OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [rtems/] [c/] [src/] [libnetworking/] [net/] [radix.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 158 chris
/*
2
 * Copyright (c) 1988, 1989, 1993
3
 *      The Regents of the University of California.  All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 * 1. Redistributions of source code must retain the above copyright
9
 *    notice, this list of conditions and the following disclaimer.
10
 * 2. Redistributions in binary form must reproduce the above copyright
11
 *    notice, this list of conditions and the following disclaimer in the
12
 *    documentation and/or other materials provided with the distribution.
13
 * 3. All advertising materials mentioning features or use of this software
14
 *    must display the following acknowledgement:
15
 *      This product includes software developed by the University of
16
 *      California, Berkeley and its contributors.
17
 * 4. Neither the name of the University nor the names of its contributors
18
 *    may be used to endorse or promote products derived from this software
19
 *    without specific prior written permission.
20
 *
21
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31
 * SUCH DAMAGE.
32
 *
33
 *      @(#)radix.c     8.4 (Berkeley) 11/2/94
34 208 chris
 *      $Id: radix.c,v 1.2 2001-09-27 12:01:54 chris Exp $
35 158 chris
 */
36
 
37
/*
38
 * Routines to build and maintain radix trees for routing lookups.
39
 */
40
#ifndef _RADIX_H_
41
#include <sys/param.h>
42
#ifdef  KERNEL
43
#include <sys/systm.h>
44
#include <sys/malloc.h>
45
#define M_DONTWAIT M_NOWAIT
46
#include <sys/domain.h>
47
#else
48
#include <stdlib.h>
49
#endif
50
#include <sys/syslog.h>
51
#include <net/radix.h>
52
#endif
53
 
54
static struct radix_node *
55
                rn_lookup __P((void *v_arg, void *m_arg,
56
                               struct radix_node_head *head));
57
static int      rn_walktree_from __P((struct radix_node_head *h, void *a,
58
                                      void *m, walktree_f_t *f, void *w));
59
static int rn_walktree __P((struct radix_node_head *, walktree_f_t *, void *));
60
static struct radix_node
61
         *rn_delete __P((void *, void *, struct radix_node_head *)),
62
         *rn_insert __P((void *, struct radix_node_head *, int *,
63
                        struct radix_node [2])),
64
         *rn_newpair __P((void *, int, struct radix_node[2])),
65
         *rn_search __P((void *, struct radix_node *)),
66
         *rn_search_m __P((void *, struct radix_node *, void *));
67
 
68
static int      max_keylen;
69
static struct radix_mask *rn_mkfreelist;
70
static struct radix_node_head *mask_rnhead;
71
static char *addmask_key;
72
static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
73
static char *rn_zeros, *rn_ones;
74
 
75
#define rn_masktop (mask_rnhead->rnh_treetop)
76
#undef Bcmp
77
#define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
78
 
79
static int      rn_lexobetter __P((void *m_arg, void *n_arg));
80
static struct radix_mask *
81
                rn_new_radix_mask __P((struct radix_node *tt,
82
                                       struct radix_mask *next));
83
static int      rn_satsifies_leaf __P((char *trial, struct radix_node *leaf,
84
                                       int skip));
85
 
86
/*
87
 * The data structure for the keys is a radix tree with one way
88
 * branching removed.  The index rn_b at an internal node n represents a bit
89
 * position to be tested.  The tree is arranged so that all descendants
90
 * of a node n have keys whose bits all agree up to position rn_b - 1.
91
 * (We say the index of n is rn_b.)
92
 *
93
 * There is at least one descendant which has a one bit at position rn_b,
94
 * and at least one with a zero there.
95
 *
96
 * A route is determined by a pair of key and mask.  We require that the
97
 * bit-wise logical and of the key and mask to be the key.
98
 * We define the index of a route to associated with the mask to be
99
 * the first bit number in the mask where 0 occurs (with bit number 0
100
 * representing the highest order bit).
101
 *
102
 * We say a mask is normal if every bit is 0, past the index of the mask.
103
 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
104
 * and m is a normal mask, then the route applies to every descendant of n.
105
 * If the index(m) < rn_b, this implies the trailing last few bits of k
106
 * before bit b are all 0, (and hence consequently true of every descendant
107
 * of n), so the route applies to all descendants of the node as well.
108
 *
109
 * Similar logic shows that a non-normal mask m such that
110
 * index(m) <= index(n) could potentially apply to many children of n.
111
 * Thus, for each non-host route, we attach its mask to a list at an internal
112
 * node as high in the tree as we can go.
113
 *
114
 * The present version of the code makes use of normal routes in short-
115
 * circuiting an explict mask and compare operation when testing whether
116
 * a key satisfies a normal route, and also in remembering the unique leaf
117
 * that governs a subtree.
118
 */
119
 
