
|
|
|
289 |
|
|
fmovel %d1,%fpcr //restore users exceptions
|
290 |
|
|
fdivx (%sp)+,%fp0 //last inst - possible exception set
|
291 |
|
|
|
292 |
|
|
bra t_frcinx
|
293 |
|
|
|
294 |
|
|
TANBORS:
|
295 |
|
|
//--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
|
296 |
|
|
//--IF |X| < 2**(-40), RETURN X OR 1.
|
297 |
|
|
cmpil #0x3FFF8000,%d0
|
298 |
|
|
bgts REDUCEX
|
299 |
|
|
|
300 |
|
|
TANSM:
|
301 |
|
|
|
302 |
|
|
fmovex %fp0,-(%sp)
|
303 |
|
|
fmovel %d1,%fpcr //restore users exceptions
|
304 |
|
|
fmovex (%sp)+,%fp0 //last inst - possible exception set
|
305 |
|
|
|
306 |
|
|
bra t_frcinx
|
307 |
|
|
|
308 |
|
|
|
309 |
|
|
REDUCEX:
|
310 |
|
|
//--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
|
311 |
|
|
//--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
|
312 |
|
|
//--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
|
313 |
|
|
|
314 |
|
|
fmovemx %fp2-%fp5,-(%a7) // ...save FP2 through FP5
|
315 |
|
|
movel %d2,-(%a7)
|
316 |
|
|
fmoves #0x00000000,%fp1
|
317 |
|
|
|
318 |
|
|
//--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
|
319 |
|
|
//--there is a danger of unwanted overflow in first LOOP iteration. In this
|
320 |
|
|
//--case, reduce argument by one remainder step to make subsequent reduction
|
321 |
|
|
//--safe.
|
322 |
|
|
cmpil #0x7ffeffff,%d0 //is argument dangerously large?
|
323 |
|
|
bnes LOOP
|
324 |
|
|
movel #0x7ffe0000,FP_SCR2(%a6) //yes
|
325 |
|
|
// ;create 2**16383*PI/2
|
326 |
|
|
movel #0xc90fdaa2,FP_SCR2+4(%a6)
|
327 |
|
|
clrl FP_SCR2+8(%a6)
|
328 |
|
|
ftstx %fp0 //test sign of argument
|
329 |
|
|
movel #0x7fdc0000,FP_SCR3(%a6) //create low half of 2**16383*
|
330 |
|
|
// ;PI/2 at FP_SCR3
|
331 |
|
|
movel #0x85a308d3,FP_SCR3+4(%a6)
|
332 |
|
|
clrl FP_SCR3+8(%a6)
|
333 |
|
|
fblt red_neg
|
334 |
|
|
orw #0x8000,FP_SCR2(%a6) //positive arg
|
335 |
|
|
orw #0x8000,FP_SCR3(%a6)
|
336 |
|
|
red_neg:
|
337 |
|
|
faddx FP_SCR2(%a6),%fp0 //high part of reduction is exact
|
338 |
|
|
fmovex %fp0,%fp1 //save high result in fp1
|
339 |
|
|
faddx FP_SCR3(%a6),%fp0 //low part of reduction
|
340 |
|
|
fsubx %fp0,%fp1 //determine low component of result
|
341 |
|
|
faddx FP_SCR3(%a6),%fp1 //fp0/fp1 are reduced argument.
|
342 |
|
|
|
343 |
|
|
//--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
|
344 |
|
|
//--integer quotient will be stored in N
|
345 |
|
|
//--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1)
|
346 |
|
|
|
347 |
|
|
LOOP:
|
348 |
|
|
fmovex %fp0,INARG(%a6) // ...+-2**K * F, 1 <= F < 2
|
349 |
|
|
movew INARG(%a6),%d0
|
350 |
|
|
movel %d0,%a1 // ...save a copy of D0
|
351 |
|
|
andil #0x00007FFF,%d0
|
352 |
|
|
subil #0x00003FFF,%d0 // ...D0 IS K
|
353 |
|
|
cmpil #28,%d0
|
354 |
|
|
bles LASTLOOP
|
355 |
|
|
CONTLOOP:
|
356 |
|
|
subil #27,%d0 // ...D0 IS L := K-27
|
357 |
|
|
movel #0,ENDFLAG(%a6)
|
358 |
|
|
bras WORK
|
359 |
|
|
LASTLOOP:
|
360 |
|
|
clrl %d0 // ...D0 IS L := 0
|
361 |
|
|
movel #1,ENDFLAG(%a6)
|
362 |
|
|
|
363 |
|
|
WORK:
|
364 |
|
|
//--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
|
365 |
|
|
//--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
|
366 |
|
|
|
367 |
|
|
//--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
|
368 |
|
|
//--2**L * (PIby2_1), 2**L * (PIby2_2)
|
369 |
|
|
|
370 |
|
|
movel #0x00003FFE,%d2 // ...BIASED EXPO OF 2/PI
|
371 |
|
|
subl %d0,%d2 // ...BIASED EXPO OF 2**(-L)*(2/PI)
|
372 |
|
|
|
373 |
|
|
movel #0xA2F9836E,FP_SCR1+4(%a6)
|
374 |
|
|
movel #0x4E44152A,FP_SCR1+8(%a6)
|
375 |
|
|
movew %d2,FP_SCR1(%a6) // ...FP_SCR1 is 2**(-L)*(2/PI)
|
376 |
|
|
|
377 |
|
|
fmovex %fp0,%fp2
|
378 |
|
|
fmulx FP_SCR1(%a6),%fp2
|
379 |
|
|
//--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
|
380 |
|
|
//--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
|
381 |
|
|
//--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
|
382 |
|
|
//--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
|
383 |
|
|
//--US THE DESIRED VALUE IN FLOATING POINT.
