OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [rtems-20020807/] [cpukit/] [libnetworking/] [net/] [zlib.c] - Blame information for rev 1778

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1026 ivang
/*
2
 * This file is derived from various .h and .c files from the zlib-1.0.4
3
 * distribution by Jean-loup Gailly and Mark Adler, with some additions
4
 * by Paul Mackerras to aid in implementing Deflate compression and
5
 * decompression for PPP packets.  See zlib.h for conditions of
6
 * distribution and use.
7
 *
8
 * Changes that have been made include:
9
 * - added Z_PACKET_FLUSH (see zlib.h for details)
10
 * - added inflateIncomp and deflateOutputPending
11
 * - allow strm->next_out to be NULL, meaning discard the output
12
 *
13
 * zlib.c,v 1.1 2002/01/31 21:40:47 joel Exp
14
 */
15
 
16
/*
17
 *  ==FILEVERSION 971210==
18
 *
19
 * This marker is used by the Linux installation script to determine
20
 * whether an up-to-date version of this file is already installed.
21
 */
22
 
23
#define NO_DUMMY_DECL
24
#define NO_ZCFUNCS
25
#define MY_ZCALLOC
26
 
27
#if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
28
#define inflate inflate_ppp     /* FreeBSD already has an inflate :-( */
29
#endif
30
 
31
 
32
/* +++ zutil.h */
33
/* zutil.h -- internal interface and configuration of the compression library
34
 * Copyright (C) 1995-1996 Jean-loup Gailly.
35
 * For conditions of distribution and use, see copyright notice in zlib.h
36
 */
37
 
38
/* WARNING: this file should *not* be used by applications. It is
39
   part of the implementation of the compression library and is
40
   subject to change. Applications should only use zlib.h.
41
 */
42
 
43
/* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */
44
 
45
#ifndef _Z_UTIL_H
46
#define _Z_UTIL_H
47
 
48
#include "zlib.h"
49
 
50
#if defined(KERNEL) || defined(_KERNEL)
51
/* Assume this is a *BSD or SVR4 kernel */
52
#include <sys/types.h>
53
#include <sys/time.h>
54
#include <sys/systm.h>
55
#undef u
56
#  define HAVE_MEMCPY
57
#  define memcpy(d, s, n)       bcopy((s), (d), (n))
58
#  define memset(d, v, n)       bzero((d), (n))
59
#  define memcmp                bcmp
60
 
61
#else
62
#if defined(__KERNEL__)
63
/* Assume this is a Linux kernel */
64
#include <linux/string.h>
65
#define HAVE_MEMCPY
66
 
67
#else /* not kernel */
68
 
69
#if defined(MSDOS)||defined(VMS)||defined(CRAY)||defined(WIN32)||defined(RISCOS)
70
#   include <stddef.h>
71
#   include <errno.h>
72
#else
73
    extern int errno;
74
#endif
75
#ifdef STDC
76
#  include <string.h>
77
#  include <stdlib.h>
78
#endif
79
#endif /* __KERNEL__ */
80
#endif /* _KERNEL || KERNEL */
81
 
82
#ifndef local
83
#  define local static
84
#endif
85
/* compile with -Dlocal if your debugger can't find static symbols */
86
 
87
typedef unsigned char  uch;
88
typedef uch FAR uchf;
89
typedef unsigned short ush;
90
typedef ush FAR ushf;
91
typedef unsigned long  ulg;
92
 
93
extern const char *z_errmsg[10]; /* indexed by 2-zlib_error */
94
/* (size given to avoid silly warnings with Visual C++) */
95
 
96
#define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
97
 
98
#define ERR_RETURN(strm,err) \
99
  return (strm->msg = (char*)ERR_MSG(err), (err))
100
/* To be used only when the state is known to be valid */
101
 
102
        /* common constants */
103
 
104
#ifndef DEF_WBITS
105
#  define DEF_WBITS MAX_WBITS
106
#endif
107
/* default windowBits for decompression. MAX_WBITS is for compression only */
108
 
109
#if MAX_MEM_LEVEL >= 8
110
#  define DEF_MEM_LEVEL 8
111
#else
112
#  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
113
#endif
114
/* default memLevel */
115
 
116
#define STORED_BLOCK 0
117
#define STATIC_TREES 1
118
#define DYN_TREES    2
119
/* The three kinds of block type */
120
 
121
#define MIN_MATCH  3
122
#define MAX_MATCH  258
123
/* The minimum and maximum match lengths */
124
 
125
#define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
126
 
127
        /* target dependencies */
128
 
129
#ifdef MSDOS
130
#  define OS_CODE  0x00
131
#  ifdef __TURBOC__
132
#    include <alloc.h>
133
#  else /* MSC or DJGPP */
134
#    include <malloc.h>
135
#  endif
136
#endif
137
 
138
#ifdef OS2
139
#  define OS_CODE  0x06
140
#endif
141
 
142
#ifdef WIN32 /* Window 95 & Windows NT */
143
#  define OS_CODE  0x0b
144
#endif
145
 
146
#if defined(VAXC) || defined(VMS)
147
#  define OS_CODE  0x02
148
#  define FOPEN(name, mode) \
149
     fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
150
#endif
151
 
152
#ifdef AMIGA
153
#  define OS_CODE  0x01
154
#endif
155
 
156
#if defined(ATARI) || defined(atarist)
157
#  define OS_CODE  0x05
158
#endif
159
 
160
#ifdef MACOS
161
#  define OS_CODE  0x07
162
#endif
163
 
164
#ifdef __50SERIES /* Prime/PRIMOS */
165
#  define OS_CODE  0x0F
166
#endif
167
 
168
#ifdef TOPS20
169
#  define OS_CODE  0x0a
170
#endif
171
 
172
#if defined(_BEOS_) || defined(RISCOS)
173
#  define fdopen(fd,mode) NULL /* No fdopen() */
174
#endif
175
 
176
        /* Common defaults */
177
 
178
#ifndef OS_CODE
179
#  define OS_CODE  0x03  /* assume Unix */
180
#endif
181
 
182
#ifndef FOPEN
183
#  define FOPEN(name, mode) fopen((name), (mode))
184
#endif
185
 
186
         /* functions */
187
 
188
#ifdef HAVE_STRERROR
189
   extern char *strerror OF((int));
190
#  define zstrerror(errnum) strerror(errnum)
191
#else
192
#  define zstrerror(errnum) ""
193
#endif
194
 
195
#if defined(pyr)
196
#  define NO_MEMCPY
197
#endif
198
#if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
199
 /* Use our own functions for small and medium model with MSC <= 5.0.
200
  * You may have to use the same strategy for Borland C (untested).
201
  */
202
#  define NO_MEMCPY
203
#endif
204
#if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
205
#  define HAVE_MEMCPY
206
#endif
207
#ifdef HAVE_MEMCPY
208
#  ifdef SMALL_MEDIUM /* MSDOS small or medium model */
209
#    define zmemcpy _fmemcpy
210
#    define zmemcmp _fmemcmp
211
#    define zmemzero(dest, len) _fmemset(dest, 0, len)
212
#  else
213
#    define zmemcpy memcpy
214
#    define zmemcmp memcmp
215
#    define zmemzero(dest, len) memset(dest, 0, len)
216
#  endif
217
#else
218
   extern void zmemcpy  OF((Bytef* dest, Bytef* source, uInt len));
219
   extern int  zmemcmp  OF((Bytef* s1,   Bytef* s2, uInt len));
220
   extern void zmemzero OF((Bytef* dest, uInt len));
221
#endif
222
 
223
/* Diagnostic functions */
224
#ifdef DEBUG_ZLIB
225
#  include <stdio.h>
226
#  ifndef verbose
227
#    define verbose 0
228
#  endif
229
   extern void z_error    OF((char *m));
230
#  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
231
#  define Trace(x) fprintf x
232
#  define Tracev(x) {if (verbose) fprintf x ;}
233
#  define Tracevv(x) {if (verbose>1) fprintf x ;}
234
#  define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
235
#  define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
236
#else
237
#  define Assert(cond,msg)
238
#  define Trace(x)
239
#  define Tracev(x)
240
#  define Tracevv(x)
241
#  define Tracec(c,x)
242
#  define Tracecv(c,x)
243
#endif
244
 
245
 
246
typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len));
247
 
248
voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size));
249
void   zcfree  OF((voidpf opaque, voidpf ptr));
250
 
251
#define ZALLOC(strm, items, size) \
252
           (*((strm)->zalloc))((strm)->opaque, (items), (size))
253
#define ZFREE(strm, addr)  (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
254
#define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
255
 
256
#endif /* _Z_UTIL_H */
257
/* --- zutil.h */
258
 
259
/* +++ deflate.h */
260
/* deflate.h -- internal compression state
261
 * Copyright (C) 1995-1996 Jean-loup Gailly
262
 * For conditions of distribution and use, see copyright notice in zlib.h
263
 */
264
 
265
/* WARNING: this file should *not* be used by applications. It is
266
   part of the implementation of the compression library and is
267
   subject to change. Applications should only use zlib.h.
268
 */
269
 
270
/* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */
271
 
272
#ifndef _DEFLATE_H
273
#define _DEFLATE_H
274
 
275
/* #include "zutil.h" */
276
 
277
/* ===========================================================================
278
 * Internal compression state.
279
 */
280
 
281
#define LENGTH_CODES 29
282
/* number of length codes, not counting the special END_BLOCK code */
283
 
284
#define LITERALS  256
285
/* number of literal bytes 0..255 */
286
 
287
#define L_CODES (LITERALS+1+LENGTH_CODES)
288
/* number of Literal or Length codes, including the END_BLOCK code */
289
 
290
#define D_CODES   30
291
/* number of distance codes */
292
 
293
#define BL_CODES  19
294
/* number of codes used to transfer the bit lengths */
295
 
296
#define HEAP_SIZE (2*L_CODES+1)
297
/* maximum heap size */
298
 
299
#define MAX_BITS 15
300
/* All codes must not exceed MAX_BITS bits */
301
 
302
#define INIT_STATE    42
303
#define BUSY_STATE   113
304
#define FINISH_STATE 666
305
/* Stream status */
306
 
307
 
308
/* Data structure describing a single value and its code string. */
309
typedef struct ct_data_s {
310
    union {
311
        ush  freq;       /* frequency count */
312
        ush  code;       /* bit string */
313
    } fc;
314
    union {
315
        ush  dad;        /* father node in Huffman tree */
316
        ush  len;        /* length of bit string */
317
    } dl;
318
} FAR ct_data;
319
 
320
#define Freq fc.freq
321
#define Code fc.code
322
#define Dad  dl.dad
323
#define Len  dl.len
324
 
325
typedef struct static_tree_desc_s  static_tree_desc;
326
 
327
typedef struct tree_desc_s {
328
    ct_data *dyn_tree;           /* the dynamic tree */
329
    int     max_code;            /* largest code with non zero frequency */
330
    static_tree_desc *stat_desc; /* the corresponding static tree */
331
} FAR tree_desc;
332
 
333
typedef ush Pos;
334
typedef Pos FAR Posf;
335
typedef unsigned IPos;
336
 
337
/* A Pos is an index in the character window. We use short instead of int to
338
 * save space in the various tables. IPos is used only for parameter passing.
339
 */
340
 
341
typedef struct deflate_state {
342
    z_streamp strm;      /* pointer back to this zlib stream */
343
    int   status;        /* as the name implies */
344
    Bytef *pending_buf;  /* output still pending */
345
    ulg   pending_buf_size; /* size of pending_buf */
346
    Bytef *pending_out;  /* next pending byte to output to the stream */
347
    int   pending;       /* nb of bytes in the pending buffer */
348
    int   noheader;      /* suppress zlib header and adler32 */
349
    Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
350
    Byte  method;        /* STORED (for zip only) or DEFLATED */
351
    int   last_flush;    /* value of flush param for previous deflate call */
352
 
353
                /* used by deflate.c: */
354
 
355
    uInt  w_size;        /* LZ77 window size (32K by default) */
356
    uInt  w_bits;        /* log2(w_size)  (8..16) */
357
    uInt  w_mask;        /* w_size - 1 */
358
 
359
    Bytef *window;
360
    /* Sliding window. Input bytes are read into the second half of the window,
361
     * and move to the first half later to keep a dictionary of at least wSize
362
     * bytes. With this organization, matches are limited to a distance of
363
     * wSize-MAX_MATCH bytes, but this ensures that IO is always
364
     * performed with a length multiple of the block size. Also, it limits
365
     * the window size to 64K, which is quite useful on MSDOS.
366
     * To do: use the user input buffer as sliding window.
367
     */
368
 
369
    ulg window_size;
370
    /* Actual size of window: 2*wSize, except when the user input buffer
371
     * is directly used as sliding window.
372
     */
373
 
374
    Posf *prev;
375
    /* Link to older string with same hash index. To limit the size of this
376
     * array to 64K, this link is maintained only for the last 32K strings.
377
     * An index in this array is thus a window index modulo 32K.
378
     */
379
 
380
    Posf *head; /* Heads of the hash chains or NIL. */
381
 
382
    uInt  ins_h;          /* hash index of string to be inserted */
383
    uInt  hash_size;      /* number of elements in hash table */
384
    uInt  hash_bits;      /* log2(hash_size) */
385
    uInt  hash_mask;      /* hash_size-1 */
386
 
387
    uInt  hash_shift;
388
    /* Number of bits by which ins_h must be shifted at each input
389
     * step. It must be such that after MIN_MATCH steps, the oldest
390
     * byte no longer takes part in the hash key, that is:
391
     *   hash_shift * MIN_MATCH >= hash_bits
392
     */
393
 
394
    long block_start;
395
    /* Window position at the beginning of the current output block. Gets
396
     * negative when the window is moved backwards.
397
     */
398
 
399
    uInt match_length;           /* length of best match */
400
    IPos prev_match;             /* previous match */
401
    int match_available;         /* set if previous match exists */
402
    uInt strstart;               /* start of string to insert */
403
    uInt match_start;            /* start of matching string */
404
    uInt lookahead;              /* number of valid bytes ahead in window */
405
 
406
    uInt prev_length;
407
    /* Length of the best match at previous step. Matches not greater than this
408
     * are discarded. This is used in the lazy match evaluation.
409
     */
410
 
411
    uInt max_chain_length;
412
    /* To speed up deflation, hash chains are never searched beyond this
413
     * length.  A higher limit improves compression ratio but degrades the
414
     * speed.
415
     */
416
 
417
    uInt max_lazy_match;
418
    /* Attempt to find a better match only when the current match is strictly
419
     * smaller than this value. This mechanism is used only for compression
420
     * levels >= 4.
421
     */
422
#   define max_insert_length  max_lazy_match
423
    /* Insert new strings in the hash table only if the match length is not
424
     * greater than this length. This saves time but degrades compression.
425
     * max_insert_length is used only for compression levels <= 3.
426
     */
427
 
428
    int level;    /* compression level (1..9) */
429
    int strategy; /* favor or force Huffman coding*/
430
 
431
    uInt good_match;
432
    /* Use a faster search when the previous match is longer than this */
433
 
434
    int nice_match; /* Stop searching when current match exceeds this */
435
 
436
                /* used by trees.c: */
437
    /* Didn't use ct_data typedef below to supress compiler warning */
438
    struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
439
    struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
440
    struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
441
 
442
    struct tree_desc_s l_desc;               /* desc. for literal tree */
443
    struct tree_desc_s d_desc;               /* desc. for distance tree */
444
    struct tree_desc_s bl_desc;              /* desc. for bit length tree */
445
 
446
    ush bl_count[MAX_BITS+1];
447
    /* number of codes at each bit length for an optimal tree */
448
 
449
    int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
450
    int heap_len;               /* number of elements in the heap */
451
    int heap_max;               /* element of largest frequency */
452
    /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
453
     * The same heap array is used to build all trees.
454
     */
455
 
456
    uch depth[2*L_CODES+1];
457
    /* Depth of each subtree used as tie breaker for trees of equal frequency
458
     */
459
 
460
    uchf *l_buf;          /* buffer for literals or lengths */
461
 
462
    uInt  lit_bufsize;
463
    /* Size of match buffer for literals/lengths.  There are 4 reasons for
464
     * limiting lit_bufsize to 64K:
465
     *   - frequencies can be kept in 16 bit counters
466
     *   - if compression is not successful for the first block, all input
467
     *     data is still in the window so we can still emit a stored block even
468
     *     when input comes from standard input.  (This can also be done for
469
     *     all blocks if lit_bufsize is not greater than 32K.)
470
     *   - if compression is not successful for a file smaller than 64K, we can
471
     *     even emit a stored file instead of a stored block (saving 5 bytes).
472
     *     This is applicable only for zip (not gzip or zlib).
473
     *   - creating new Huffman trees less frequently may not provide fast
474
     *     adaptation to changes in the input data statistics. (Take for
475
     *     example a binary file with poorly compressible code followed by
476
     *     a highly compressible string table.) Smaller buffer sizes give
477
     *     fast adaptation but have of course the overhead of transmitting
478
     *     trees more frequently.
479
     *   - I can't count above 4
480
     */
481
 