120
static struct radix_node *
121
rn_search(v_arg, head)
122
        void *v_arg;
123
        struct radix_node *head;
124
{
125
        register struct radix_node *x;
126
        register caddr_t v;
127
 
128
        for (x = head, v = v_arg; x->rn_b >= 0;) {
129
                if (x->rn_bmask & v[x->rn_off])
130
                        x = x->rn_r;
131
                else
132
                        x = x->rn_l;
133
        }
134
        return (x);
135
};
136
 
137
static struct radix_node *
138
rn_search_m(v_arg, head, m_arg)
139
        struct radix_node *head;
140
        void *v_arg, *m_arg;
141
{
142
        register struct radix_node *x;
143
        register caddr_t v = v_arg, m = m_arg;
144
 
145
        for (x = head; x->rn_b >= 0;) {
146
                if ((x->rn_bmask & m[x->rn_off]) &&
147
                    (x->rn_bmask & v[x->rn_off]))
148
                        x = x->rn_r;
149
                else
150
                        x = x->rn_l;
151
        }
152
        return x;
153
};
154
 
155
int
156
rn_refines(m_arg, n_arg)
157
        void *m_arg, *n_arg;
158
{
159
        register caddr_t m = m_arg, n = n_arg;
160
        register caddr_t lim, lim2 = lim = n + *(u_char *)n;
161
        int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
162
        int masks_are_equal = 1;
163
 
164
        if (longer > 0)
165
                lim -= longer;
166
        while (n < lim) {
167
                if (*n & ~(*m))
168
                        return 0;
169
                if (*n++ != *m++)
170
                        masks_are_equal = 0;
171
        }
172
        while (n < lim2)
173
                if (*n++)
174
                        return 0;
175
        if (masks_are_equal && (longer < 0))
176
                for (lim2 = m - longer; m < lim2; )
177
                        if (*m++)
178
                                return 1;
179
        return (!masks_are_equal);
180
}
181
 
182
struct radix_node *
183
rn_lookup(v_arg, m_arg, head)
184
        void *v_arg, *m_arg;
185
        struct radix_node_head *head;
186
{
187
        register struct radix_node *x;
188
        caddr_t netmask = 0;
189
 
190
        if (m_arg) {
191
                if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
192
                        return (0);
193
                netmask = x->rn_key;
194
        }
195
        x = rn_match(v_arg, head);
196
        if (x && netmask) {
197
                while (x && x->rn_mask != netmask)
198
                        x = x->rn_dupedkey;
199
        }
200
        return x;
201
}
202
 
203
static int
204
rn_satsifies_leaf(trial, leaf, skip)
205
        char *trial;
206
        register struct radix_node *leaf;
207
        int skip;
208
{
209
        register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
210
        char *cplim;
211
        int length = min(*(u_char *)cp, *(u_char *)cp2);
212
 
213
        if (cp3 == 0)
214
                cp3 = rn_ones;
215
        else
216
                length = min(length, *(u_char *)cp3);
217
        cplim = cp + length; cp3 += skip; cp2 += skip;
218
        for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
219
                if ((*cp ^ *cp2) & *cp3)
220
                        return 0;
221
        return 1;
222
}
223
 
224
struct radix_node *
225
rn_match(v_arg, head)
226
        void *v_arg;
227
        struct radix_node_head *head;
228
{
229
        caddr_t v = v_arg;
230
        register struct radix_node *t = head->rnh_treetop, *x;
231
        register caddr_t cp = v, cp2;
232
        caddr_t cplim;
233
        struct radix_node *saved_t, *top = t;
234
        int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
235
        register int test, b, rn_b;
236
 