|
384 |
|
|
|
385 |
|
|
//--HIDE SIX CYCLES OF INSTRUCTION
|
386 |
|
|
movel %a1,%d2
|
387 |
|
|
swap %d2
|
388 |
|
|
andil #0x80000000,%d2
|
389 |
|
|
oril #0x5F000000,%d2 // ...D2 IS SIGN(INARG)*2**63 IN SGL
|
390 |
|
|
movel %d2,TWOTO63(%a6)
|
391 |
|
|
|
392 |
|
|
movel %d0,%d2
|
393 |
|
|
addil #0x00003FFF,%d2 // ...BIASED EXPO OF 2**L * (PI/2)
|
394 |
|
|
|
395 |
|
|
//--FP2 IS READY
|
396 |
|
|
fadds TWOTO63(%a6),%fp2 // ...THE FRACTIONAL PART OF FP1 IS ROUNDED
|
397 |
|
|
|
398 |
|
|
//--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1 and 2**(L)*Piby2_2
|
399 |
|
|
movew %d2,FP_SCR2(%a6)
|
400 |
|
|
clrw FP_SCR2+2(%a6)
|
401 |
|
|
movel #0xC90FDAA2,FP_SCR2+4(%a6)
|
402 |
|
|
clrl FP_SCR2+8(%a6) // ...FP_SCR2 is 2**(L) * Piby2_1
|
403 |
|
|
|
404 |
|
|
//--FP2 IS READY
|
405 |
|
|
fsubs TWOTO63(%a6),%fp2 // ...FP2 is N
|
406 |
|
|
|
407 |
|
|
addil #0x00003FDD,%d0
|
408 |
|
|
movew %d0,FP_SCR3(%a6)
|
409 |
|
|
clrw FP_SCR3+2(%a6)
|
410 |
|
|
movel #0x85A308D3,FP_SCR3+4(%a6)
|
411 |
|
|
clrl FP_SCR3+8(%a6) // ...FP_SCR3 is 2**(L) * Piby2_2
|
412 |
|
|
|
413 |
|
|
movel ENDFLAG(%a6),%d0
|
414 |
|
|
|
415 |
|
|
//--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
|
416 |
|
|
//--P2 = 2**(L) * Piby2_2
|
417 |
|
|
fmovex %fp2,%fp4
|
418 |
|
|
fmulx FP_SCR2(%a6),%fp4 // ...W = N*P1
|
419 |
|
|
fmovex %fp2,%fp5
|
420 |
|
|
fmulx FP_SCR3(%a6),%fp5 // ...w = N*P2
|
421 |
|
|
fmovex %fp4,%fp3
|
422 |
|
|
//--we want P+p = W+w but |p| <= half ulp of P
|
423 |
|
|
//--Then, we need to compute A := R-P and a := r-p
|
424 |
|
|
faddx %fp5,%fp3 // ...FP3 is P
|
425 |
|
|
fsubx %fp3,%fp4 // ...W-P
|
426 |
|
|
|
427 |
|
|
fsubx %fp3,%fp0 // ...FP0 is A := R - P
|
428 |
|
|
faddx %fp5,%fp4 // ...FP4 is p = (W-P)+w
|
429 |
|
|
|
430 |
|
|
fmovex %fp0,%fp3 // ...FP3 A
|
431 |
|
|
fsubx %fp4,%fp1 // ...FP1 is a := r - p
|
432 |
|
|
|
433 |
|
|
//--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
|
434 |
|
|
//--|r| <= half ulp of R.
|
435 |
|
|
faddx %fp1,%fp0 // ...FP0 is R := A+a
|
436 |
|
|
//--No need to calculate r if this is the last loop
|
437 |
|
|
cmpil #0,%d0
|
438 |
|
|
bgt RESTORE
|
439 |
|
|
|
440 |
|
|
//--Need to calculate r
|
441 |
|
|
fsubx %fp0,%fp3 // ...A-R
|
442 |
|
|
faddx %fp3,%fp1 // ...FP1 is r := (A-R)+a
|
443 |
|
|
bra LOOP
|
444 |
|
|
|
445 |
|
|
RESTORE:
|
446 |
|
|
fmovel %fp2,N(%a6)
|
447 |
|
|
movel (%a7)+,%d2
|
448 |
|
|
fmovemx (%a7)+,%fp2-%fp5
|
449 |
|
|
|
450 |
|
|
|
451 |
|
|
movel N(%a6),%d0
|
452 |
|
|
rorl #1,%d0
|
453 |
|
|
|
454 |
|
|
|
455 |
|
|
bra TANCONT
|
456 |
|
|
|
457 |
|
|
|end
|