482
    uInt last_lit;      /* running index in l_buf */
483
 
484
    ushf *d_buf;
485
    /* Buffer for distances. To simplify the code, d_buf and l_buf have
486
     * the same number of elements. To use different lengths, an extra flag
487
     * array would be necessary.
488
     */
489
 
490
    ulg opt_len;        /* bit length of current block with optimal trees */
491
    ulg static_len;     /* bit length of current block with static trees */
492
    ulg compressed_len; /* total bit length of compressed file */
493
    uInt matches;       /* number of string matches in current block */
494
    int last_eob_len;   /* bit length of EOB code for last block */
495
 
496
#ifdef DEBUG_ZLIB
497
    ulg bits_sent;      /* bit length of the compressed data */
498
#endif
499
 
500
    ush bi_buf;
501
    /* Output buffer. bits are inserted starting at the bottom (least
502
     * significant bits).
503
     */
504
    int bi_valid;
505
    /* Number of valid bits in bi_buf.  All bits above the last valid bit
506
     * are always zero.
507
     */
508
 
509
} FAR deflate_state;
510
 
511
/* Output a byte on the stream.
512
 * IN assertion: there is enough room in pending_buf.
513
 */
514
#define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
515
 
516
 
517
#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
518
/* Minimum amount of lookahead, except at the end of the input file.
519
 * See deflate.c for comments about the MIN_MATCH+1.
520
 */
521
 
522
#define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
523
/* In order to simplify the code, particularly on 16 bit machines, match
524
 * distances are limited to MAX_DIST instead of WSIZE.
525
 */
526
 
527
        /* in trees.c */
528
void _tr_init         OF((deflate_state *s));
529
int  _tr_tally        OF((deflate_state *s, unsigned dist, unsigned lc));
530
ulg  _tr_flush_block  OF((deflate_state *s, charf *buf, ulg stored_len,
531
                          int eof));
532
void _tr_align        OF((deflate_state *s));
533
void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
534
                          int eof));
535
void _tr_stored_type_only OF((deflate_state *));
536
 
537
#endif
538
/* --- deflate.h */
539
 
540
/* +++ deflate.c */
541
/* deflate.c -- compress data using the deflation algorithm
542
 * Copyright (C) 1995-1996 Jean-loup Gailly.
543
 * For conditions of distribution and use, see copyright notice in zlib.h
544
 */
545
 
546
/*
547
 *  ALGORITHM
548
 *
549
 *      The "deflation" process depends on being able to identify portions
550
 *      of the input text which are identical to earlier input (within a
551
 *      sliding window trailing behind the input currently being processed).
552
 *
553
 *      The most straightforward technique turns out to be the fastest for
554
 *      most input files: try all possible matches and select the longest.
555
 *      The key feature of this algorithm is that insertions into the string
556
 *      dictionary are very simple and thus fast, and deletions are avoided
557
 *      completely. Insertions are performed at each input character, whereas
558
 *      string matches are performed only when the previous match ends. So it
559
 *      is preferable to spend more time in matches to allow very fast string
560
 *      insertions and avoid deletions. The matching algorithm for small
561
 *      strings is inspired from that of Rabin & Karp. A brute force approach
562
 *      is used to find longer strings when a small match has been found.
563
 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
564
 *      (by Leonid Broukhis).
565
 *         A previous version of this file used a more sophisticated algorithm
566
 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
567
 *      time, but has a larger average cost, uses more memory and is patented.
568
 *      However the F&G algorithm may be faster for some highly redundant
569
 *      files if the parameter max_chain_length (described below) is too large.
570
 *
571
 *  ACKNOWLEDGEMENTS
572
 *
573
 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
574
 *      I found it in 'freeze' written by Leonid Broukhis.
575
 *      Thanks to many people for bug reports and testing.
576
 *
577
 *  REFERENCES
578
 *
579
 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
580
 *      Available in ftp://ds.internic.net/rfc/rfc1951.txt
581
 *
582
 *      A description of the Rabin and Karp algorithm is given in the book
583
 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
584
 *
585
 *      Fiala,E.R., and Greene,D.H.
586
 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
587
 *
588
 */
589
 
590
/* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */
591
 
592
/* #include "deflate.h" */
593
 
594
char deflate_copyright[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly ";
595
/*
596
  If you use the zlib library in a product, an acknowledgment is welcome
597
  in the documentation of your product. If for some reason you cannot
598
  include such an acknowledgment, I would appreciate that you keep this
599
  copyright string in the executable of your product.
600
 */
601
 
602
/* ===========================================================================
603
 *  Function prototypes.
604
 */
605
typedef enum {
606
    need_more,      /* block not completed, need more input or more output */
607
    block_done,     /* block flush performed */
608
    finish_started, /* finish started, need only more output at next deflate */
609
    finish_done     /* finish done, accept no more input or output */
610
} block_state;
611
 
612
typedef block_state (*compress_func) OF((deflate_state *s, int flush));
613
/* Compression function. Returns the block state after the call. */
614
 
615
local void fill_window    OF((deflate_state *s));
616
local block_state deflate_stored OF((deflate_state *s, int flush));
617
local block_state deflate_fast   OF((deflate_state *s, int flush));
618
local block_state deflate_slow   OF((deflate_state *s, int flush));
619
local void lm_init        OF((deflate_state *s));
620
local void putShortMSB    OF((deflate_state *s, uInt b));
621
local void flush_pending  OF((z_streamp strm));
622
local int read_buf        OF((z_streamp strm, charf *buf, unsigned size));
623
#ifdef ASMV
624
      void match_init OF((void)); /* asm code initialization */
625
      uInt longest_match  OF((deflate_state *s, IPos cur_match));
626
#else
627
local uInt longest_match  OF((deflate_state *s, IPos cur_match));
628
#endif
629
 
630
#ifdef DEBUG_ZLIB
631
local  void check_match OF((deflate_state *s, IPos start, IPos match,
632
                            int length));
633
#endif
634
 
635
/* ===========================================================================
636
 * Local data
637
 */
638
 
639
#define NIL 0
640
/* Tail of hash chains */
641
 
642
#ifndef TOO_FAR
643
#  define TOO_FAR 4096
644
#endif
645
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
646
 
647
#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
648
/* Minimum amount of lookahead, except at the end of the input file.
649
 * See deflate.c for comments about the MIN_MATCH+1.
650
 */
651
 
652
/* Values for max_lazy_match, good_match and max_chain_length, depending on
653
 * the desired pack level (0..9). The values given below have been tuned to
654
 * exclude worst case performance for pathological files. Better values may be
655
 * found for specific files.
656
 */
657
typedef struct config_s {
658
   ush good_length; /* reduce lazy search above this match length */
659
   ush max_lazy;    /* do not perform lazy search above this match length */
660
   ush nice_length; /* quit search above this match length */
661
   ush max_chain;
662
   compress_func func;
663
} config;
664
 
665
local config configuration_table[10] = {
666
/*      good lazy nice chain */
667
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
668
/* 1 */ {4,    4,  8,    4, deflate_fast}, /* maximum speed, no lazy matches */
669
/* 2 */ {4,    5, 16,    8, deflate_fast},
670
/* 3 */ {4,    6, 32,   32, deflate_fast},
671
 
672
/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
673
/* 5 */ {8,   16, 32,   32, deflate_slow},
674
/* 6 */ {8,   16, 128, 128, deflate_slow},
675
/* 7 */ {8,   32, 128, 256, deflate_slow},
676
/* 8 */ {32, 128, 258, 1024, deflate_slow},
677
/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
678
 
679
/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
680
 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
681
 * meaning.
682
 */
683
 
684
#define EQUAL 0
685
/* result of memcmp for equal strings */
686
 
687
#ifndef NO_DUMMY_DECL
688
struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
689
#endif
690
 
691
/* ===========================================================================
692
 * Update a hash value with the given input byte
693
 * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
694
 *    input characters, so that a running hash key can be computed from the
695
 *    previous key instead of complete recalculation each time.
696
 */
697
#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
698
 
699
 
700
/* ===========================================================================
701
 * Insert string str in the dictionary and set match_head to the previous head
702
 * of the hash chain (the most recent string with same hash key). Return
703
 * the previous length of the hash chain.
704
 * IN  assertion: all calls to to INSERT_STRING are made with consecutive
705
 *    input characters and the first MIN_MATCH bytes of str are valid
706
 *    (except for the last MIN_MATCH-1 bytes of the input file).
707
 */
708
#define INSERT_STRING(s, str, match_head) \
709
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
710
    s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
711
    s->head[s->ins_h] = (Pos)(str))
712
 
713
/* ===========================================================================
714
 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
715
 * prev[] will be initialized on the fly.
716
 */
717
#define CLEAR_HASH(s) \
718
    s->head[s->hash_size-1] = NIL; \
719
    zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
720
 
721
/* ========================================================================= */
722
int deflateInit_(strm, level, version, stream_size)
723
    z_streamp strm;
724
    int level;
725
    const char *version;
726
    int stream_size;
727
{
728
    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
729
                         Z_DEFAULT_STRATEGY, version, stream_size);
730
    /* To do: ignore strm->next_in if we use it as window */
731
}
732
 
733
/* ========================================================================= */
734
int deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
735
                  version, stream_size)
736
    z_streamp strm;
737
    int  level;
738
    int  method;
739
    int  windowBits;
740
    int  memLevel;
741
    int  strategy;
742
    const char *version;
743
    int stream_size;
744
{
745
    deflate_state *s;
746
    int noheader = 0;
747
    static char* my_version = ZLIB_VERSION;
748
 
749
    ushf *overlay;
750
    /* We overlay pending_buf and d_buf+l_buf. This works since the average
751
     * output size for (length,distance) codes is <= 24 bits.
752
     */
753
 
754
    if (version == Z_NULL || version[0] != my_version[0] ||
755
        stream_size != sizeof(z_stream)) {
756
        return Z_VERSION_ERROR;
757
    }
758
    if (strm == Z_NULL) return Z_STREAM_ERROR;
759
 
760
    strm->msg = Z_NULL;
761
#ifndef NO_ZCFUNCS
762
    if (strm->zalloc == Z_NULL) {
763
        strm->zalloc = zcalloc;
764
        strm->opaque = (voidpf)0;
765
    }
766
    if (strm->zfree == Z_NULL) strm->zfree = zcfree;
767
#endif
768
 
769
    if (level == Z_DEFAULT_COMPRESSION) level = 6;
770
 
771
    if (windowBits < 0) { /* undocumented feature: suppress zlib header */
772
        noheader = 1;
773
        windowBits = -windowBits;
774
    }
775
    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
776
        windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
777
        strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
778
        return Z_STREAM_ERROR;
779
    }
780
    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
781
    if (s == Z_NULL) return Z_MEM_ERROR;
782
    strm->state = (struct internal_state FAR *)s;
783
    s->strm = strm;
784
 
785
    s->noheader = noheader;
786
    s->w_bits = windowBits;
787
    s->w_size = 1 << s->w_bits;
788
    s->w_mask = s->w_size - 1;
789
 
790
    s->hash_bits = memLevel + 7;
791
    s->hash_size = 1 << s->hash_bits;
792
    s->hash_mask = s->hash_size - 1;
793
    s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
794
 
795
    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
796
    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
797
    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
798
 
799
    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
800
 
801
    overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
802
    s->pending_buf = (uchf *) overlay;
803
    s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
804
 
805
    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
806
        s->pending_buf == Z_NULL) {
807
        strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
808
        deflateEnd (strm);
809
        return Z_MEM_ERROR;
810
    }
811
    s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
812
    s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
813
 
814
    s->level = level;
815
    s->strategy = strategy;
816
    s->method = (Byte)method;
817
 
818
    return deflateReset(strm);
819
}
820
 
821
/* ========================================================================= */
822
int deflateSetDictionary (strm, dictionary, dictLength)
823
    z_streamp strm;
824
    const Bytef *dictionary;
825
    uInt  dictLength;
826
{
827
    deflate_state *s;
828
    uInt length = dictLength;
829
    uInt n;
830
    IPos hash_head = 0;
831
 
832
    if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
833
        return Z_STREAM_ERROR;
834
 
835
    s = (deflate_state *) strm->state;
836
    if (s->status != INIT_STATE) return Z_STREAM_ERROR;
837
 
838
    strm->adler = adler32(strm->adler, dictionary, dictLength);
839
 
840
    if (length < MIN_MATCH) return Z_OK;
841
    if (length > MAX_DIST(s)) {
842
        length = MAX_DIST(s);
843
#ifndef USE_DICT_HEAD
844
        dictionary += dictLength - length; /* use the tail of the dictionary */
845
#endif
846
    }
847
    zmemcpy((charf *)s->window, dictionary, length);
848
    s->strstart = length;
849
    s->block_start = (long)length;
850
 
851
    /* Insert all strings in the hash table (except for the last two bytes).
852
     * s->lookahead stays null, so s->ins_h will be recomputed at the next
853
     * call of fill_window.
854
     */
855
    s->ins_h = s->window[0];
856
    UPDATE_HASH(s, s->ins_h, s->window[1]);
857
    for (n = 0; n <= length - MIN_MATCH; n++) {
858
        INSERT_STRING(s, n, hash_head);
859
    }
860
    if (hash_head) hash_head = 0;  /* to make compiler happy */
861
    return Z_OK;
862
}
863
 
864
/* ========================================================================= */
865
int deflateReset (strm)
866
    z_streamp strm;
867
{
868
    deflate_state *s;
869
 
870
    if (strm == Z_NULL || strm->state == Z_NULL ||
871
        strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
872
 
873
    strm->total_in = strm->total_out = 0;
874
    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
875
    strm->data_type = Z_UNKNOWN;
876
 
877
    s = (deflate_state *)strm->state;
878
    s->pending = 0;
879
    s->pending_out = s->pending_buf;
880
 
881
    if (s->noheader < 0) {
882
        s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
883
    }
884
    s->status = s->noheader ? BUSY_STATE : INIT_STATE;
885
    strm->adler = 1;
886
    s->last_flush = Z_NO_FLUSH;
887
 
888
    _tr_init(s);
889
    lm_init(s);
890
 
891
    return Z_OK;
892
}
893
 
894
/* ========================================================================= */
895
int deflateParams(strm, level, strategy)
896
    z_streamp strm;
897
    int level;
898
    int strategy;
899
{
900
    deflate_state *s;
901
    compress_func func;
902
    int err = Z_OK;
903
 
904
    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
905
    s = (deflate_state *) strm->state;
906
 
907
    if (level == Z_DEFAULT_COMPRESSION) {
908
        level = 6;
909
    }
910
    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
911
        return Z_STREAM_ERROR;
912
    }
913
    func = configuration_table[s->level].func;
914
 
915
    if (func != configuration_table[level].func && strm->total_in != 0) {
916
        /* Flush the last buffer: */
917
        err = deflate(strm, Z_PARTIAL_FLUSH);
918
    }
919
    if (s->level != level) {
920
        s->level = level;
921
        s->max_lazy_match   = configuration_table[level].max_lazy;
922
        s->good_match       = configuration_table[level].good_length;
923
        s->nice_match       = configuration_table[level].nice_length;
924
        s->max_chain_length = configuration_table[level].max_chain;
925
    }
926
    s->strategy = strategy;
927
    return err;
928
}
929
 
930
/* =========================================================================
931
 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
932
 * IN assertion: the stream state is correct and there is enough room in
933
 * pending_buf.
934
 */
935
local void putShortMSB (s, b)
936
    deflate_state *s;
937
    uInt b;
938
{
939
    put_byte(s, (Byte)(b >> 8));
940
    put_byte(s, (Byte)(b & 0xff));
941
}
942
 
943
/* =========================================================================
944
 * Flush as much pending output as possible. All deflate() output goes
945
 * through this function so some applications may wish to modify it
946
 * to avoid allocating a large strm->next_out buffer and copying into it.
947
 * (See also read_buf()).
948
 */
949
local void flush_pending(strm)
950
    z_streamp strm;
951
{
952
    deflate_state *s = (deflate_state *) strm->state;
953
    unsigned len = s->pending;
954
 
955
    if (len > strm->avail_out) len = strm->avail_out;
956
    if (len == 0) return;
957
 
958
    if (strm->next_out != Z_NULL) {
959
        zmemcpy(strm->next_out, s->pending_out, len);
960
        strm->next_out += len;
961
    }
962
    s->pending_out += len;
963
    strm->total_out += len;
964
    strm->avail_out  -= len;
965
    s->pending -= len;
966
    if (s->pending == 0) {
967
        s->pending_out = s->pending_buf;
968
    }
969
}
970
 
971
/* ========================================================================= */
972
int deflate (strm, flush)
973
    z_streamp strm;
974
    int flush;
975
{
976
    int old_flush; /* value of flush param for previous deflate call */
977
    deflate_state *s;
978
 