237
        /*
238
         * Open code rn_search(v, top) to avoid overhead of extra
239
         * subroutine call.
240
         */
241
        for (; t->rn_b >= 0; ) {
242
                if (t->rn_bmask & cp[t->rn_off])
243
                        t = t->rn_r;
244
                else
245
                        t = t->rn_l;
246
        }
247
        /*
248
         * See if we match exactly as a host destination
249
         * or at least learn how many bits match, for normal mask finesse.
250
         *
251
         * It doesn't hurt us to limit how many bytes to check
252
         * to the length of the mask, since if it matches we had a genuine
253
         * match and the leaf we have is the most specific one anyway;
254
         * if it didn't match with a shorter length it would fail
255
         * with a long one.  This wins big for class B&C netmasks which
256
         * are probably the most common case...
257
         */
258
        if (t->rn_mask)
259
                vlen = *(u_char *)t->rn_mask;
260
        cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
261
        for (; cp < cplim; cp++, cp2++)
262
                if (*cp != *cp2)
263
                        goto on1;
264
        /*
265
         * This extra grot is in case we are explicitly asked
266
         * to look up the default.  Ugh!
267
         */
268
        if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
269
                t = t->rn_dupedkey;
270
        return t;
271
on1:
272
        test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
273
        for (b = 7; (test >>= 1) > 0;)
274
                b--;
275
        matched_off = cp - v;
276
        b += matched_off << 3;
277
        rn_b = -1 - b;
278
        /*
279
         * If there is a host route in a duped-key chain, it will be first.
280
         */
281
        if ((saved_t = t)->rn_mask == 0)
282
                t = t->rn_dupedkey;
283
        for (; t; t = t->rn_dupedkey)
284
                /*
285
                 * Even if we don't match exactly as a host,
286
                 * we may match if the leaf we wound up at is
287
                 * a route to a net.
288
                 */
289
                if (t->rn_flags & RNF_NORMAL) {
290
                        if (rn_b <= t->rn_b)
291
                                return t;
292
                } else if (rn_satsifies_leaf(v, t, matched_off))
293
                                return t;
294
        t = saved_t;
295
        /* start searching up the tree */
296
        do {
297
                register struct radix_mask *m;
298
                t = t->rn_p;
299
                m = t->rn_mklist;
300
                if (m) {
301
                        /*
302
                         * If non-contiguous masks ever become important
303
                         * we can restore the masking and open coding of
304
                         * the search and satisfaction test and put the
305
                         * calculation of "off" back before the "do".
306
                         */
307
                        do {
308
                                if (m->rm_flags & RNF_NORMAL) {
309
                                        if (rn_b <= m->rm_b)
310
                                                return (m->rm_leaf);
311
                                } else {
312
                                        off = min(t->rn_off, matched_off);
313
                                        x = rn_search_m(v, t, m->rm_mask);
314
                                        while (x && x->rn_mask != m->rm_mask)
315
                                                x = x->rn_dupedkey;
316
                                        if (x && rn_satsifies_leaf(v, x, off))
317
                                                    return x;
318
                                }
319
                                m = m->rm_mklist;
320
                        } while (m);
321
                }
322
        } while (t != top);
323
        return 0;
324
};
325
 
326
#ifdef RN_DEBUG
327
int     rn_nodenum;
328
struct  radix_node *rn_clist;
329
int     rn_saveinfo;
330
int     rn_debug =  1;
331
#endif
332
 
333
static struct radix_node *
334
rn_newpair(v, b, nodes)
335
        void *v;
336
        int b;
337
        struct radix_node nodes[2];
338
{
339
        register struct radix_node *tt = nodes, *t = tt + 1;
340
        t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
341
        t->rn_l = tt; t->rn_off = b >> 3;
342
        tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
343
        tt->rn_flags = t->rn_flags = RNF_ACTIVE;
344
#ifdef RN_DEBUG
345
        tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
346
        tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
347
#endif
348
        return t;
349
}
350
 
351
static struct radix_node *
352
rn_insert(v_arg, head, dupentry, nodes)
353
        void *v_arg;
354
        struct radix_node_head *head;
355
        int *dupentry;
356
        struct radix_node nodes[2];
357
{
358
        caddr_t v = v_arg;
359
        struct radix_node *top = head->rnh_treetop;
360
        int head_off = top->rn_off, vlen = (int)*((u_char *)v);
361
        register struct radix_node *t = rn_search(v_arg, top);
362
        register caddr_t cp = v + head_off;
363
        register int b;
364
        struct radix_node *tt;
365
        /*
366
         * Find first bit at which v and t->rn_key differ
367
         */
368
    {
369
        register caddr_t cp2 = t->rn_key + head_off;
370
        register int cmp_res;
371
        caddr_t cplim = v + vlen;
372
 
373
        while (cp < cplim)
374
                if (*cp2++ != *cp++)
375
                        goto on1;
376
        *dupentry = 1;
377
        return t;
378
on1:
379
        *dupentry = 0;
380
        cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
381
        for (b = (cp - v) << 3; cmp_res; b--)
382
                cmp_res >>= 1;
383
    }
384
    {
385
        register struct radix_node *p, *x = top;
386
        cp = v;
387
        do {
388
                p = x;
389
                if (cp[x->rn_off] & x->rn_bmask)
390
                        x = x->rn_r;
391
                else x = x->rn_l;
392
        } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
393
#ifdef RN_DEBUG
394
        if (rn_debug)
395
                log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
396
#endif
397
        t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
398
        if ((cp[p->rn_off] & p->rn_bmask) == 0)
399
                p->rn_l = t;
400
        else
401
                p->rn_r = t;
402
        x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
403
        if ((cp[t->rn_off] & t->rn_bmask) == 0) {
404
                t->rn_r = x;
405
        } else {
406
                t->rn_r = tt; t->rn_l = x;
407
        }
408
#ifdef RN_DEBUG
409
        if (rn_debug)
410
                log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
411
#endif
412
    }
413
        return (tt);
414
}
415
 
416
struct radix_node *
417
rn_addmask(n_arg, search, skip)
418
        int search, skip;
419
        void *n_arg;
420
{
421
        caddr_t netmask = (caddr_t)n_arg;
422
        register struct radix_node *x;
423
        register caddr_t cp, cplim;
424
        register int b = 0, mlen, j;
425
        int maskduplicated, m0, isnormal;
426
        struct radix_node *saved_x;
427
        static int last_zeroed = 0;
428
 
429
        if ((mlen = *(u_char *)netmask) > max_keylen)
430
                mlen = max_keylen;
431
        if (skip == 0)
432
                skip = 1;
433
        if (mlen <= skip)
434
                return (mask_rnhead->rnh_nodes);
435
        if (skip > 1)
436
                Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
437
        if ((m0 = mlen) > skip)
438
                Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
439
        /*
440
         * Trim trailing zeroes.
441
         */
442
        for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
443
                cp--;
444
        mlen = cp - addmask_key;
445
        if (mlen <= skip) {
446
                if (m0 >= last_zeroed)
447
                        last_zeroed = mlen;
448
                return (mask_rnhead->rnh_nodes);
449
        }
450
        if (m0 < last_zeroed)
451
                Bzero(addmask_key + m0, last_zeroed - m0);
452
        *addmask_key = last_zeroed = mlen;
453
        x = rn_search(addmask_key, rn_masktop);
454
        if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
455
                x = 0;
456
        if (x || search)
457
                return (x);
458
        R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
459
        if ((saved_x = x) == 0)
460
                return (0);
461
        Bzero(x, max_keylen + 2 * sizeof (*x));
462
        netmask = cp = (caddr_t)(x + 2);
463
        Bcopy(addmask_key, cp, mlen);
464
        x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
465
        if (maskduplicated) {
466
                log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
467
                Free(saved_x);
468
                return (x);
469
        }
470
        /*
471
         * Calculate index of mask, and check for normalcy.
472
         */
473
        cplim = netmask + mlen; isnormal = 1;
474
        for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
475
                cp++;
476
        if (cp != cplim) {
477
                for (j = 0x80; (j & *cp) != 0; j >>= 1)
478
                        b++;
479
                if (*cp != normal_chars[b] || cp != (cplim - 1))
480
                        isnormal = 0;
481
        }
482
        b += (cp - netmask) << 3;
483
        x->rn_b = -1 - b;
484
        if (isnormal)
485
                x->rn_flags |= RNF_NORMAL;
486
        return (x);
487
}
488
 
489
static int      /* XXX: arbitrary ordering for non-contiguous masks */
490
rn_lexobetter(m_arg, n_arg)
491
        void *m_arg, *n_arg;
492
{
493
        register u_char *mp = m_arg, *np = n_arg, *lim;
494
 
495
        if (*mp > *np)
496
                return 1;  /* not really, but need to check longer one first */
497
        if (*mp == *np)
498
                for (lim = mp + *mp; mp < lim;)
499
                        if (*mp++ > *np++)
500
                                return 1;
501
        return 0;
502
}
503
 
504
static struct radix_mask *
505
rn_new_radix_mask(tt, next)
506
        register struct radix_node *tt;
507
        register struct radix_mask *next;
508
{
509
        register struct radix_mask *m;
510
 
511
        MKGet(m);
512
        if (m == 0) {
513
                log(LOG_ERR, "Mask for route not entered\n");
514
                return (0);
515
        }
516
        Bzero(m, sizeof *m);
517
        m->rm_b = tt->rn_b;
518
        m->rm_flags = tt->rn_flags;
519
        if (tt->rn_flags & RNF_NORMAL)
520
                m->rm_leaf = tt;
521
        else
522
                m->rm_mask = tt->rn_mask;
523
        m->rm_mklist = next;
524
        tt->rn_mklist = m;
525
        return m;
526
}
527
 