979
    if (strm == Z_NULL || strm->state == Z_NULL ||
980
        flush > Z_FINISH || flush < 0) {
981
        return Z_STREAM_ERROR;
982
    }
983
    s = (deflate_state *) strm->state;
984
 
985
    if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
986
        (s->status == FINISH_STATE && flush != Z_FINISH)) {
987
        ERR_RETURN(strm, Z_STREAM_ERROR);
988
    }
989
    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
990
 
991
    s->strm = strm; /* just in case */
992
    old_flush = s->last_flush;
993
    s->last_flush = flush;
994
 
995
    /* Write the zlib header */
996
    if (s->status == INIT_STATE) {
997
 
998
        uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
999
        uInt level_flags = (s->level-1) >> 1;
1000
 
1001
        if (level_flags > 3) level_flags = 3;
1002
        header |= (level_flags << 6);
1003
        if (s->strstart != 0) header |= PRESET_DICT;
1004
        header += 31 - (header % 31);
1005
 
1006
        s->status = BUSY_STATE;
1007
        putShortMSB(s, header);
1008
 
1009
        /* Save the adler32 of the preset dictionary: */
1010
        if (s->strstart != 0) {
1011
            putShortMSB(s, (uInt)(strm->adler >> 16));
1012
            putShortMSB(s, (uInt)(strm->adler & 0xffff));
1013
        }
1014
        strm->adler = 1L;
1015
    }
1016
 
1017
    /* Flush as much pending output as possible */
1018
    if (s->pending != 0) {
1019
        flush_pending(strm);
1020
        if (strm->avail_out == 0) {
1021
            /* Since avail_out is 0, deflate will be called again with
1022
             * more output space, but possibly with both pending and
1023
             * avail_in equal to zero. There won't be anything to do,
1024
             * but this is not an error situation so make sure we
1025
             * return OK instead of BUF_ERROR at next call of deflate:
1026
             */
1027
            s->last_flush = -1;
1028
            return Z_OK;
1029
        }
1030
 
1031
    /* Make sure there is something to do and avoid duplicate consecutive
1032
     * flushes. For repeated and useless calls with Z_FINISH, we keep
1033
     * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1034
     */
1035
    } else if (strm->avail_in == 0 && flush <= old_flush &&
1036
               flush != Z_FINISH) {
1037
        ERR_RETURN(strm, Z_BUF_ERROR);
1038
    }
1039
 
1040
    /* User must not provide more input after the first FINISH: */
1041
    if (s->status == FINISH_STATE && strm->avail_in != 0) {
1042
        ERR_RETURN(strm, Z_BUF_ERROR);
1043
    }
1044
 
1045
    /* Start a new block or continue the current one.
1046
     */
1047
    if (strm->avail_in != 0 || s->lookahead != 0 ||
1048
        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1049
        block_state bstate;
1050
 
1051
        bstate = (*(configuration_table[s->level].func))(s, flush);
1052
 
1053
        if (bstate == finish_started || bstate == finish_done) {
1054
            s->status = FINISH_STATE;
1055
        }
1056
        if (bstate == need_more || bstate == finish_started) {
1057
            if (strm->avail_out == 0) {
1058
                s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1059
            }
1060
            return Z_OK;
1061
            /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1062
             * of deflate should use the same flush parameter to make sure
1063
             * that the flush is complete. So we don't have to output an
1064
             * empty block here, this will be done at next call. This also
1065
             * ensures that for a very small output buffer, we emit at most
1066
             * one empty block.
1067
             */
1068
        }
1069
        if (bstate == block_done) {
1070
            if (flush == Z_PARTIAL_FLUSH) {
1071
                _tr_align(s);
1072
            } else if (flush == Z_PACKET_FLUSH) {
1073
                /* Output just the 3-bit `stored' block type value,
1074
                   but not a zero length. */
1075
                _tr_stored_type_only(s);
1076
            } else { /* FULL_FLUSH or SYNC_FLUSH */
1077
                _tr_stored_block(s, (char*)0, 0L, 0);
1078
                /* For a full flush, this empty block will be recognized
1079
                 * as a special marker by inflate_sync().
1080
                 */
1081
                if (flush == Z_FULL_FLUSH) {
1082
                    CLEAR_HASH(s);             /* forget history */
1083
                }
1084
            }
1085
            flush_pending(strm);
1086
            if (strm->avail_out == 0) {
1087
              s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1088
              return Z_OK;
1089
            }
1090
        }
1091
    }
1092
    Assert(strm->avail_out > 0, "bug2");
1093
 
1094
    if (flush != Z_FINISH) return Z_OK;
1095
    if (s->noheader) return Z_STREAM_END;
1096
 
1097
    /* Write the zlib trailer (adler32) */
1098
    putShortMSB(s, (uInt)(strm->adler >> 16));
1099
    putShortMSB(s, (uInt)(strm->adler & 0xffff));
1100
    flush_pending(strm);
1101
    /* If avail_out is zero, the application will call deflate again
1102
     * to flush the rest.
1103
     */
1104
    s->noheader = -1; /* write the trailer only once! */
1105
    return s->pending != 0 ? Z_OK : Z_STREAM_END;
1106
}
1107
 
1108
/* ========================================================================= */
1109
int deflateEnd (strm)
1110
    z_streamp strm;
1111
{
1112
    int status;
1113
    deflate_state *s;
1114
 
1115
    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
1116
    s = (deflate_state *) strm->state;
1117
 
1118
    status = s->status;
1119
    if (status != INIT_STATE && status != BUSY_STATE &&
1120
        status != FINISH_STATE) {
1121
      return Z_STREAM_ERROR;
1122
    }
1123
 
1124
    /* Deallocate in reverse order of allocations: */
1125
    TRY_FREE(strm, s->pending_buf);
1126
    TRY_FREE(strm, s->head);
1127
    TRY_FREE(strm, s->prev);
1128
    TRY_FREE(strm, s->window);
1129
 
1130
    ZFREE(strm, s);
1131
    strm->state = Z_NULL;
1132
 
1133
    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1134
}
1135
 
1136
/* =========================================================================
1137
 * Copy the source state to the destination state.
1138
 */
1139
int deflateCopy (dest, source)
1140
    z_streamp dest;
1141
    z_streamp source;
1142
{
1143
    deflate_state *ds;
1144
    deflate_state *ss;
1145
    ushf *overlay;
1146
 
1147
    if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL)
1148
        return Z_STREAM_ERROR;
1149
    ss = (deflate_state *) source->state;
1150
 
1151
    zmemcpy(dest, source, sizeof(*dest));
1152
 
1153
    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1154
    if (ds == Z_NULL) return Z_MEM_ERROR;
1155
    dest->state = (struct internal_state FAR *) ds;
1156
    zmemcpy(ds, ss, sizeof(*ds));
1157
    ds->strm = dest;
1158
 
1159
    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1160
    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1161
    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1162
    overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1163
    ds->pending_buf = (uchf *) overlay;
1164
 
1165
    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1166
        ds->pending_buf == Z_NULL) {
1167
        deflateEnd (dest);
1168
        return Z_MEM_ERROR;
1169
    }
1170
    /* ??? following zmemcpy doesn't work for 16-bit MSDOS */
1171
    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1172
    zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1173
    zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1174
    zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1175
 
1176
    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1177
    ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1178
    ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1179
 
1180
    ds->l_desc.dyn_tree = ds->dyn_ltree;
1181
    ds->d_desc.dyn_tree = ds->dyn_dtree;
1182
    ds->bl_desc.dyn_tree = ds->bl_tree;
1183
 
1184
    return Z_OK;
1185
}
1186
 
1187
/* ===========================================================================
1188
 * Return the number of bytes of output which are immediately available
1189
 * for output from the decompressor.
1190
 */
1191
int deflateOutputPending (strm)
1192
    z_streamp strm;
1193
{
1194
    if (strm == Z_NULL || strm->state == Z_NULL) return 0;
1195
 
1196
    return ((deflate_state *)(strm->state))->pending;
1197
}
1198
 
1199
/* ===========================================================================
1200
 * Read a new buffer from the current input stream, update the adler32
1201
 * and total number of bytes read.  All deflate() input goes through
1202
 * this function so some applications may wish to modify it to avoid
1203
 * allocating a large strm->next_in buffer and copying from it.
1204
 * (See also flush_pending()).
1205
 */
1206
local int read_buf(strm, buf, size)
1207
    z_streamp strm;
1208
    charf *buf;
1209
    unsigned size;
1210
{
1211
    unsigned len = strm->avail_in;
1212
 
1213
    if (len > size) len = size;
1214
    if (len == 0) return 0;
1215
 
1216
    strm->avail_in  -= len;
1217
 
1218
    if (!((deflate_state *)(strm->state))->noheader) {
1219
        strm->adler = adler32(strm->adler, strm->next_in, len);
1220
    }
1221
    zmemcpy(buf, strm->next_in, len);
1222
    strm->next_in  += len;
1223
    strm->total_in += len;
1224
 
1225
    return (int)len;
1226
}
1227
 
1228
/* ===========================================================================
1229
 * Initialize the "longest match" routines for a new zlib stream
1230
 */
1231
local void lm_init (s)
1232
    deflate_state *s;
1233
{
1234
    s->window_size = (ulg)2L*s->w_size;
1235
 
1236
    CLEAR_HASH(s);
1237
 
1238
    /* Set the default configuration parameters:
1239
     */
1240
    s->max_lazy_match   = configuration_table[s->level].max_lazy;
1241
    s->good_match       = configuration_table[s->level].good_length;
1242
    s->nice_match       = configuration_table[s->level].nice_length;
1243
    s->max_chain_length = configuration_table[s->level].max_chain;
1244
 
1245
    s->strstart = 0;
1246
    s->block_start = 0L;
1247
    s->lookahead = 0;
1248
    s->match_length = s->prev_length = MIN_MATCH-1;
1249
    s->match_available = 0;
1250
    s->ins_h = 0;
1251
#ifdef ASMV
1252
    match_init(); /* initialize the asm code */
1253
#endif
1254
}
1255
 
1256
/* ===========================================================================
1257
 * Set match_start to the longest match starting at the given string and
1258
 * return its length. Matches shorter or equal to prev_length are discarded,
1259
 * in which case the result is equal to prev_length and match_start is
1260
 * garbage.
1261
 * IN assertions: cur_match is the head of the hash chain for the current
1262
 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1263
 * OUT assertion: the match length is not greater than s->lookahead.
1264
 */
1265
#ifndef ASMV
1266
/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1267
 * match.S. The code will be functionally equivalent.
1268
 */
1269
local uInt longest_match(s, cur_match)
1270
    deflate_state *s;
1271
    IPos cur_match;                             /* current match */
1272
{
1273
    unsigned chain_length = s->max_chain_length;/* max hash chain length */
1274
    register Bytef *scan = s->window + s->strstart; /* current string */
1275
    register Bytef *match;                       /* matched string */
1276
    register int len;                           /* length of current match */
1277
    int best_len = s->prev_length;              /* best match length so far */
1278
    int nice_match = s->nice_match;             /* stop if match long enough */
1279
    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1280
        s->strstart - (IPos)MAX_DIST(s) : NIL;
1281
    /* Stop when cur_match becomes <= limit. To simplify the code,
1282
     * we prevent matches with the string of window index 0.
1283
     */
1284
    Posf *prev = s->prev;
1285
    uInt wmask = s->w_mask;
1286
 
1287
#ifdef UNALIGNED_OK
1288
    /* Compare two bytes at a time. Note: this is not always beneficial.
1289
     * Try with and without -DUNALIGNED_OK to check.
1290
     */
1291
    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1292
    register ush scan_start = *(ushf*)scan;
1293
    register ush scan_end   = *(ushf*)(scan+best_len-1);
1294
#else
1295
    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1296
    register Byte scan_end1  = scan[best_len-1];
1297
    register Byte scan_end   = scan[best_len];
1298
#endif
1299
 
1300
    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1301
     * It is easy to get rid of this optimization if necessary.
1302
     */
1303
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1304
 
1305
    /* Do not waste too much time if we already have a good match: */
1306
    if (s->prev_length >= s->good_match) {
1307
        chain_length >>= 2;
1308
    }
1309
    /* Do not look for matches beyond the end of the input. This is necessary
1310
     * to make deflate deterministic.
1311
     */
1312
    if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1313
 
1314
    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1315
 
1316
    do {
1317
        Assert(cur_match < s->strstart, "no future");
1318
        match = s->window + cur_match;
1319
 
1320
        /* Skip to next match if the match length cannot increase
1321
         * or if the match length is less than 2:
1322
         */
1323
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1324
        /* This code assumes sizeof(unsigned short) == 2. Do not use
1325
         * UNALIGNED_OK if your compiler uses a different size.
1326
         */
1327
        if (*(ushf*)(match+best_len-1) != scan_end ||
1328
            *(ushf*)match != scan_start) continue;
1329
 
1330
        /* It is not necessary to compare scan[2] and match[2] since they are
1331
         * always equal when the other bytes match, given that the hash keys
1332
         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1333
         * strstart+3, +5, ... up to strstart+257. We check for insufficient
1334
         * lookahead only every 4th comparison; the 128th check will be made
1335
         * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1336
         * necessary to put more guard bytes at the end of the window, or
1337
         * to check more often for insufficient lookahead.
1338
         */
1339
        Assert(scan[2] == match[2], "scan[2]?");
1340
        scan++, match++;
1341
        do {
1342
        } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1343
                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1344
                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1345
                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1346
                 scan < strend);
1347
        /* The funny "do {}" generates better code on most compilers */
1348
 
1349
        /* Here, scan <= window+strstart+257 */
1350
        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1351
        if (*scan == *match) scan++;
1352
 
1353
        len = (MAX_MATCH - 1) - (int)(strend-scan);
1354
        scan = strend - (MAX_MATCH-1);
1355
 
1356
#else /* UNALIGNED_OK */
1357
 
1358
        if (match[best_len]   != scan_end  ||
1359
            match[best_len-1] != scan_end1 ||
1360
            *match            != *scan     ||
1361
            *++match          != scan[1])      continue;
1362
 
1363
        /* The check at best_len-1 can be removed because it will be made
1364
         * again later. (This heuristic is not always a win.)
1365
         * It is not necessary to compare scan[2] and match[2] since they
1366
         * are always equal when the other bytes match, given that
1367
         * the hash keys are equal and that HASH_BITS >= 8.
1368
         */
1369
        scan += 2, match++;
1370
        Assert(*scan == *match, "match[2]?");
1371
 
1372
        /* We check for insufficient lookahead only every 8th comparison;
1373
         * the 256th check will be made at strstart+258.
1374
         */
1375
        do {
1376
        } while (*++scan == *++match && *++scan == *++match &&
1377
                 *++scan == *++match && *++scan == *++match &&
1378
                 *++scan == *++match && *++scan == *++match &&
1379
                 *++scan == *++match && *++scan == *++match &&
1380
                 scan < strend);
1381
 
1382
        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1383
 
1384
        len = MAX_MATCH - (int)(strend - scan);
1385
        scan = strend - MAX_MATCH;
1386
 
1387
#endif /* UNALIGNED_OK */
1388
 
1389
        if (len > best_len) {
1390
            s->match_start = cur_match;
1391
            best_len = len;
1392
            if (len >= nice_match) break;
1393
#ifdef UNALIGNED_OK
1394
            scan_end = *(ushf*)(scan+best_len-1);
1395
#else
1396
            scan_end1  = scan[best_len-1];
1397
            scan_end   = scan[best_len];
1398
#endif
1399
        }
1400
    } while ((cur_match = prev[cur_match & wmask]) > limit
1401
             && --chain_length != 0);
1402
 
1403
    if ((uInt)best_len <= s->lookahead) return best_len;
1404
    return s->lookahead;
1405
}
1406
#endif /* ASMV */
1407
 
1408
#ifdef DEBUG_ZLIB
1409
/* ===========================================================================
1410
 * Check that the match at match_start is indeed a match.
1411
 */
1412
local void check_match(s, start, match, length)
1413
    deflate_state *s;
1414
    IPos start, match;
1415
    int length;
1416
{
1417
    /* check that the match is indeed a match */
1418
    if (zmemcmp((charf *)s->window + match,
1419
                (charf *)s->window + start, length) != EQUAL) {
1420
        fprintf(stderr, " start %u, match %u, length %d\n",
1421
                start, match, length);
1422
        do {
1423
            fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1424
        } while (--length != 0);
1425
        z_error("invalid match");
1426
    }
1427
    if (z_verbose > 1) {
1428
        fprintf(stderr,"\\[%d,%d]", start-match, length);
1429
        do { putc(s->window[start++], stderr); } while (--length != 0);
1430
    }
1431
}
1432
#else
1433
#  define check_match(s, start, match, length)
1434
#endif
1435
 
1436
/* ===========================================================================
1437
 * Fill the window when the lookahead becomes insufficient.
1438
 * Updates strstart and lookahead.
1439
 *
1440
 * IN assertion: lookahead < MIN_LOOKAHEAD
1441
 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1442
 *    At least one byte has been read, or avail_in == 0; reads are
1443
 *    performed for at least two bytes (required for the zip translate_eol
1444
 *    option -- not supported here).
1445
 */
1446
local void fill_window(s)
1447
    deflate_state *s;
1448
{
1449
    register unsigned n, m;
1450
    register Posf *p;
1451
    unsigned more;    /* Amount of free space at the end of the window. */
1452
    uInt wsize = s->w_size;
1453
 
1454
    do {
1455
        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1456
 
1457
        /* Deal with !@#$% 64K limit: */
1458
        if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1459
            more = wsize;
1460
 
1461
        } else if (more == (unsigned)(-1)) {
1462
            /* Very unlikely, but possible on 16 bit machine if strstart == 0
1463
             * and lookahead == 1 (input done one byte at time)
1464
             */
1465
            more--;
1466
 
1467
        /* If the window is almost full and there is insufficient lookahead,
1468
         * move the upper half to the lower one to make room in the upper half.
1469
         */
1470
        } else if (s->strstart >= wsize+MAX_DIST(s)) {
1471
 
1472
            zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1473
                   (unsigned)wsize);
1474
            s->match_start -= wsize;
1475
            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1476
            s->block_start -= (long) wsize;
1477
 
1478
            /* Slide the hash table (could be avoided with 32 bit values
1479
               at the expense of memory usage). We slide even when level == 0
1480
               to keep the hash table consistent if we switch back to level > 0
1481
               later. (Using level 0 permanently is not an optimal usage of
1482
               zlib, so we don't care about this pathological case.)
1483
             */
1484
            n = s->hash_size;
1485
            p = &s->head[n];
1486
            do {
1487
                m = *--p;
1488
                *p = (Pos)(m >= wsize ? m-wsize : NIL);
1489
            } while (--n);
1490
 
1491
            n = wsize;
1492
            p = &s->prev[n];
1493
            do {
1494
                m = *--p;
1495
                *p = (Pos)(m >= wsize ? m-wsize : NIL);
1496
                /* If n is not on any hash chain, prev[n] is garbage but
1497
                 * its value will never be used.
1498
                 */
1499
            } while (--n);
1500
            more += wsize;
1501
        }
1502
        if (s->strm->avail_in == 0) return;
1503
 
1504
        /* If there was no sliding:
1505
         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1506
         *    more == window_size - lookahead - strstart
1507
         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1508
         * => more >= window_size - 2*WSIZE + 2
1509
         * In the BIG_MEM or MMAP case (not yet supported),
1510
         *   window_size == input_size + MIN_LOOKAHEAD  &&
1511
         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1512
         * Otherwise, window_size == 2*WSIZE so more >= 2.
1513
         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1514
         */
1515
        Assert(more >= 2, "more < 2");
1516
 
1517
        n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1518
                     more);
1519
        s->lookahead += n;
1520
 
1521
        /* Initialize the hash value now that we have some input: */
1522
        if (s->lookahead >= MIN_MATCH) {
1523
            s->ins_h = s->window[s->strstart];
1524
            UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1525
#if MIN_MATCH != 3
1526
            Call UPDATE_HASH() MIN_MATCH-3 more times
1527
#endif
1528
        }
1529
        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1530
         * but this is not important since only literal bytes will be emitted.
1531
         */
1532
 
1533
    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1534
}
1535
 
1536
/* ===========================================================================
1537
 * Flush the current block, with given end-of-file flag.
1538
 * IN assertion: strstart is set to the end of the current match.
1539
 */
1540
#define FLUSH_BLOCK_ONLY(s, eof) { \
1541
   _tr_flush_block(s, (s->block_start >= 0L ? \
1542
                   (charf *)&s->window[(unsigned)s->block_start] : \
1543
                   (charf *)Z_NULL), \
1544
                (ulg)((long)s->strstart - s->block_start), \
1545
                (eof)); \
1546
   s->block_start = s->strstart; \
1547
   flush_pending(s->strm); \
1548
   Tracev((stderr,"[FLUSH]")); \
1549
}
1550
 
1551
/* Same but force premature exit if necessary. */
1552
#define FLUSH_BLOCK(s, eof) { \
1553
   FLUSH_BLOCK_ONLY(s, eof); \
1554
   if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1555
}
1556
 
1557
/* ===========================================================================
1558
 * Copy without compression as much as possible from the input stream, return
1559
 * the current block state.
1560
 * This function does not insert new strings in the dictionary since
1561
 * uncompressible data is probably not useful. This function is used
1562
 * only for the level=0 compression option.
1563
 * NOTE: this function should be optimized to avoid extra copying from
1564
 * window to pending_buf.
1565
 */
1566
local block_state deflate_stored(s, flush)
1567
    deflate_state *s;
1568
    int flush;
1569
{
1570
    /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1571
     * to pending_buf_size, and each stored block has a 5 byte header:
1572
     */
1573
    ulg max_block_size = 0xffff;
1574
    ulg max_start;
1575
 
1576
    if (max_block_size > s->pending_buf_size - 5) {
1577
        max_block_size = s->pending_buf_size - 5;
1578
    }
1579
 
1580
    /* Copy as much as possible from input to output: */
1581
    for (;;) {
1582
        /* Fill the window as much as possible: */
1583
        if (s->lookahead <= 1) {
1584
 
1585
            Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1586
                   s->block_start >= (long)s->w_size, "slide too late");
1587
 
1588
            fill_window(s);
1589
            if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1590
 
1591
            if (s->lookahead == 0) break; /* flush the current block */
1592
        }
1593
        Assert(s->block_start >= 0L, "block gone");
1594
 
1595
        s->strstart += s->lookahead;
1596
        s->lookahead = 0;
1597
 
1598
        /* Emit a stored block if pending_buf will be full: */
1599
        max_start = s->block_start + max_block_size;
1600
        if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1601
            /* strstart == 0 is possible when wraparound on 16-bit machine */
1602
            s->lookahead = (uInt)(s->strstart - max_start);
1603
            s->strstart = (uInt)max_start;
1604
            FLUSH_BLOCK(s, 0);
1605
        }
1606
        /* Flush if we may have to slide, otherwise block_start may become
1607
         * negative and the data will be gone:
1608
         */
1609
        if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1610
            FLUSH_BLOCK(s, 0);
1611
        }
1612
    }
1613
    FLUSH_BLOCK(s, flush == Z_FINISH);
1614
    return flush == Z_FINISH ? finish_done : block_done;
1615
}
1616
 
1617
/* ===========================================================================
1618
 * Compress as much as possible from the input stream, return the current
1619
 * block state.
1620
 * This function does not perform lazy evaluation of matches and inserts
1621
 * new strings in the dictionary only for unmatched strings or for short
1622
 * matches. It is used only for the fast compression options.
1623
 */
1624
local block_state deflate_fast(s, flush)
1625
    deflate_state *s;
1626
    int flush;
1627
{
1628
    IPos hash_head = NIL; /* head of the hash chain */
1629
    int bflush;           /* set if current block must be flushed */
1630
 
1631
    for (;;) {
1632
        /* Make sure that we always have enough lookahead, except
1633
         * at the end of the input file. We need MAX_MATCH bytes
1634
         * for the next match, plus MIN_MATCH bytes to insert the
1635
         * string following the next match.
1636
         */
1637
        if (s->lookahead < MIN_LOOKAHEAD) {
1638
            fill_window(s);
1639
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1640
                return need_more;
1641
            }
1642
            if (s->lookahead == 0) break; /* flush the current block */
1643
        }
1644
 
1645
        /* Insert the string window[strstart .. strstart+2] in the
1646
         * dictionary, and set hash_head to the head of the hash chain:
1647
         */
1648
        if (s->lookahead >= MIN_MATCH) {
1649
            INSERT_STRING(s, s->strstart, hash_head);
1650
        }
1651
 
1652
        /* Find the longest match, discarding those <= prev_length.
1653
         * At this point we have always match_length < MIN_MATCH
1654
         */
1655
        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1656
            /* To simplify the code, we prevent matches with the string
1657
             * of window index 0 (in particular we have to avoid a match
1658
             * of the string with itself at the start of the input file).
1659
             */
1660
            if (s->strategy != Z_HUFFMAN_ONLY) {
1661
                s->match_length = longest_match (s, hash_head);
1662
            }
1663
            /* longest_match() sets match_start */
1664
        }
1665
        if (s->match_length >= MIN_MATCH) {
1666
            check_match(s, s->strstart, s->match_start, s->match_length);
1667
 
1668
            bflush = _tr_tally(s, s->strstart - s->match_start,
1669
                               s->match_length - MIN_MATCH);
1670
 
1671
            s->lookahead -= s->match_length;
1672
 
1673
            /* Insert new strings in the hash table only if the match length
1674
             * is not too large. This saves time but degrades compression.
1675
             */
1676
            if (s->match_length <= s->max_insert_length &&
1677
                s->lookahead >= MIN_MATCH) {
1678
                s->match_length--; /* string at strstart already in hash table */
1679
                do {
1680
                    s->strstart++;
1681
                    INSERT_STRING(s, s->strstart, hash_head);
1682
                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1683
                     * always MIN_MATCH bytes ahead.
1684
                     */
1685
                } while (--s->match_length != 0);
1686
                s->strstart++;
1687
            } else {
1688
                s->strstart += s->match_length;
1689
                s->match_length = 0;
1690
                s->ins_h = s->window[s->strstart];
1691
                UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1692
#if MIN_MATCH != 3
1693
                Call UPDATE_HASH() MIN_MATCH-3 more times
1694
#endif
1695
                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1696
                 * matter since it will be recomputed at next deflate call.
1697
                 */
1698
            }
1699
        } else {
1700
            /* No match, output a literal byte */
1701
            Tracevv((stderr,"%c", s->window[s->strstart]));
1702
            bflush = _tr_tally (s, 0, s->window[s->strstart]);
1703
            s->lookahead--;
1704
            s->strstart++;
1705
        }
1706
        if (bflush) FLUSH_BLOCK(s, 0);
1707
    }
1708
    FLUSH_BLOCK(s, flush == Z_FINISH);
1709
    return flush == Z_FINISH ? finish_done : block_done;
1710
}
1711
 
1712
/* ===========================================================================
1713
 * Same as above, but achieves better compression. We use a lazy
1714
 * evaluation for matches: a match is finally adopted only if there is
1715
 * no better match at the next window position.
1716
 */
1717
local block_state deflate_slow(s, flush)
1718
    deflate_state *s;
1719
    int flush;
1720
{
1721
    IPos hash_head = NIL;    /* head of hash chain */
1722
    int bflush;              /* set if current block must be flushed */
1723
 
1724
    /* Process the input block. */
1725
    for (;;) {
1726
        /* Make sure that we always have enough lookahead, except
1727
         * at the end of the input file. We need MAX_MATCH bytes
1728
         * for the next match, plus MIN_MATCH bytes to insert the
1729
         * string following the next match.
1730
         */
1731
        if (s->lookahead < MIN_LOOKAHEAD) {
1732
            fill_window(s);
1733
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1734
                return need_more;
1735
            }
1736
            if (s->lookahead == 0) break; /* flush the current block */
1737
        }
1738
 
1739
        /* Insert the string window[strstart .. strstart+2] in the
1740
         * dictionary, and set hash_head to the head of the hash chain:
1741
         */
1742
        if (s->lookahead >= MIN_MATCH) {
1743
            INSERT_STRING(s, s->strstart, hash_head);
1744
        }
1745
 
1746
        /* Find the longest match, discarding those <= prev_length.
1747
         */
1748
        s->prev_length = s->match_length, s->prev_match = s->match_start;
1749
        s->match_length = MIN_MATCH-1;
1750
 
1751
        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1752
            s->strstart - hash_head <= MAX_DIST(s)) {
1753
            /* To simplify the code, we prevent matches with the string
1754
             * of window index 0 (in particular we have to avoid a match
1755
             * of the string with itself at the start of the input file).
1756
             */
1757
            if (s->strategy != Z_HUFFMAN_ONLY) {
1758
                s->match_length = longest_match (s, hash_head);
1759
            }
1760
            /* longest_match() sets match_start */
1761
 
1762
            if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1763
                 (s->match_length == MIN_MATCH &&
1764
                  s->strstart - s->match_start > TOO_FAR))) {
1765
 
1766
                /* If prev_match is also MIN_MATCH, match_start is garbage
1767
                 * but we will ignore the current match anyway.
1768
                 */
1769
                s->match_length = MIN_MATCH-1;
1770
            }
1771
        }
1772
        /* If there was a match at the previous step and the current
1773
         * match is not better, output the previous match:
1774
         */
1775
        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1776
            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1777
            /* Do not insert strings in hash table beyond this. */
1778
 
1779
            check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1780
 
1781
            bflush = _tr_tally(s, s->strstart -1 - s->prev_match,
1782
                               s->prev_length - MIN_MATCH);
1783
 
1784
            /* Insert in hash table all strings up to the end of the match.
1785
             * strstart-1 and strstart are already inserted. If there is not
1786
             * enough lookahead, the last two strings are not inserted in
1787
             * the hash table.
1788
             */
1789
            s->lookahead -= s->prev_length-1;
1790
            s->prev_length -= 2;
1791
            do {
1792
                if (++s->strstart <= max_insert) {
1793
                    INSERT_STRING(s, s->strstart, hash_head);
1794
                }
1795
            } while (--s->prev_length != 0);
1796
            s->match_available = 0;
1797
            s->match_length = MIN_MATCH-1;
1798
            s->strstart++;
1799
 
1800
            if (bflush) FLUSH_BLOCK(s, 0);
1801
 
1802
        } else if (s->match_available) {
1803
            /* If there was no match at the previous position, output a
1804
             * single literal. If there was a match but the current match
1805
             * is longer, truncate the previous match to a single literal.
1806
             */
1807
            Tracevv((stderr,"%c", s->window[s->strstart-1]));
1808
            if (_tr_tally (s, 0, s->window[s->strstart-1])) {
1809
                FLUSH_BLOCK_ONLY(s, 0);
1810
            }
1811
            s->strstart++;
1812
            s->lookahead--;
1813
            if (s->strm->avail_out == 0) return need_more;
1814
        } else {
1815
            /* There is no previous match to compare with, wait for
1816
             * the next step to decide.
1817
             */
1818
            s->match_available = 1;
1819
            s->strstart++;
1820
            s->lookahead--;
1821
        }
1822
    }
1823
    Assert (flush != Z_NO_FLUSH, "no flush?");
1824
    if (s->match_available) {
1825
        Tracevv((stderr,"%c", s->window[s->strstart-1]));
1826
        _tr_tally (s, 0, s->window[s->strstart-1]);
1827
        s->match_available = 0;
1828
    }
1829
    FLUSH_BLOCK(s, flush == Z_FINISH);
1830
    return flush == Z_FINISH ? finish_done : block_done;
1831
}
1832
/* --- deflate.c */
1833
 
1834
/* +++ trees.c */
1835
/* trees.c -- output deflated data using Huffman coding
1836
 * Copyright (C) 1995-1996 Jean-loup Gailly
1837
 * For conditions of distribution and use, see copyright notice in zlib.h
1838
 */
1839
 
1840
/*
1841
 *  ALGORITHM
1842
 *
1843
 *      The "deflation" process uses several Huffman trees. The more
1844
 *      common source values are represented by shorter bit sequences.
1845
 *
1846
 *      Each code tree is stored in a compressed form which is itself
1847
 * a Huffman encoding of the lengths of all the code strings (in
1848
 * ascending order by source values).  The actual code strings are
1849
 * reconstructed from the lengths in the inflate process, as described
1850
 * in the deflate specification.
1851
 *
1852
 *  REFERENCES
1853
 *
1854
 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1855
 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1856
 *
1857
 *      Storer, James A.
1858
 *          Data Compression:  Methods and Theory, pp. 49-50.
1859
 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
1860
 *
1861
 *      Sedgewick, R.
1862
 *          Algorithms, p290.
1863
 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
1864
 */
1865
 
1866
/* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
1867
 
1868
/* #include "deflate.h" */
1869
 
1870
#ifdef DEBUG_ZLIB
1871
#  include <ctype.h>
1872
#endif
1873
 
1874
/* ===========================================================================
1875
 * Constants
1876
 */
1877
 
1878
#define MAX_BL_BITS 7
1879
/* Bit length codes must not exceed MAX_BL_BITS bits */
1880
 
1881
#define END_BLOCK 256
1882
/* end of block literal code */
1883
 
1884
#define REP_3_6      16
1885
/* repeat previous bit length 3-6 times (2 bits of repeat count) */
1886
 
1887
#define REPZ_3_10    17
1888
/* repeat a zero length 3-10 times  (3 bits of repeat count) */
1889
 