528
struct radix_node *
529
rn_addroute(v_arg, n_arg, head, treenodes)
530
        void *v_arg, *n_arg;
531
        struct radix_node_head *head;
532
        struct radix_node treenodes[2];
533
{
534
        caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
535
        register struct radix_node *t, *x = 0, *tt;
536
        struct radix_node *saved_tt, *top = head->rnh_treetop;
537
        short b = 0, b_leaf = 0;
538
        int keyduplicated;
539
        caddr_t mmask;
540
        struct radix_mask *m, **mp;
541
 
542
        /*
543
         * In dealing with non-contiguous masks, there may be
544
         * many different routes which have the same mask.
545
         * We will find it useful to have a unique pointer to
546
         * the mask to speed avoiding duplicate references at
547
         * nodes and possibly save time in calculating indices.
548
         */
549
        if (netmask)  {
550
                if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
551
                        return (0);
552
                b_leaf = x->rn_b;
553
                b = -1 - x->rn_b;
554
                netmask = x->rn_key;
555
        }
556
        /*
557
         * Deal with duplicated keys: attach node to previous instance
558
         */
559
        saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
560
        if (keyduplicated) {
561
                for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
562
                        if (tt->rn_mask == netmask)
563
                                return (0);
564
                        if (netmask == 0 ||
565
                            (tt->rn_mask &&
566
                             ((b_leaf < tt->rn_b) || /* index(netmask) > node */
567
                               rn_refines(netmask, tt->rn_mask) ||
568
                               rn_lexobetter(netmask, tt->rn_mask))))
569
                                break;
570
                }
571
                /*
572
                 * If the mask is not duplicated, we wouldn't
573
                 * find it among possible duplicate key entries
574
                 * anyway, so the above test doesn't hurt.
575
                 *
576
                 * We sort the masks for a duplicated key the same way as
577
                 * in a masklist -- most specific to least specific.
578
                 * This may require the unfortunate nuisance of relocating
579
                 * the head of the list.
580
                 */
581
                if (tt == saved_tt) {
582
                        struct  radix_node *xx = x;
583
                        /* link in at head of list */
584
                        (tt = treenodes)->rn_dupedkey = t;
585
                        tt->rn_flags = t->rn_flags;
586
                        tt->rn_p = x = t->rn_p;
587
                        t->rn_p = tt;                           /* parent */
588
                        if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
589
                        saved_tt = tt; x = xx;
590
                } else {
591
                        (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
592
                        t->rn_dupedkey = tt;
593
                        tt->rn_p = t;                           /* parent */
594
                        if (tt->rn_dupedkey)                    /* parent */
595
                                tt->rn_dupedkey->rn_p = tt;     /* parent */
596
                }
597
#ifdef RN_DEBUG
598
                t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
599
                tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
600
#endif
601
                tt->rn_key = (caddr_t) v;
602
                tt->rn_b = -1;
603
                tt->rn_flags = RNF_ACTIVE;
604
        }
605
        /*
606
         * Put mask in tree.
607
         */
608
        if (netmask) {
609
                tt->rn_mask = netmask;
610
                tt->rn_b = x->rn_b;
611
                tt->rn_flags |= x->rn_flags & RNF_NORMAL;
612
        }
613
        t = saved_tt->rn_p;
614
        if (keyduplicated)
615
                goto on2;
616
        b_leaf = -1 - t->rn_b;
617
        if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
618
        /* Promote general routes from below */
619
        if (x->rn_b < 0) {
620
            for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
621
                if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
622
                        *mp = m = rn_new_radix_mask(x, 0);
623
                        if (m)
624
                                mp = &m->rm_mklist;
625
                }
626
        } else if (x->rn_mklist) {
627
                /*
628
                 * Skip over masks whose index is > that of new node
629
                 */
630
                for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
631
                        if (m->rm_b >= b_leaf)
632
                                break;
633
                t->rn_mklist = m; *mp = 0;
634
        }
635
on2:
636
        /* Add new route to highest possible ancestor's list */
637
        if ((netmask == 0) || (b > t->rn_b ))
638
                return tt; /* can't lift at all */
639
        b_leaf = tt->rn_b;
640
        do {
641
                x = t;
642
                t = t->rn_p;
643
        } while (b <= t->rn_b && x != top);
644
        /*
645
         * Search through routes associated with node to
646
         * insert new route according to index.
647
         * Need same criteria as when sorting dupedkeys to avoid
648
         * double loop on deletion.
649
         */
650
        for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
651
                if (m->rm_b < b_leaf)
652
                        continue;
653
                if (m->rm_b > b_leaf)
654
                        break;
655
                if (m->rm_flags & RNF_NORMAL) {
656
                        mmask = m->rm_leaf->rn_mask;
657
                        if (tt->rn_flags & RNF_NORMAL) {
658
                                log(LOG_ERR,
659
                                   "Non-unique normal route, mask not entered");
660
                                return tt;
661
                        }
662
                } else
663
                        mmask = m->rm_mask;
664
                if (mmask == netmask) {
665
                        m->rm_refs++;
666
                        tt->rn_mklist = m;
667
                        return tt;
668
                }
669
                if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
670
                        break;
671
        }
672
        *mp = rn_new_radix_mask(tt, *mp);
673
        return tt;
674
}
675
 