1890
#define REPZ_11_138  18
1891
/* repeat a zero length 11-138 times  (7 bits of repeat count) */
1892
 
1893
local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1894
   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1895
 
1896
local int extra_dbits[D_CODES] /* extra bits for each distance code */
1897
   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1898
 
1899
local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1900
   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1901
 
1902
local uch bl_order[BL_CODES]
1903
   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1904
/* The lengths of the bit length codes are sent in order of decreasing
1905
 * probability, to avoid transmitting the lengths for unused bit length codes.
1906
 */
1907
 
1908
#define Buf_size (8 * 2*sizeof(char))
1909
/* Number of bits used within bi_buf. (bi_buf might be implemented on
1910
 * more than 16 bits on some systems.)
1911
 */
1912
 
1913
/* ===========================================================================
1914
 * Local data. These are initialized only once.
1915
 */
1916
 
1917
local ct_data static_ltree[L_CODES+2];
1918
/* The static literal tree. Since the bit lengths are imposed, there is no
1919
 * need for the L_CODES extra codes used during heap construction. However
1920
 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
1921
 * below).
1922
 */
1923
 
1924
local ct_data static_dtree[D_CODES];
1925
/* The static distance tree. (Actually a trivial tree since all codes use
1926
 * 5 bits.)
1927
 */
1928
 
1929
local uch dist_code[512];
1930
/* distance codes. The first 256 values correspond to the distances
1931
 * 3 .. 258, the last 256 values correspond to the top 8 bits of
1932
 * the 15 bit distances.
1933
 */
1934
 
1935
local uch length_code[MAX_MATCH-MIN_MATCH+1];
1936
/* length code for each normalized match length (0 == MIN_MATCH) */
1937
 
1938
local int base_length[LENGTH_CODES];
1939
/* First normalized length for each code (0 = MIN_MATCH) */
1940
 
1941
local int base_dist[D_CODES];
1942
/* First normalized distance for each code (0 = distance of 1) */
1943
 
1944
struct static_tree_desc_s {
1945
    ct_data *static_tree;        /* static tree or NULL */
1946
    intf    *extra_bits;         /* extra bits for each code or NULL */
1947
    int     extra_base;          /* base index for extra_bits */
1948
    int     elems;               /* max number of elements in the tree */
1949
    int     max_length;          /* max bit length for the codes */
1950
};
1951
 
1952
local static_tree_desc  static_l_desc =
1953
{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1954
 
1955
local static_tree_desc  static_d_desc =
1956
{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
1957
 
1958
local static_tree_desc  static_bl_desc =
1959
{(ct_data *)0, extra_blbits, 0,      BL_CODES, MAX_BL_BITS};
1960
 
1961
/* ===========================================================================
1962
 * Local (static) routines in this file.
1963
 */
1964
 
1965
local void tr_static_init OF((void));
1966
local void init_block     OF((deflate_state *s));
1967
local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
1968
local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
1969
local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
1970
local void build_tree     OF((deflate_state *s, tree_desc *desc));
1971
local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1972
local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1973
local int  build_bl_tree  OF((deflate_state *s));
1974
local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1975
                              int blcodes));
1976
local void compress_block OF((deflate_state *s, ct_data *ltree,
1977
                              ct_data *dtree));
1978
local void set_data_type  OF((deflate_state *s));
1979
local unsigned bi_reverse OF((unsigned value, int length));
1980
local void bi_windup      OF((deflate_state *s));
1981
local void bi_flush       OF((deflate_state *s));
1982
local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
1983
                              int header));
1984
 
1985
#ifndef DEBUG_ZLIB
1986
#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1987
   /* Send a code of the given tree. c and tree must not have side effects */
1988
 
1989
#else /* DEBUG_ZLIB */
1990
#  define send_code(s, c, tree) \
1991
     { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
1992
       send_bits(s, tree[c].Code, tree[c].Len); }
1993
#endif
1994
 
1995
#define d_code(dist) \
1996
   ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
1997
/* Mapping from a distance to a distance code. dist is the distance - 1 and
1998
 * must not have side effects. dist_code[256] and dist_code[257] are never
1999
 * used.
2000
 */
2001
 
2002
/* ===========================================================================
2003
 * Output a short LSB first on the stream.
2004
 * IN assertion: there is enough room in pendingBuf.
2005
 */
2006
#define put_short(s, w) { \
2007
    put_byte(s, (uch)((w) & 0xff)); \
2008
    put_byte(s, (uch)((ush)(w) >> 8)); \
2009
}
2010
 
2011
/* ===========================================================================
2012
 * Send a value on a given number of bits.
2013
 * IN assertion: length <= 16 and value fits in length bits.
2014
 */
2015
#ifdef DEBUG_ZLIB
2016
local void send_bits      OF((deflate_state *s, int value, int length));
2017
 
2018
local void send_bits(s, value, length)
2019
    deflate_state *s;
2020
    int value;  /* value to send */
2021
    int length; /* number of bits */
2022
{
2023
    Tracevv((stderr," l %2d v %4x ", length, value));
2024
    Assert(length > 0 && length <= 15, "invalid length");
2025
    s->bits_sent += (ulg)length;
2026
 
2027
    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2028
     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2029
     * unused bits in value.
2030
     */
2031
    if (s->bi_valid > (int)Buf_size - length) {
2032
        s->bi_buf |= (value << s->bi_valid);
2033
        put_short(s, s->bi_buf);
2034
        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2035
        s->bi_valid += length - Buf_size;
2036
    } else {
2037
        s->bi_buf |= value << s->bi_valid;
2038
        s->bi_valid += length;
2039
    }
2040
}
2041
#else /* !DEBUG_ZLIB */
2042
 
2043
#define send_bits(s, value, length) \
2044
{ int len = length;\
2045
  if (s->bi_valid > (int)Buf_size - len) {\
2046
    int val = value;\
2047
    s->bi_buf |= (val << s->bi_valid);\
2048
    put_short(s, s->bi_buf);\
2049
    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
2050
    s->bi_valid += len - Buf_size;\
2051
  } else {\
2052
    s->bi_buf |= (value) << s->bi_valid;\
2053
    s->bi_valid += len;\
2054
  }\
2055
}
2056
#endif /* DEBUG_ZLIB */
2057
 
2058
 
2059
#define MAX(a,b) (a >= b ? a : b)
2060
/* the arguments must not have side effects */
2061
 
2062
/* ===========================================================================
2063
 * Initialize the various 'constant' tables. In a multi-threaded environment,
2064
 * this function may be called by two threads concurrently, but this is
2065
 * harmless since both invocations do exactly the same thing.
2066
 */
2067
local void tr_static_init()
2068
{
2069
    static int static_init_done = 0;
2070
    int n;        /* iterates over tree elements */
2071
    int bits;     /* bit counter */
2072
    int length;   /* length value */
2073
    int code;     /* code value */
2074
    int dist;     /* distance index */
2075
    ush bl_count[MAX_BITS+1];
2076
    /* number of codes at each bit length for an optimal tree */
2077
 
2078
    if (static_init_done) return;
2079
 
2080
    /* Initialize the mapping length (0..255) -> length code (0..28) */
2081
    length = 0;
2082
    for (code = 0; code < LENGTH_CODES-1; code++) {
2083
        base_length[code] = length;
2084
        for (n = 0; n < (1<<extra_lbits[code]); n++) {
2085
            length_code[length++] = (uch)code;
2086
        }
2087
    }
2088
    Assert (length == 256, "tr_static_init: length != 256");
2089
    /* Note that the length 255 (match length 258) can be represented
2090
     * in two different ways: code 284 + 5 bits or code 285, so we
2091
     * overwrite length_code[255] to use the best encoding:
2092
     */
2093
    length_code[length-1] = (uch)code;
2094
 
2095
    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2096
    dist = 0;
2097
    for (code = 0 ; code < 16; code++) {
2098
        base_dist[code] = dist;
2099
        for (n = 0; n < (1<<extra_dbits[code]); n++) {
2100
            dist_code[dist++] = (uch)code;
2101
        }
2102
    }
2103
    Assert (dist == 256, "tr_static_init: dist != 256");
2104
    dist >>= 7; /* from now on, all distances are divided by 128 */
2105
    for ( ; code < D_CODES; code++) {
2106
        base_dist[code] = dist << 7;
2107
        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2108
            dist_code[256 + dist++] = (uch)code;
2109
        }
2110
    }
2111
    Assert (dist == 256, "tr_static_init: 256+dist != 512");
2112
 
2113
    /* Construct the codes of the static literal tree */
2114
    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2115
    n = 0;
2116
    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2117
    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2118
    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2119
    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2120
    /* Codes 286 and 287 do not exist, but we must include them in the
2121
     * tree construction to get a canonical Huffman tree (longest code
2122
     * all ones)
2123
     */
2124
    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2125
 
2126
    /* The static distance tree is trivial: */
2127
    for (n = 0; n < D_CODES; n++) {
2128
        static_dtree[n].Len = 5;
2129
        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2130
    }
2131
    static_init_done = 1;
2132
}
2133
 
2134
/* ===========================================================================
2135
 * Initialize the tree data structures for a new zlib stream.
2136
 */
2137
void _tr_init(s)
2138
    deflate_state *s;
2139
{
2140
    tr_static_init();
2141
 
2142
    s->compressed_len = 0L;
2143
 
2144
    s->l_desc.dyn_tree = s->dyn_ltree;
2145
    s->l_desc.stat_desc = &static_l_desc;
2146
 
2147
    s->d_desc.dyn_tree = s->dyn_dtree;
2148
    s->d_desc.stat_desc = &static_d_desc;
2149
 
2150
    s->bl_desc.dyn_tree = s->bl_tree;
2151
    s->bl_desc.stat_desc = &static_bl_desc;
2152
 
2153
    s->bi_buf = 0;
2154
    s->bi_valid = 0;
2155
    s->last_eob_len = 8; /* enough lookahead for inflate */
2156
#ifdef DEBUG_ZLIB
2157
    s->bits_sent = 0L;
2158
#endif
2159
 
2160
    /* Initialize the first block of the first file: */
2161
    init_block(s);
2162
}
2163
 
2164
/* ===========================================================================
2165
 * Initialize a new block.
2166
 */
2167
local void init_block(s)
2168
    deflate_state *s;
2169
{
2170
    int n; /* iterates over tree elements */
2171
 
2172
    /* Initialize the trees. */
2173
    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
2174
    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
2175
    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2176
 
2177
    s->dyn_ltree[END_BLOCK].Freq = 1;
2178
    s->opt_len = s->static_len = 0L;
2179
    s->last_lit = s->matches = 0;
2180
}
2181
 
2182
#define SMALLEST 1
2183
/* Index within the heap array of least frequent node in the Huffman tree */
2184
 
2185
 
2186
/* ===========================================================================
2187
 * Remove the smallest element from the heap and recreate the heap with
2188
 * one less element. Updates heap and heap_len.
2189
 */
2190
#define pqremove(s, tree, top) \
2191
{\
2192
    top = s->heap[SMALLEST]; \
2193
    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2194
    pqdownheap(s, tree, SMALLEST); \
2195
}
2196
 
2197
/* ===========================================================================
2198
 * Compares to subtrees, using the tree depth as tie breaker when
2199
 * the subtrees have equal frequency. This minimizes the worst case length.
2200
 */
2201
#define smaller(tree, n, m, depth) \
2202
   (tree[n].Freq < tree[m].Freq || \
2203
   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2204
 
2205
/* ===========================================================================
2206
 * Restore the heap property by moving down the tree starting at node k,
2207
 * exchanging a node with the smallest of its two sons if necessary, stopping
2208
 * when the heap property is re-established (each father smaller than its
2209
 * two sons).
2210
 */
2211
local void pqdownheap(s, tree, k)
2212
    deflate_state *s;
2213
    ct_data *tree;  /* the tree to restore */
2214
    int k;               /* node to move down */
2215
{
2216
    int v = s->heap[k];
2217
    int j = k << 1;  /* left son of k */
2218
    while (j <= s->heap_len) {
2219
        /* Set j to the smallest of the two sons: */
2220
        if (j < s->heap_len &&
2221
            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2222
            j++;
2223
        }
2224
        /* Exit if v is smaller than both sons */
2225
        if (smaller(tree, v, s->heap[j], s->depth)) break;
2226
 
2227
        /* Exchange v with the smallest son */
2228
        s->heap[k] = s->heap[j];  k = j;
2229
 
2230
        /* And continue down the tree, setting j to the left son of k */
2231
        j <<= 1;
2232
    }
2233
    s->heap[k] = v;
2234
}
2235
 
2236
/* ===========================================================================
2237
 * Compute the optimal bit lengths for a tree and update the total bit length
2238
 * for the current block.
2239
 * IN assertion: the fields freq and dad are set, heap[heap_max] and
2240
 *    above are the tree nodes sorted by increasing frequency.
2241
 * OUT assertions: the field len is set to the optimal bit length, the
2242
 *     array bl_count contains the frequencies for each bit length.
2243
 *     The length opt_len is updated; static_len is also updated if stree is
2244
 *     not null.
2245
 */
2246
local void gen_bitlen(s, desc)
2247
    deflate_state *s;
2248
    tree_desc *desc;    /* the tree descriptor */
2249
{
2250
    ct_data *tree  = desc->dyn_tree;
2251
    int max_code   = desc->max_code;
2252
    ct_data *stree = desc->stat_desc->static_tree;
2253
    intf *extra    = desc->stat_desc->extra_bits;
2254
    int base       = desc->stat_desc->extra_base;
2255
    int max_length = desc->stat_desc->max_length;
2256
    int h;              /* heap index */
2257
    int n, m;           /* iterate over the tree elements */
2258
    int bits;           /* bit length */
2259
    int xbits;          /* extra bits */
2260
    ush f;              /* frequency */
2261
    int overflow = 0;   /* number of elements with bit length too large */
2262
 
2263
    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2264
 
2265
    /* In a first pass, compute the optimal bit lengths (which may
2266
     * overflow in the case of the bit length tree).
2267
     */
2268
    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2269
 
2270
    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2271
        n = s->heap[h];
2272
        bits = tree[tree[n].Dad].Len + 1;
2273
        if (bits > max_length) bits = max_length, overflow++;
2274
        tree[n].Len = (ush)bits;
2275
        /* We overwrite tree[n].Dad which is no longer needed */
2276
 
2277
        if (n > max_code) continue; /* not a leaf node */
2278
 
2279
        s->bl_count[bits]++;
2280
        xbits = 0;
2281
        if (n >= base) xbits = extra[n-base];
2282
        f = tree[n].Freq;
2283
        s->opt_len += (ulg)f * (bits + xbits);
2284
        if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2285
    }
2286
    if (overflow == 0) return;
2287
 
2288
    Trace((stderr,"\nbit length overflow\n"));
2289
    /* This happens for example on obj2 and pic of the Calgary corpus */
2290
 
2291
    /* Find the first bit length which could increase: */
2292
    do {
2293
        bits = max_length-1;
2294
        while (s->bl_count[bits] == 0) bits--;
2295
        s->bl_count[bits]--;      /* move one leaf down the tree */
2296
        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
2297
        s->bl_count[max_length]--;
2298
        /* The brother of the overflow item also moves one step up,
2299
         * but this does not affect bl_count[max_length]
2300
         */
2301
        overflow -= 2;
2302
    } while (overflow > 0);
2303
 
2304
    /* Now recompute all bit lengths, scanning in increasing frequency.
2305
     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2306
     * lengths instead of fixing only the wrong ones. This idea is taken
2307
     * from 'ar' written by Haruhiko Okumura.)
2308
     */
2309
    for (bits = max_length; bits != 0; bits--) {
2310
        n = s->bl_count[bits];
2311
        while (n != 0) {
2312
            m = s->heap[--h];
2313
            if (m > max_code) continue;
2314
            if (tree[m].Len != (unsigned) bits) {
2315
                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
2316
                s->opt_len += ((long)bits - (long)tree[m].Len)
2317
                              *(long)tree[m].Freq;
2318
                tree[m].Len = (ush)bits;
2319
            }
2320
            n--;
2321
        }
2322
    }
2323
}
2324
 
2325
/* ===========================================================================
2326
 * Generate the codes for a given tree and bit counts (which need not be
2327
 * optimal).
2328
 * IN assertion: the array bl_count contains the bit length statistics for
2329
 * the given tree and the field len is set for all tree elements.
2330
 * OUT assertion: the field code is set for all tree elements of non
2331
 *     zero code length.
2332
 */
2333
local void gen_codes (tree, max_code, bl_count)
2334
    ct_data *tree;             /* the tree to decorate */
2335
    int max_code;              /* largest code with non zero frequency */
2336
    ushf *bl_count;            /* number of codes at each bit length */
2337
{
2338
    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
2339
    ush code = 0;              /* running code value */
2340
    int bits;                  /* bit index */
2341
    int n;                     /* code index */
2342
 
2343
    /* The distribution counts are first used to generate the code values
2344
     * without bit reversal.
2345
     */
2346
    for (bits = 1; bits <= MAX_BITS; bits++) {
2347
        next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2348
    }
2349
    /* Check that the bit counts in bl_count are consistent. The last code
2350
     * must be all ones.
2351
     */
2352
    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2353
            "inconsistent bit counts");
2354
    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
2355
 
2356
    for (n = 0;  n <= max_code; n++) {
2357
        int len = tree[n].Len;
2358
        if (len == 0) continue;
2359
        /* Now reverse the bits */
2360
        tree[n].Code = bi_reverse(next_code[len]++, len);
2361
 
2362
        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
2363
             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
2364
    }
2365
}
2366
 
2367
/* ===========================================================================
2368
 * Construct one Huffman tree and assigns the code bit strings and lengths.
2369
 * Update the total bit length for the current block.
2370
 * IN assertion: the field freq is set for all tree elements.
2371
 * OUT assertions: the fields len and code are set to the optimal bit length
2372
 *     and corresponding code. The length opt_len is updated; static_len is
2373
 *     also updated if stree is not null. The field max_code is set.
2374
 */
2375
local void build_tree(s, desc)
2376
    deflate_state *s;
2377
    tree_desc *desc; /* the tree descriptor */
2378
{
2379
    ct_data *tree   = desc->dyn_tree;
2380
    ct_data *stree  = desc->stat_desc->static_tree;
2381
    int elems       = desc->stat_desc->elems;
2382
    int n, m;          /* iterate over heap elements */
2383
    int max_code = -1; /* largest code with non zero frequency */
2384
    int node;          /* new node being created */
2385
 
2386
    /* Construct the initial heap, with least frequent element in
2387
     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2388
     * heap[0] is not used.
2389
     */
2390
    s->heap_len = 0, s->heap_max = HEAP_SIZE;
2391
 
2392
    for (n = 0; n < elems; n++) {
2393
        if (tree[n].Freq != 0) {
2394
            s->heap[++(s->heap_len)] = max_code = n;
2395
            s->depth[n] = 0;
2396
        } else {
2397
            tree[n].Len = 0;
2398
        }
2399
    }
2400
 
2401
    /* The pkzip format requires that at least one distance code exists,
2402
     * and that at least one bit should be sent even if there is only one
2403
     * possible code. So to avoid special checks later on we force at least
2404
     * two codes of non zero frequency.
2405
     */
2406
    while (s->heap_len < 2) {
2407
        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2408
        tree[node].Freq = 1;
2409
        s->depth[node] = 0;
2410
        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2411
        /* node is 0 or 1 so it does not have extra bits */
2412
    }
2413
    desc->max_code = max_code;
2414
 
2415
    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2416
     * establish sub-heaps of increasing lengths:
2417
     */
2418
    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2419
 
2420
    /* Construct the Huffman tree by repeatedly combining the least two
2421
     * frequent nodes.
2422
     */
2423
    node = elems;              /* next internal node of the tree */
2424
    do {
2425
        pqremove(s, tree, n);  /* n = node of least frequency */
2426
        m = s->heap[SMALLEST]; /* m = node of next least frequency */
2427
 
2428
        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2429
        s->heap[--(s->heap_max)] = m;
2430
 
2431
        /* Create a new node father of n and m */
2432
        tree[node].Freq = tree[n].Freq + tree[m].Freq;
2433
        s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2434
        tree[n].Dad = tree[m].Dad = (ush)node;
2435
#ifdef DUMP_BL_TREE
2436
        if (tree == s->bl_tree) {
2437
            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2438
                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2439
        }
2440
#endif
2441
        /* and insert the new node in the heap */
2442
        s->heap[SMALLEST] = node++;
2443
        pqdownheap(s, tree, SMALLEST);
2444
 
2445
    } while (s->heap_len >= 2);
2446
 
2447
    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2448
 
2449
    /* At this point, the fields freq and dad are set. We can now
2450
     * generate the bit lengths.
2451
     */
2452
    gen_bitlen(s, (tree_desc *)desc);
2453
 
2454
    /* The field len is now set, we can generate the bit codes */
2455
    gen_codes ((ct_data *)tree, max_code, s->bl_count);
2456
}
2457
 
2458
/* ===========================================================================
2459
 * Scan a literal or distance tree to determine the frequencies of the codes
2460
 * in the bit length tree.
2461
 */
2462
local void scan_tree (s, tree, max_code)
2463
    deflate_state *s;
2464
    ct_data *tree;   /* the tree to be scanned */
2465
    int max_code;    /* and its largest code of non zero frequency */
2466
{
2467
    int n;                     /* iterates over all tree elements */
2468
    int prevlen = -1;          /* last emitted length */
2469
    int curlen;                /* length of current code */
2470
    int nextlen = tree[0].Len; /* length of next code */
2471
    int count = 0;             /* repeat count of the current code */
2472
    int max_count = 7;         /* max repeat count */
2473
    int min_count = 4;         /* min repeat count */
2474
 
2475
    if (nextlen == 0) max_count = 138, min_count = 3;
2476
    tree[max_code+1].Len = (ush)0xffff; /* guard */
2477
 
2478
    for (n = 0; n <= max_code; n++) {
2479
        curlen = nextlen; nextlen = tree[n+1].Len;
2480
        if (++count < max_count && curlen == nextlen) {
2481
            continue;
2482
        } else if (count < min_count) {
2483
            s->bl_tree[curlen].Freq += count;
2484
        } else if (curlen != 0) {
2485
            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2486
            s->bl_tree[REP_3_6].Freq++;
2487
        } else if (count <= 10) {
2488
            s->bl_tree[REPZ_3_10].Freq++;
2489
        } else {
2490
            s->bl_tree[REPZ_11_138].Freq++;
2491
        }
2492
        count = 0; prevlen = curlen;
2493
        if (nextlen == 0) {
2494
            max_count = 138, min_count = 3;
2495
        } else if (curlen == nextlen) {
2496
            max_count = 6, min_count = 3;
2497
        } else {
2498
            max_count = 7, min_count = 4;
2499
        }
2500
    }
2501
}
2502
 
2503
/* ===========================================================================
2504
 * Send a literal or distance tree in compressed form, using the codes in
2505
 * bl_tree.
2506
 */
2507
local void send_tree (s, tree, max_code)
2508
    deflate_state *s;
2509
    ct_data *tree; /* the tree to be scanned */
2510
    int max_code;       /* and its largest code of non zero frequency */
2511
{
2512
    int n;                     /* iterates over all tree elements */
2513
    int prevlen = -1;          /* last emitted length */
2514
    int curlen;                /* length of current code */
2515
    int nextlen = tree[0].Len; /* length of next code */
2516
    int count = 0;             /* repeat count of the current code */
2517
    int max_count = 7;         /* max repeat count */
2518
    int min_count = 4;         /* min repeat count */
2519
 
2520
    /* tree[max_code+1].Len = -1; */  /* guard already set */
2521
    if (nextlen == 0) max_count = 138, min_count = 3;
2522
 
2523
    for (n = 0; n <= max_code; n++) {
2524
        curlen = nextlen; nextlen = tree[n+1].Len;
2525
        if (++count < max_count && curlen == nextlen) {
2526
            continue;
2527
        } else if (count < min_count) {
2528
            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2529
 
2530
        } else if (curlen != 0) {
2531
            if (curlen != prevlen) {
2532
                send_code(s, curlen, s->bl_tree); count--;
2533
            }
2534
            Assert(count >= 3 && count <= 6, " 3_6?");
2535
            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2536
 
2537
        } else if (count <= 10) {
2538
            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2539
 
2540
        } else {
2541
            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2542
        }
2543
        count = 0; prevlen = curlen;
2544
        if (nextlen == 0) {
2545
            max_count = 138, min_count = 3;
2546
        } else if (curlen == nextlen) {
2547
            max_count = 6, min_count = 3;
2548
        } else {
2549
            max_count = 7, min_count = 4;
2550
        }
2551
    }
2552
}
2553
 
2554
/* ===========================================================================
2555
 * Construct the Huffman tree for the bit lengths and return the index in
2556
 * bl_order of the last bit length code to send.
2557
 */
2558
local int build_bl_tree(s)
2559
    deflate_state *s;
2560
{
2561
    int max_blindex;  /* index of last bit length code of non zero freq */
2562
 
2563
    /* Determine the bit length frequencies for literal and distance trees */
2564
    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2565
    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2566
 
2567
    /* Build the bit length tree: */
2568
    build_tree(s, (tree_desc *)(&(s->bl_desc)));
2569
    /* opt_len now includes the length of the tree representations, except
2570
     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2571
     */
2572
 
2573
    /* Determine the number of bit length codes to send. The pkzip format
2574
     * requires that at least 4 bit length codes be sent. (appnote.txt says
2575
     * 3 but the actual value used is 4.)
2576
     */
2577
    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2578
        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2579
    }
2580
    /* Update opt_len to include the bit length tree and counts */
2581
    s->opt_len += 3*(max_blindex+1) + 5+5+4;
2582
    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2583
            s->opt_len, s->static_len));
2584
 
2585
    return max_blindex;
2586
}
2587
 
2588
/* ===========================================================================
2589
 * Send the header for a block using dynamic Huffman trees: the counts, the
2590
 * lengths of the bit length codes, the literal tree and the distance tree.
2591
 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2592
 */
2593
local void send_all_trees(s, lcodes, dcodes, blcodes)
2594
    deflate_state *s;
2595
    int lcodes, dcodes, blcodes; /* number of codes for each tree */
2596
{
2597
    int rank;                    /* index in bl_order */
2598
 
2599
    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2600
    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2601
            "too many codes");
2602
    Tracev((stderr, "\nbl counts: "));
2603
    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2604
    send_bits(s, dcodes-1,   5);
2605
    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
2606
    for (rank = 0; rank < blcodes; rank++) {
2607
        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2608
        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2609
    }
2610
    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2611
 
2612
    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2613
    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2614
 
2615
    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2616
    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2617
}
2618
 
2619
/* ===========================================================================
2620
 * Send a stored block
2621
 */
2622
void _tr_stored_block(s, buf, stored_len, eof)
2623
    deflate_state *s;
2624
    charf *buf;       /* input block */
2625
    ulg stored_len;   /* length of input block */
2626
    int eof;          /* true if this is the last block for a file */
2627
{
2628
    send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
2629
    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
2630
    s->compressed_len += (stored_len + 4) << 3;
2631
 
2632
    copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2633
}
2634
 
2635
/* Send just the `stored block' type code without any length bytes or data.
2636
 */
2637
void _tr_stored_type_only(s)
2638
    deflate_state *s;
2639
{
2640
    send_bits(s, (STORED_BLOCK << 1), 3);
2641
    bi_windup(s);
2642
    s->compressed_len = (s->compressed_len + 3) & ~7L;
2643
}
2644
 
2645
 
2646
/* ===========================================================================
2647
 * Send one empty static block to give enough lookahead for inflate.
2648
 * This takes 10 bits, of which 7 may remain in the bit buffer.
2649
 * The current inflate code requires 9 bits of lookahead. If the
2650
 * last two codes for the previous block (real code plus EOB) were coded
2651
 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
2652
 * the last real code. In this case we send two empty static blocks instead
2653
 * of one. (There are no problems if the previous block is stored or fixed.)
2654
 * To simplify the code, we assume the worst case of last real code encoded
2655
 * on one bit only.
2656
 */
2657
void _tr_align(s)
2658
    deflate_state *s;
2659
{
2660
    send_bits(s, STATIC_TREES<<1, 3);
2661
    send_code(s, END_BLOCK, static_ltree);
2662
    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2663
    bi_flush(s);
2664
    /* Of the 10 bits for the empty block, we have already sent
2665
     * (10 - bi_valid) bits. The lookahead for the last real code (before
2666
     * the EOB of the previous block) was thus at least one plus the length
2667
     * of the EOB plus what we have just sent of the empty static block.
2668
     */
2669
    if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
2670
        send_bits(s, STATIC_TREES<<1, 3);
2671
        send_code(s, END_BLOCK, static_ltree);
2672
        s->compressed_len += 10L;
2673
        bi_flush(s);
2674
    }
2675
    s->last_eob_len = 7;
2676
}
2677
 
2678
/* ===========================================================================
2679
 * Determine the best encoding for the current block: dynamic trees, static
2680
 * trees or store, and output the encoded block to the zip file. This function
2681
 * returns the total compressed length for the file so far.
2682
 */
2683
ulg _tr_flush_block(s, buf, stored_len, eof)
2684
    deflate_state *s;
2685
    charf *buf;       /* input block, or NULL if too old */
2686
    ulg stored_len;   /* length of input block */
2687
    int eof;          /* true if this is the last block for a file */
2688
{
2689
    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2690
    int max_blindex = 0;  /* index of last bit length code of non zero freq */
2691
 
2692
    /* Build the Huffman trees unless a stored block is forced */
2693
    if (s->level > 0) {
2694
 
2695
         /* Check if the file is ascii or binary */
2696
        if (s->data_type == Z_UNKNOWN) set_data_type(s);
2697
 
2698
        /* Construct the literal and distance trees */
2699
        build_tree(s, (tree_desc *)(&(s->l_desc)));
2700
        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2701
                s->static_len));
2702
 
2703
        build_tree(s, (tree_desc *)(&(s->d_desc)));
2704
        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2705
                s->static_len));
2706
        /* At this point, opt_len and static_len are the total bit lengths of
2707
         * the compressed block data, excluding the tree representations.
2708
         */
2709
 
2710
        /* Build the bit length tree for the above two trees, and get the index
2711
         * in bl_order of the last bit length code to send.
2712
         */
2713
        max_blindex = build_bl_tree(s);
2714
 
2715
        /* Determine the best encoding. Compute first the block length in bytes*/
2716
        opt_lenb = (s->opt_len+3+7)>>3;
2717
        static_lenb = (s->static_len+3+7)>>3;
2718
 
2719
        Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2720
                opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2721
                s->last_lit));
2722
 
2723
        if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2724
 
2725
    } else {
2726
        Assert(buf != (char*)0, "lost buf");
2727
        opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
2728
    }
2729
 
2730
    /* If compression failed and this is the first and last block,
2731
     * and if the .zip file can be seeked (to rewrite the local header),
2732
     * the whole file is transformed into a stored file:
2733
     */
2734
#ifdef STORED_FILE_OK
2735
#  ifdef FORCE_STORED_FILE
2736
    if (eof && s->compressed_len == 0L) { /* force stored file */
2737
#  else
2738
    if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
2739
#  endif
2740
        /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2741
        if (buf == (charf*)0) error ("block vanished");
2742
 
2743
        copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
2744
        s->compressed_len = stored_len << 3;
2745
        s->method = STORED;
2746
    } else
2747
#endif /* STORED_FILE_OK */
2748
 
2749
#ifdef FORCE_STORED
2750
    if (buf != (char*)0) { /* force stored block */
2751
#else
2752
    if (stored_len+4 <= opt_lenb && buf != (char*)0) {
2753
                       /* 4: two words for the lengths */
2754
#endif
2755
        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2756
         * Otherwise we can't have processed more than WSIZE input bytes since
2757
         * the last block flush, because compression would have been
2758
         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2759
         * transform a block into a stored block.
2760
         */
2761
        _tr_stored_block(s, buf, stored_len, eof);
2762
 
2763
#ifdef FORCE_STATIC
2764
    } else if (static_lenb >= 0) { /* force static trees */
2765
#else
2766
    } else if (static_lenb == opt_lenb) {
2767
#endif
2768
        send_bits(s, (STATIC_TREES<<1)+eof, 3);
2769
        compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2770
        s->compressed_len += 3 + s->static_len;
2771
    } else {
2772
        send_bits(s, (DYN_TREES<<1)+eof, 3);
2773
        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2774
                       max_blindex+1);
2775
        compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2776
        s->compressed_len += 3 + s->opt_len;
2777
    }
2778
    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2779
    init_block(s);
2780
 
2781
    if (eof) {
2782
        bi_windup(s);
2783
        s->compressed_len += 7;  /* align on byte boundary */
2784
    }
2785
    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2786
           s->compressed_len-7*eof));
2787
 
2788
    return s->compressed_len >> 3;
2789
}
2790
 
2791
/* ===========================================================================
2792
 * Save the match info and tally the frequency counts. Return true if
2793
 * the current block must be flushed.
2794
 */
2795
int _tr_tally (s, dist, lc)
2796
    deflate_state *s;
2797
    unsigned dist;  /* distance of matched string */
2798
    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
2799
{
2800
    s->d_buf[s->last_lit] = (ush)dist;
2801
    s->l_buf[s->last_lit++] = (uch)lc;
2802
    if (dist == 0) {
2803
        /* lc is the unmatched char */
2804
        s->dyn_ltree[lc].Freq++;
2805
    } else {
2806
        s->matches++;
2807
        /* Here, lc is the match length - MIN_MATCH */
2808
        dist--;             /* dist = match distance - 1 */
2809
        Assert((ush)dist < (ush)MAX_DIST(s) &&
2810
               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2811
               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
2812
 