676
static struct radix_node *
677
rn_delete(v_arg, netmask_arg, head)
678
        void *v_arg, *netmask_arg;
679
        struct radix_node_head *head;
680
{
681
        register struct radix_node *t, *p, *x, *tt;
682
        struct radix_mask *m, *saved_m, **mp;
683
        struct radix_node *dupedkey, *saved_tt, *top;
684
        caddr_t v, netmask;
685
        int b, head_off, vlen;
686
 
687
        v = v_arg;
688
        netmask = netmask_arg;
689
        x = head->rnh_treetop;
690
        tt = rn_search(v, x);
691
        head_off = x->rn_off;
692
        vlen =  *(u_char *)v;
693
        saved_tt = tt;
694
        top = x;
695
        if (tt == 0 ||
696
            Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
697
                return (0);
698
        /*
699
         * Delete our route from mask lists.
700
         */
701
        if (netmask) {
702
                if ((x = rn_addmask(netmask, 1, head_off)) == 0)
703
                        return (0);
704
                netmask = x->rn_key;
705
                while (tt->rn_mask != netmask)
706
                        if ((tt = tt->rn_dupedkey) == 0)
707
                                return (0);
708
        }
709
        if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
710
                goto on1;
711
        if (tt->rn_flags & RNF_NORMAL) {
712
                if (m->rm_leaf != tt || m->rm_refs > 0) {
713
                        log(LOG_ERR, "rn_delete: inconsistent annotation\n");
714
                        return 0;  /* dangling ref could cause disaster */
715
                }
716
        } else {
717
                if (m->rm_mask != tt->rn_mask) {
718
                        log(LOG_ERR, "rn_delete: inconsistent annotation\n");
719
                        goto on1;
720
                }
721
                if (--m->rm_refs >= 0)
722
                        goto on1;
723
        }
724
        b = -1 - tt->rn_b;
725
        t = saved_tt->rn_p;
726
        if (b > t->rn_b)
727
                goto on1; /* Wasn't lifted at all */
728
        do {
729
                x = t;
730
                t = t->rn_p;
731
        } while (b <= t->rn_b && x != top);
732
        for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
733
                if (m == saved_m) {
734
                        *mp = m->rm_mklist;
735
                        MKFree(m);
736
                        break;
737
                }
738
        if (m == 0) {
739
                log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
740
                if (tt->rn_flags & RNF_NORMAL)
741
                        return (0); /* Dangling ref to us */
742
        }
743
on1:
744
        /*
745
         * Eliminate us from tree
746
         */
747
        if (tt->rn_flags & RNF_ROOT)
748
                return (0);
749
#ifdef RN_DEBUG
750
        /* Get us out of the creation list */
751
        for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
752
        if (t) t->rn_ybro = tt->rn_ybro;
753
#endif
754
        t = tt->rn_p;
755
        dupedkey = saved_tt->rn_dupedkey;
756
        if (dupedkey) {
757
                /*
758
                 * at this point, tt is the deletion target and saved_tt
759
                 * is the head of the dupekey chain
760
                 */
761
                if (tt == saved_tt) {
762
                        /* remove from head of chain */
763
                        x = dupedkey; x->rn_p = t;
764
                        if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
765
                } else {
766
                        /* find node in front of tt on the chain */
767
                        for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
768
                                p = p->rn_dupedkey;
769
                        if (p) {
770
                                p->rn_dupedkey = tt->rn_dupedkey;
771
                                if (tt->rn_dupedkey)               /* parent */
772
                                        tt->rn_dupedkey->rn_p = p; /* parent */
773
                        } else log(LOG_ERR, "rn_delete: couldn't find us\n");
774
                }
775
                t = tt + 1;
776
                if  (t->rn_flags & RNF_ACTIVE) {
777
#ifndef RN_DEBUG
778
                        *++x = *t; p = t->rn_p;
779
#else
780
                        b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
781
#endif
782
                        if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
783
                        x->rn_l->rn_p = x; x->rn_r->rn_p = x;
784
                }
785
                goto out;
786
        }
787
        if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
788
        p = t->rn_p;
789
        if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
790
        x->rn_p = p;
791
        /*
792
         * Demote routes attached to us.
793
         */
794
        if (t->rn_mklist) {
795
                if (x->rn_b >= 0) {
796
                        for (mp = &x->rn_mklist; (m = *mp);)
797
                                mp = &m->rm_mklist;
798
                        *mp = t->rn_mklist;
799
                } else {
800
                        /* If there are any key,mask pairs in a sibling
801
                           duped-key chain, some subset will appear sorted
802
                           in the same order attached to our mklist */
803
                        for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
804
                                if (m == x->rn_mklist) {
805
                                        struct radix_mask *mm = m->rm_mklist;
806
                                        x->rn_mklist = 0;
807
                                        if (--(m->rm_refs) < 0)
808
                                                MKFree(m);
809
                                        m = mm;
810
                                }
811
                        if (m)
812
                                log(LOG_ERR, "%s %p at %x\n",
813
                                            "rn_delete: Orphaned Mask", m, x);
814
                }
815
        }
816
        /*
817
         * We may be holding an active internal node in the tree.
818
         */
819
        x = tt + 1;
820
        if (t != x) {
821
#ifndef RN_DEBUG
822
                *t = *x;
823
#else
824
                b = t->rn_info; *t = *x; t->rn_info = b;
825
#endif
826
                t->rn_l->rn_p = t; t->rn_r->rn_p = t;
827
                p = x->rn_p;
828
                if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
829
        }
830
out:
831
        tt->rn_flags &= ~RNF_ACTIVE;
832
        tt[1].rn_flags &= ~RNF_ACTIVE;
833
        return (tt);
834
}
835
 
836
/*
837
 * This is the same as rn_walktree() except for the parameters and the
838
 * exit.
839
 */
840
static int
841
rn_walktree_from(h, a, m, f, w)
842
        struct radix_node_head *h;
843
        void *a, *m;
844
        walktree_f_t *f;
845
        void *w;
846
{
847
        int error;
848
        struct radix_node *base, *next;
849
        u_char *xa = (u_char *)a;
850
        u_char *xm = (u_char *)m;
851
        register struct radix_node *rn, *last = 0 /* shut up gcc */;
852
        int stopping = 0;
853
        int lastb;
854
 
855
        /*
856
         * rn_search_m is sort-of-open-coded here.
857
         */
858
        /* printf("about to search\n"); */
859
        for (rn = h->rnh_treetop; rn->rn_b >= 0; ) {
860
                last = rn;
861
                /* printf("rn_b %d, rn_bmask %x, xm[rn_off] %x\n",
862
                       rn->rn_b, rn->rn_bmask, xm[rn->rn_off]); */
863
                if (!(rn->rn_bmask & xm[rn->rn_off])) {
864
                        break;
865
                }
866
                if (rn->rn_bmask & xa[rn->rn_off]) {
867
                        rn = rn->rn_r;
868
                } else {
869
                        rn = rn->rn_l;
870
                }
871
        }
872
        /* printf("done searching\n"); */
873
 
874
        /*
875
         * Two cases: either we stepped off the end of our mask,
876
         * in which case last == rn, or we reached a leaf, in which
877
         * case we want to start from the last node we looked at.
878
         * Either way, last is the node we want to start from.
879
         */
880
        rn = last;
881
        lastb = rn->rn_b;
882
 
883
        /* printf("rn %p, lastb %d\n", rn, lastb);*/
884
 
885
        /*
886
         * This gets complicated because we may delete the node
887
         * while applying the function f to it, so we need to calculate
888
         * the successor node in advance.
889
         */
890
        while (rn->rn_b >= 0)
891
                rn = rn->rn_l;
892
 
893
        while (!stopping) {
894
                /* printf("node %p (%d)\n", rn, rn->rn_b); */
895
                base = rn;
896
                /* If at right child go back up, otherwise, go right */
897
                while (rn->rn_p->rn_r == rn && !(rn->rn_flags & RNF_ROOT)) {
898
                        rn = rn->rn_p;
899
 