2813
        s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2814
        s->dyn_dtree[d_code(dist)].Freq++;
2815
    }
2816
 
2817
    /* Try to guess if it is profitable to stop the current block here */
2818
    if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2819
        /* Compute an upper bound for the compressed length */
2820
        ulg out_length = (ulg)s->last_lit*8L;
2821
        ulg in_length = (ulg)((long)s->strstart - s->block_start);
2822
        int dcode;
2823
        for (dcode = 0; dcode < D_CODES; dcode++) {
2824
            out_length += (ulg)s->dyn_dtree[dcode].Freq *
2825
                (5L+extra_dbits[dcode]);
2826
        }
2827
        out_length >>= 3;
2828
        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2829
               s->last_lit, in_length, out_length,
2830
               100L - out_length*100L/in_length));
2831
        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2832
    }
2833
    return (s->last_lit == s->lit_bufsize-1);
2834
    /* We avoid equality with lit_bufsize because of wraparound at 64K
2835
     * on 16 bit machines and because stored blocks are restricted to
2836
     * 64K-1 bytes.
2837
     */
2838
}
2839
 
2840
/* ===========================================================================
2841
 * Send the block data compressed using the given Huffman trees
2842
 */
2843
local void compress_block(s, ltree, dtree)
2844
    deflate_state *s;
2845
    ct_data *ltree; /* literal tree */
2846
    ct_data *dtree; /* distance tree */
2847
{
2848
    unsigned dist;      /* distance of matched string */
2849
    int lc;             /* match length or unmatched char (if dist == 0) */
2850
    unsigned lx = 0;    /* running index in l_buf */
2851
    unsigned code;      /* the code to send */
2852
    int extra;          /* number of extra bits to send */
2853
 
2854
    if (s->last_lit != 0) do {
2855
        dist = s->d_buf[lx];
2856
        lc = s->l_buf[lx++];
2857
        if (dist == 0) {
2858
            send_code(s, lc, ltree); /* send a literal byte */
2859
            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2860
        } else {
2861
            /* Here, lc is the match length - MIN_MATCH */
2862
            code = length_code[lc];
2863
            send_code(s, code+LITERALS+1, ltree); /* send the length code */
2864
            extra = extra_lbits[code];
2865
            if (extra != 0) {
2866
                lc -= base_length[code];
2867
                send_bits(s, lc, extra);       /* send the extra length bits */
2868
            }
2869
            dist--; /* dist is now the match distance - 1 */
2870
            code = d_code(dist);
2871
            Assert (code < D_CODES, "bad d_code");
2872
 
2873
            send_code(s, code, dtree);       /* send the distance code */
2874
            extra = extra_dbits[code];
2875
            if (extra != 0) {
2876
                dist -= base_dist[code];
2877
                send_bits(s, dist, extra);   /* send the extra distance bits */
2878
            }
2879
        } /* literal or match pair ? */
2880
 
2881
        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2882
        Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2883
 
2884
    } while (lx < s->last_lit);
2885
 
2886
    send_code(s, END_BLOCK, ltree);
2887
    s->last_eob_len = ltree[END_BLOCK].Len;
2888
}
2889
 
2890
/* ===========================================================================
2891
 * Set the data type to ASCII or BINARY, using a crude approximation:
2892
 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2893
 * IN assertion: the fields freq of dyn_ltree are set and the total of all
2894
 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2895
 */
2896
local void set_data_type(s)
2897
    deflate_state *s;
2898
{
2899
    int n = 0;
2900
    unsigned ascii_freq = 0;
2901
    unsigned bin_freq = 0;
2902
    while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
2903
    while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
2904
    while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2905
    s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
2906
}
2907
 
2908
/* ===========================================================================
2909
 * Reverse the first len bits of a code, using straightforward code (a faster
2910
 * method would use a table)
2911
 * IN assertion: 1 <= len <= 15
2912
 */
2913
local unsigned bi_reverse(code, len)
2914
    unsigned code; /* the value to invert */
2915
    int len;       /* its bit length */
2916
{
2917
    register unsigned res = 0;
2918
    do {
2919
        res |= code & 1;
2920
        code >>= 1, res <<= 1;
2921
    } while (--len > 0);
2922
    return res >> 1;
2923
}
2924
 
2925
/* ===========================================================================
2926
 * Flush the bit buffer, keeping at most 7 bits in it.
2927
 */
2928
local void bi_flush(s)
2929
    deflate_state *s;
2930
{
2931
    if (s->bi_valid == 16) {
2932
        put_short(s, s->bi_buf);
2933
        s->bi_buf = 0;
2934
        s->bi_valid = 0;
2935
    } else if (s->bi_valid >= 8) {
2936
        put_byte(s, (Byte)s->bi_buf);
2937
        s->bi_buf >>= 8;
2938
        s->bi_valid -= 8;
2939
    }
2940
}
2941
 
2942
/* ===========================================================================
2943
 * Flush the bit buffer and align the output on a byte boundary
2944
 */
2945
local void bi_windup(s)
2946
    deflate_state *s;
2947
{
2948
    if (s->bi_valid > 8) {
2949
        put_short(s, s->bi_buf);
2950
    } else if (s->bi_valid > 0) {
2951
        put_byte(s, (Byte)s->bi_buf);
2952
    }
2953
    s->bi_buf = 0;
2954
    s->bi_valid = 0;
2955
#ifdef DEBUG_ZLIB
2956
    s->bits_sent = (s->bits_sent+7) & ~7;
2957
#endif
2958
}
2959
 
2960
/* ===========================================================================
2961
 * Copy a stored block, storing first the length and its
2962
 * one's complement if requested.
2963
 */
2964
local void copy_block(s, buf, len, header)
2965
    deflate_state *s;
2966
    charf    *buf;    /* the input data */
2967
    unsigned len;     /* its length */
2968
    int      header;  /* true if block header must be written */
2969
{
2970
    bi_windup(s);        /* align on byte boundary */
2971
    s->last_eob_len = 8; /* enough lookahead for inflate */
2972
 
2973
    if (header) {
2974
        put_short(s, (ush)len);
2975
        put_short(s, (ush)~len);
2976
#ifdef DEBUG_ZLIB
2977
        s->bits_sent += 2*16;
2978
#endif
2979
    }
2980
#ifdef DEBUG_ZLIB
2981
    s->bits_sent += (ulg)len<<3;
2982
#endif
2983
    /* bundle up the put_byte(s, *buf++) calls */
2984
    zmemcpy(&s->pending_buf[s->pending], buf, len);
2985
    s->pending += len;
2986
}
2987
/* --- trees.c */
2988
 
2989
/* +++ inflate.c */
2990
/* inflate.c -- zlib interface to inflate modules
2991
 * Copyright (C) 1995-1996 Mark Adler
2992
 * For conditions of distribution and use, see copyright notice in zlib.h
2993
 */
2994
 
2995
/* #include "zutil.h" */
2996
 
2997
/* +++ infblock.h */
2998
/* infblock.h -- header to use infblock.c
2999
 * Copyright (C) 1995-1996 Mark Adler
3000
 * For conditions of distribution and use, see copyright notice in zlib.h
3001
 */
3002
 
3003
/* WARNING: this file should *not* be used by applications. It is
3004
   part of the implementation of the compression library and is
3005
   subject to change. Applications should only use zlib.h.
3006
 */
3007
 
3008
struct inflate_blocks_state;
3009
typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3010
 
3011
extern inflate_blocks_statef * inflate_blocks_new OF((
3012
    z_streamp z,
3013
    check_func c,               /* check function */
3014
    uInt w));                   /* window size */
3015
 
3016
extern int inflate_blocks OF((
3017
    inflate_blocks_statef *,
3018
    z_streamp ,
3019
    int));                      /* initial return code */
3020
 
3021
extern void inflate_blocks_reset OF((
3022
    inflate_blocks_statef *,
3023
    z_streamp ,
3024
    uLongf *));                  /* check value on output */
3025
 
3026
extern int inflate_blocks_free OF((
3027
    inflate_blocks_statef *,
3028
    z_streamp ,
3029
    uLongf *));                  /* check value on output */
3030
 
3031
extern void inflate_set_dictionary OF((
3032
    inflate_blocks_statef *s,
3033
    const Bytef *d,  /* dictionary */
3034
    uInt  n));       /* dictionary length */
3035
 
3036
extern int inflate_addhistory OF((
3037
    inflate_blocks_statef *,
3038
    z_streamp));
3039
 
3040
extern int inflate_packet_flush OF((
3041
    inflate_blocks_statef *));
3042
/* --- infblock.h */
3043
 
3044
#ifndef NO_DUMMY_DECL
3045
struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
3046
#endif
3047
 
3048
/* inflate private state */
3049
struct internal_state {
3050
 
3051
  /* mode */
3052
  enum {
3053
      METHOD,   /* waiting for method byte */
3054
      FLAG,     /* waiting for flag byte */
3055
      DICT4,    /* four dictionary check bytes to go */
3056
      DICT3,    /* three dictionary check bytes to go */
3057
      DICT2,    /* two dictionary check bytes to go */
3058
      DICT1,    /* one dictionary check byte to go */
3059
      DICT0,    /* waiting for inflateSetDictionary */
3060
      BLOCKS,   /* decompressing blocks */
3061
      CHECK4,   /* four check bytes to go */
3062
      CHECK3,   /* three check bytes to go */
3063
      CHECK2,   /* two check bytes to go */
3064
      CHECK1,   /* one check byte to go */
3065
      DONE,     /* finished check, done */
3066
      BAD}      /* got an error--stay here */
3067
    mode;               /* current inflate mode */
3068
 
3069
  /* mode dependent information */
3070
  union {
3071
    uInt method;        /* if FLAGS, method byte */
3072
    struct {
3073
      uLong was;                /* computed check value */
3074
      uLong need;               /* stream check value */
3075
    } check;            /* if CHECK, check values to compare */
3076
    uInt marker;        /* if BAD, inflateSync's marker bytes count */
3077
  } sub;        /* submode */
3078
 
3079
  /* mode independent information */
3080
  int  nowrap;          /* flag for no wrapper */
3081
  uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
3082
  inflate_blocks_statef
3083
    *blocks;            /* current inflate_blocks state */
3084
 
3085
};
3086
 
3087
 
3088
int inflateReset(z)
3089
z_streamp z;
3090
{
3091
  uLong c;
3092
 
3093
  if (z == Z_NULL || z->state == Z_NULL)
3094
    return Z_STREAM_ERROR;
3095
  z->total_in = z->total_out = 0;
3096
  z->msg = Z_NULL;
3097
  z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3098
  inflate_blocks_reset(z->state->blocks, z, &c);
3099
  Trace((stderr, "inflate: reset\n"));
3100
  return Z_OK;
3101
}
3102
 
3103
 
3104
int inflateEnd(z)
3105
z_streamp z;
3106
{
3107
  uLong c;
3108
 
3109
  if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3110
    return Z_STREAM_ERROR;
3111
  if (z->state->blocks != Z_NULL)
3112
    inflate_blocks_free(z->state->blocks, z, &c);
3113
  ZFREE(z, z->state);
3114
  z->state = Z_NULL;
3115
  Trace((stderr, "inflate: end\n"));
3116
  return Z_OK;
3117
}
3118
 
3119
 
3120
int inflateInit2_(z, w, version, stream_size)
3121
z_streamp z;
3122
int w;
3123
const char *version;
3124
int stream_size;
3125
{
3126
  if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
3127
      stream_size != sizeof(z_stream))
3128
      return Z_VERSION_ERROR;
3129
 
3130
  /* initialize state */
3131
  if (z == Z_NULL)
3132
    return Z_STREAM_ERROR;
3133
  z->msg = Z_NULL;
3134
#ifndef NO_ZCFUNCS
3135
  if (z->zalloc == Z_NULL)
3136
  {
3137
    z->zalloc = zcalloc;
3138
    z->opaque = (voidpf)0;
3139
  }
3140
  if (z->zfree == Z_NULL) z->zfree = zcfree;
3141
#endif
3142
  if ((z->state = (struct internal_state FAR *)
3143
       ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
3144
    return Z_MEM_ERROR;
3145
  z->state->blocks = Z_NULL;
3146
 
3147
  /* handle undocumented nowrap option (no zlib header or check) */
3148
  z->state->nowrap = 0;
3149
  if (w < 0)
3150
  {
3151
    w = - w;
3152
    z->state->nowrap = 1;
3153
  }
3154
 
3155
  /* set window size */
3156
  if (w < 8 || w > 15)
3157
  {
3158
    inflateEnd(z);
3159
    return Z_STREAM_ERROR;
3160
  }
3161
  z->state->wbits = (uInt)w;
3162
 
3163
  /* create inflate_blocks state */
3164
  if ((z->state->blocks =
3165
      inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
3166
      == Z_NULL)
3167
  {
3168
    inflateEnd(z);
3169
    return Z_MEM_ERROR;
3170
  }
3171
  Trace((stderr, "inflate: allocated\n"));
3172
 
3173
  /* reset state */
3174
  inflateReset(z);
3175
  return Z_OK;
3176
}
3177
 
3178
 
3179
int inflateInit_(z, version, stream_size)
3180
z_streamp z;
3181
const char *version;
3182
int stream_size;
3183
{
3184
  return inflateInit2_(z, DEF_WBITS, version, stream_size);
3185
}
3186
 
3187
 
3188
#define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3189
#define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3190
 
3191
int inflate(z, f)
3192
z_streamp z;
3193
int f;
3194
{
3195
  int r;
3196
  uInt b;
3197
 
3198
  if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0)
3199
    return Z_STREAM_ERROR;
3200
  r = Z_BUF_ERROR;
3201
  while (1) switch (z->state->mode)
3202
  {
3203
    case METHOD:
3204
      NEEDBYTE
3205
      if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3206
      {
3207
        z->state->mode = BAD;
3208
        z->msg = (char*)"unknown compression method";
3209
        z->state->sub.marker = 5;       /* can't try inflateSync */
3210
        break;
3211
      }
3212
      if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3213
      {
3214
        z->state->mode = BAD;
3215
        z->msg = (char*)"invalid window size";
3216
        z->state->sub.marker = 5;       /* can't try inflateSync */
3217
        break;
3218
      }
3219
      z->state->mode = FLAG;
3220
    case FLAG:
3221
      NEEDBYTE
3222
      b = NEXTBYTE;
3223
      if (((z->state->sub.method << 8) + b) % 31)
3224
      {
3225
        z->state->mode = BAD;
3226
        z->msg = (char*)"incorrect header check";
3227
        z->state->sub.marker = 5;       /* can't try inflateSync */
3228
        break;
3229
      }
3230
      Trace((stderr, "inflate: zlib header ok\n"));
3231
      if (!(b & PRESET_DICT))
3232
      {
3233
        z->state->mode = BLOCKS;
3234
        break;
3235
      }
3236
      z->state->mode = DICT4;
3237
    case DICT4:
3238
      NEEDBYTE
3239
      z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3240
      z->state->mode = DICT3;
3241
    case DICT3:
3242
      NEEDBYTE
3243
      z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3244
      z->state->mode = DICT2;
3245
    case DICT2:
3246
      NEEDBYTE
3247
      z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3248
      z->state->mode = DICT1;
3249
    case DICT1:
3250
      NEEDBYTE
3251
      z->state->sub.check.need += (uLong)NEXTBYTE;
3252
      z->adler = z->state->sub.check.need;
3253
      z->state->mode = DICT0;
3254
      return Z_NEED_DICT;
3255
    case DICT0:
3256
      z->state->mode = BAD;
3257
      z->msg = (char*)"need dictionary";
3258
      z->state->sub.marker = 0;       /* can try inflateSync */
3259
      return Z_STREAM_ERROR;
3260
    case BLOCKS:
3261
      r = inflate_blocks(z->state->blocks, z, r);
3262
      if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
3263
          r = inflate_packet_flush(z->state->blocks);
3264
      if (r == Z_DATA_ERROR)
3265
      {
3266
        z->state->mode = BAD;
3267
        z->state->sub.marker = 0;       /* can try inflateSync */
3268
        break;
3269
      }
3270
      if (r != Z_STREAM_END)
3271
        return r;
3272
      r = Z_OK;
3273
      inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
3274
      if (z->state->nowrap)
3275
      {
3276
        z->state->mode = DONE;
3277
        break;
3278
      }
3279
      z->state->mode = CHECK4;
3280
    case CHECK4:
3281
      NEEDBYTE
3282
      z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3283
      z->state->mode = CHECK3;
3284
    case CHECK3:
3285
      NEEDBYTE
3286
      z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3287
      z->state->mode = CHECK2;
3288
    case CHECK2:
3289
      NEEDBYTE
3290
      z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3291
      z->state->mode = CHECK1;
3292
    case CHECK1:
3293
      NEEDBYTE
3294
      z->state->sub.check.need += (uLong)NEXTBYTE;
3295
 