900
                        /* if went up beyond last, stop */
901
                        if (rn->rn_b < lastb) {
902
                                stopping = 1;
903
                                /* printf("up too far\n"); */
904
                        }
905
                }
906
 
907
                /* Find the next *leaf* since next node might vanish, too */
908
                for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
909
                        rn = rn->rn_l;
910
                next = rn;
911
                /* Process leaves */
912
                while ((rn = base) != 0) {
913
                        base = rn->rn_dupedkey;
914
                        /* printf("leaf %p\n", rn); */
915
                        if (!(rn->rn_flags & RNF_ROOT)
916
                            && (error = (*f)(rn, w)))
917
                                return (error);
918
                }
919
                rn = next;
920
 
921
                if (rn->rn_flags & RNF_ROOT) {
922
                        /* printf("root, stopping"); */
923
                        stopping = 1;
924
                }
925
 
926
        }
927
        return 0;
928
}
929
 
930
static int
931
rn_walktree(h, f, w)
932
        struct radix_node_head *h;
933
        walktree_f_t *f;
934
        void *w;
935
{
936
        int error;
937
        struct radix_node *base, *next;
938
        register struct radix_node *rn = h->rnh_treetop;
939
        /*
940
         * This gets complicated because we may delete the node
941
         * while applying the function f to it, so we need to calculate
942
         * the successor node in advance.
943
         */
944
        /* First time through node, go left */
945
        while (rn->rn_b >= 0)
946
                rn = rn->rn_l;
947
        for (;;) {
948
                base = rn;
949
                /* If at right child go back up, otherwise, go right */
950
                while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
951
                        rn = rn->rn_p;
952
                /* Find the next *leaf* since next node might vanish, too */
953
                for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
954
                        rn = rn->rn_l;
955
                next = rn;
956
                /* Process leaves */
957
                while ((rn = base)) {
958
                        base = rn->rn_dupedkey;
959
                        if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
960
                                return (error);
961
                }
962
                rn = next;
963
                if (rn->rn_flags & RNF_ROOT)
964
                        return (0);
965
        }
966
        /* NOTREACHED */
967
}
968
 
969
int
970
rn_inithead(head, off)
971
        void **head;
972
        int off;
973
{
974
        register struct radix_node_head *rnh;
975
        register struct radix_node *t, *tt, *ttt;
976
        if (*head)
977
                return (1);
978
        R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
979
        if (rnh == 0)
980
                return (0);
981
        Bzero(rnh, sizeof (*rnh));
982
        *head = rnh;
983
        t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
984
        ttt = rnh->rnh_nodes + 2;
985
        t->rn_r = ttt;
986
        t->rn_p = t;
987
        tt = t->rn_l;
988
        tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
989
        tt->rn_b = -1 - off;
990
        *ttt = *tt;
991
        ttt->rn_key = rn_ones;
992
        rnh->rnh_addaddr = rn_addroute;
993
        rnh->rnh_deladdr = rn_delete;
994
        rnh->rnh_matchaddr = rn_match;
995
        rnh->rnh_lookup = rn_lookup;
996
        rnh->rnh_walktree = rn_walktree;
997
        rnh->rnh_walktree_from = rn_walktree_from;
998
        rnh->rnh_treetop = t;
999
        return (1);
1000
}
1001
 
1002
void
1003
rn_init()
1004
{
1005
        char *cp, *cplim;
1006
#ifdef KERNEL
1007
        struct domain *dom;
1008
 
1009
        for (dom = domains; dom; dom = dom->dom_next)
1010
                if (dom->dom_maxrtkey > max_keylen)
1011
                        max_keylen = dom->dom_maxrtkey;
1012
#endif
1013
        if (max_keylen == 0) {
1014
                log(LOG_ERR,
1015
                    "rn_init: radix functions require max_keylen be set\n");
1016
                return;
1017
        }
1018
        R_Malloc(rn_zeros, char *, 3 * max_keylen);
1019
        if (rn_zeros == NULL)
1020
                panic("rn_init");
1021
        Bzero(rn_zeros, 3 * max_keylen);
1022
        rn_ones = cp = rn_zeros + max_keylen;
1023
        addmask_key = cplim = rn_ones + max_keylen;
1024
        while (cp < cplim)
1025
                *cp++ = -1;
1026
        if (rn_inithead((void **)&mask_rnhead, 0) == 0)
1027
                panic("rn_init 2");
1028
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.