3296
      if (z->state->sub.check.was != z->state->sub.check.need)
3297
      {
3298
        z->state->mode = BAD;
3299
        z->msg = (char*)"incorrect data check";
3300
        z->state->sub.marker = 5;       /* can't try inflateSync */
3301
        break;
3302
      }
3303
      Trace((stderr, "inflate: zlib check ok\n"));
3304
      z->state->mode = DONE;
3305
    case DONE:
3306
      return Z_STREAM_END;
3307
    case BAD:
3308
      return Z_DATA_ERROR;
3309
    default:
3310
      return Z_STREAM_ERROR;
3311
  }
3312
 
3313
 empty:
3314
  if (f != Z_PACKET_FLUSH)
3315
    return r;
3316
  z->state->mode = BAD;
3317
  z->msg = (char *)"need more for packet flush";
3318
  z->state->sub.marker = 0;       /* can try inflateSync */
3319
  return Z_DATA_ERROR;
3320
}
3321
 
3322
 
3323
int inflateSetDictionary(z, dictionary, dictLength)
3324
z_streamp z;
3325
const Bytef *dictionary;
3326
uInt  dictLength;
3327
{
3328
  uInt length = dictLength;
3329
 
3330
  if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3331
    return Z_STREAM_ERROR;
3332
 
3333
  if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
3334
  z->adler = 1L;
3335
 
3336
  if (length >= ((uInt)1<<z->state->wbits))
3337
  {
3338
    length = (1<<z->state->wbits)-1;
3339
    dictionary += dictLength - length;
3340
  }
3341
  inflate_set_dictionary(z->state->blocks, dictionary, length);
3342
  z->state->mode = BLOCKS;
3343
  return Z_OK;
3344
}
3345
 
3346
/*
3347
 * This subroutine adds the data at next_in/avail_in to the output history
3348
 * without performing any output.  The output buffer must be "caught up";
3349
 * i.e. no pending output (hence s->read equals s->write), and the state must
3350
 * be BLOCKS (i.e. we should be willing to see the start of a series of
3351
 * BLOCKS).  On exit, the output will also be caught up, and the checksum
3352
 * will have been updated if need be.
3353
 */
3354
 
3355
int inflateIncomp(z)
3356
z_stream *z;
3357
{
3358
    if (z->state->mode != BLOCKS)
3359
        return Z_DATA_ERROR;
3360
    return inflate_addhistory(z->state->blocks, z);
3361
}
3362
 
3363
 
3364
int inflateSync(z)
3365
z_streamp z;
3366
{
3367
  uInt n;       /* number of bytes to look at */
3368
  Bytef *p;     /* pointer to bytes */
3369
  uInt m;       /* number of marker bytes found in a row */
3370
  uLong r, w;   /* temporaries to save total_in and total_out */
3371
 
3372
  /* set up */
3373
  if (z == Z_NULL || z->state == Z_NULL)
3374
    return Z_STREAM_ERROR;
3375
  if (z->state->mode != BAD)
3376
  {
3377
    z->state->mode = BAD;
3378
    z->state->sub.marker = 0;
3379
  }
3380
  if ((n = z->avail_in) == 0)
3381
    return Z_BUF_ERROR;
3382
  p = z->next_in;
3383
  m = z->state->sub.marker;
3384
 
3385
  /* search */
3386
  while (n && m < 4)
3387
  {
3388
    if (*p == (Byte)(m < 2 ? 0 : 0xff))
3389
      m++;
3390
    else if (*p)
3391
      m = 0;
3392
    else
3393
      m = 4 - m;
3394
    p++, n--;
3395
  }
3396
 
3397
  /* restore */
3398
  z->total_in += p - z->next_in;
3399
  z->next_in = p;
3400
  z->avail_in = n;
3401
  z->state->sub.marker = m;
3402
 
3403
  /* return no joy or set up to restart on a new block */
3404
  if (m != 4)
3405
    return Z_DATA_ERROR;
3406
  r = z->total_in;  w = z->total_out;
3407
  inflateReset(z);
3408
  z->total_in = r;  z->total_out = w;
3409
  z->state->mode = BLOCKS;
3410
  return Z_OK;
3411
}
3412
 
3413
#undef NEEDBYTE
3414
#undef NEXTBYTE
3415
/* --- inflate.c */
3416
 
3417
/* +++ infblock.c */
3418
/* infblock.c -- interpret and process block types to last block
3419
 * Copyright (C) 1995-1996 Mark Adler
3420
 * For conditions of distribution and use, see copyright notice in zlib.h
3421
 */
3422
 
3423
/* #include "zutil.h" */
3424
/* #include "infblock.h" */
3425
 
3426
/* +++ inftrees.h */
3427
/* inftrees.h -- header to use inftrees.c
3428
 * Copyright (C) 1995-1996 Mark Adler
3429
 * For conditions of distribution and use, see copyright notice in zlib.h
3430
 */
3431
 
3432
/* WARNING: this file should *not* be used by applications. It is
3433
   part of the implementation of the compression library and is
3434
   subject to change. Applications should only use zlib.h.
3435
 */
3436
 
3437
/* Huffman code lookup table entry--this entry is four bytes for machines
3438
   that have 16-bit pointers (e.g. PC's in the small or medium model). */
3439
 
3440
typedef struct inflate_huft_s FAR inflate_huft;
3441
 
3442
struct inflate_huft_s {
3443
  union {
3444
    struct {
3445
      Byte Exop;        /* number of extra bits or operation */
3446
      Byte Bits;        /* number of bits in this code or subcode */
3447
    } what;
3448
    Bytef *pad;         /* pad structure to a power of 2 (4 bytes for */
3449
  } word;               /*  16-bit, 8 bytes for 32-bit machines) */
3450
  union {
3451
    uInt Base;          /* literal, length base, or distance base */
3452
    inflate_huft *Next; /* pointer to next level of table */
3453
  } more;
3454
};
3455
 
3456
#ifdef DEBUG_ZLIB
3457
  extern uInt inflate_hufts;
3458
#endif
3459
 
3460
extern int inflate_trees_bits OF((
3461
    uIntf *,                    /* 19 code lengths */
3462
    uIntf *,                    /* bits tree desired/actual depth */
3463
    inflate_huft * FAR *,       /* bits tree result */
3464
    z_streamp ));               /* for zalloc, zfree functions */
3465
 
3466
extern int inflate_trees_dynamic OF((
3467
    uInt,                       /* number of literal/length codes */
3468
    uInt,                       /* number of distance codes */
3469
    uIntf *,                    /* that many (total) code lengths */
3470
    uIntf *,                    /* literal desired/actual bit depth */
3471
    uIntf *,                    /* distance desired/actual bit depth */
3472
    inflate_huft * FAR *,       /* literal/length tree result */
3473
    inflate_huft * FAR *,       /* distance tree result */
3474
    z_streamp ));               /* for zalloc, zfree functions */
3475
 
3476
extern int inflate_trees_fixed OF((
3477
    uIntf *,                    /* literal desired/actual bit depth */
3478
    uIntf *,                    /* distance desired/actual bit depth */
3479
    inflate_huft * FAR *,       /* literal/length tree result */
3480
    inflate_huft * FAR *));     /* distance tree result */
3481
 
3482
extern int inflate_trees_free OF((
3483
    inflate_huft *,             /* tables to free */
3484
    z_streamp ));               /* for zfree function */
3485
 
3486
/* --- inftrees.h */
3487
 
3488
/* +++ infcodes.h */
3489
/* infcodes.h -- header to use infcodes.c
3490
 * Copyright (C) 1995-1996 Mark Adler
3491
 * For conditions of distribution and use, see copyright notice in zlib.h
3492
 */
3493
 
3494
/* WARNING: this file should *not* be used by applications. It is
3495
   part of the implementation of the compression library and is
3496
   subject to change. Applications should only use zlib.h.
3497
 */
3498
 
3499
struct inflate_codes_state;
3500
typedef struct inflate_codes_state FAR inflate_codes_statef;
3501
 
3502
extern inflate_codes_statef *inflate_codes_new OF((
3503
    uInt, uInt,
3504
    inflate_huft *, inflate_huft *,
3505
    z_streamp ));
3506
 
3507
extern int inflate_codes OF((
3508
    inflate_blocks_statef *,
3509
    z_streamp ,
3510
    int));
3511
 
3512
extern void inflate_codes_free OF((
3513
    inflate_codes_statef *,
3514
    z_streamp ));
3515
 
3516
/* --- infcodes.h */
3517
 
3518
/* +++ infutil.h */
3519
/* infutil.h -- types and macros common to blocks and codes
3520
 * Copyright (C) 1995-1996 Mark Adler
3521
 * For conditions of distribution and use, see copyright notice in zlib.h
3522
 */
3523
 
3524
/* WARNING: this file should *not* be used by applications. It is
3525
   part of the implementation of the compression library and is
3526
   subject to change. Applications should only use zlib.h.
3527
 */
3528
 
3529
#ifndef _INFUTIL_H
3530
#define _INFUTIL_H
3531
 
3532
typedef enum {
3533
      TYPE,     /* get type bits (3, including end bit) */
3534
      LENS,     /* get lengths for stored */
3535
      STORED,   /* processing stored block */
3536
      TABLE,    /* get table lengths */
3537
      BTREE,    /* get bit lengths tree for a dynamic block */
3538
      DTREE,    /* get length, distance trees for a dynamic block */
3539
      CODES,    /* processing fixed or dynamic block */
3540
      DRY,      /* output remaining window bytes */
3541
      DONEB,    /* finished last block, done */
3542
      BADB}     /* got a data error--stuck here */
3543
inflate_block_mode;
3544
 
3545
/* inflate blocks semi-private state */
3546
struct inflate_blocks_state {
3547
 
3548
  /* mode */
3549
  inflate_block_mode  mode;     /* current inflate_block mode */
3550
 
3551
  /* mode dependent information */
3552
  union {
3553
    uInt left;          /* if STORED, bytes left to copy */
3554
    struct {
3555
      uInt table;               /* table lengths (14 bits) */
3556
      uInt index;               /* index into blens (or border) */
3557
      uIntf *blens;             /* bit lengths of codes */
3558
      uInt bb;                  /* bit length tree depth */
3559
      inflate_huft *tb;         /* bit length decoding tree */
3560
    } trees;            /* if DTREE, decoding info for trees */
3561
    struct {
3562
      inflate_huft *tl;
3563
      inflate_huft *td;         /* trees to free */
3564
      inflate_codes_statef
3565
         *codes;
3566
    } decode;           /* if CODES, current state */
3567
  } sub;                /* submode */
3568
  uInt last;            /* true if this block is the last block */
3569
 
3570
  /* mode independent information */
3571
  uInt bitk;            /* bits in bit buffer */
3572
  uLong bitb;           /* bit buffer */
3573
  Bytef *window;        /* sliding window */
3574
  Bytef *end;           /* one byte after sliding window */
3575
  Bytef *read;          /* window read pointer */
3576
  Bytef *write;         /* window write pointer */
3577
  check_func checkfn;   /* check function */
3578
  uLong check;          /* check on output */
3579
 
3580
};
3581
 
3582
 
3583
/* defines for inflate input/output */
3584
/*   update pointers and return */
3585
#define UPDBITS {s->bitb=b;s->bitk=k;}
3586
#define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3587
#define UPDOUT {s->write=q;}
3588
#define UPDATE {UPDBITS UPDIN UPDOUT}
3589
#define LEAVE {UPDATE return inflate_flush(s,z,r);}
3590
/*   get bytes and bits */
3591
#define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3592
#define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3593
#define NEXTBYTE (n--,*p++)
3594
#define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3595
#define DUMPBITS(j) {b>>=(j);k-=(j);}
3596
/*   output bytes */
3597
#define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3598
#define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3599
#define WWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
3600
#define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3601
#define NEEDOUT {if(m==0){WWRAP if(m==0){FLUSH WWRAP if(m==0) LEAVE}}r=Z_OK;}
3602
#define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3603
/*   load local pointers */
3604
#define LOAD {LOADIN LOADOUT}
3605
 
3606
/* masks for lower bits (size given to avoid silly warnings with Visual C++) */
3607
extern uInt inflate_mask[17];
3608
 
3609
/* copy as much as possible from the sliding window to the output area */
3610
extern int inflate_flush OF((
3611
    inflate_blocks_statef *,
3612
    z_streamp ,
3613
    int));
3614
 
3615
#ifndef NO_DUMMY_DECL
3616
struct internal_state      {int dummy;}; /* for buggy compilers */
3617
#endif
3618
 
3619
#endif
3620
/* --- infutil.h */
3621
 
3622
#ifndef NO_DUMMY_DECL
3623
struct inflate_codes_state {int dummy;}; /* for buggy compilers */
3624
#endif
3625
 
3626
/* Table for deflate from PKZIP's appnote.txt. */
3627
local const uInt border[] = { /* Order of the bit length code lengths */
3628
        16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3629
 
3630
/*
3631
   Notes beyond the 1.93a appnote.txt:
3632
 
3633
   1. Distance pointers never point before the beginning of the output
3634
      stream.
3635
   2. Distance pointers can point back across blocks, up to 32k away.
3636
   3. There is an implied maximum of 7 bits for the bit length table and
3637
      15 bits for the actual data.
3638
   4. If only one code exists, then it is encoded using one bit.  (Zero
3639
      would be more efficient, but perhaps a little confusing.)  If two
3640
      codes exist, they are coded using one bit each (0 and 1).
3641
   5. There is no way of sending zero distance codes--a dummy must be
3642
      sent if there are none.  (History: a pre 2.0 version of PKZIP would
3643
      store blocks with no distance codes, but this was discovered to be
3644
      too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
3645
      zero distance codes, which is sent as one code of zero bits in
3646
      length.
3647
   6. There are up to 286 literal/length codes.  Code 256 represents the
3648
      end-of-block.  Note however that the static length tree defines
3649
      288 codes just to fill out the Huffman codes.  Codes 286 and 287
3650
      cannot be used though, since there is no length base or extra bits
3651
      defined for them.  Similarily, there are up to 30 distance codes.
3652
      However, static trees define 32 codes (all 5 bits) to fill out the
3653
      Huffman codes, but the last two had better not show up in the data.
3654
   7. Unzip can check dynamic Huffman blocks for complete code sets.
3655
      The exception is that a single code would not be complete (see #4).
3656
   8. The five bits following the block type is really the number of
3657
      literal codes sent minus 257.
3658
   9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3659
      (1+6+6).  Therefore, to output three times the length, you output
3660
      three codes (1+1+1), whereas to output four times the same length,
3661
      you only need two codes (1+3).  Hmm.
3662
  10. In the tree reconstruction algorithm, Code = Code + Increment
3663
      only if BitLength(i) is not zero.  (Pretty obvious.)
3664
  11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
3665
  12. Note: length code 284 can represent 227-258, but length code 285
3666
      really is 258.  The last length deserves its own, short code
3667
      since it gets used a lot in very redundant files.  The length
3668
      258 is special since 258 - 3 (the min match length) is 255.
3669
  13. The literal/length and distance code bit lengths are read as a
3670
      single stream of lengths.  It is possible (and advantageous) for
3671
      a repeat code (16, 17, or 18) to go across the boundary between
3672
      the two sets of lengths.
3673
 */
3674
 
3675
 
3676
void inflate_blocks_reset(s, z, c)
3677
inflate_blocks_statef *s;
3678
z_streamp z;
3679
uLongf *c;
3680
{
3681
  if (s->checkfn != Z_NULL)
3682
    *c = s->check;
3683
  if (s->mode == BTREE || s->mode == DTREE)
3684
    ZFREE(z, s->sub.trees.blens);
3685
  if (s->mode == CODES)
3686
  {
3687
    inflate_codes_free(s->sub.decode.codes, z);
3688
    inflate_trees_free(s->sub.decode.td, z);
3689
    inflate_trees_free(s->sub.decode.tl, z);
3690
  }
3691
  s->mode = TYPE;
3692
  s->bitk = 0;
3693
  s->bitb = 0;
3694
  s->read = s->write = s->window;
3695
  if (s->checkfn != Z_NULL)
3696
    z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
3697
  Trace((stderr, "inflate:   blocks reset\n"));
3698
}
3699
 
3700
 
3701
inflate_blocks_statef *inflate_blocks_new(z, c, w)
3702
z_streamp z;
3703
check_func c;
3704
uInt w;
3705
{
3706
  inflate_blocks_statef *s;
3707
 
3708
  if ((s = (inflate_blocks_statef *)ZALLOC
3709
       (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3710
    return s;
3711
  if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3712
  {
3713
    ZFREE(z, s);
3714
    return Z_NULL;
3715
  }
3716
  s->end = s->window + w;
3717
  s->checkfn = c;
3718
  s->mode = TYPE;
3719
  Trace((stderr, "inflate:   blocks allocated\n"));
3720
  inflate_blocks_reset(s, z, &s->check);
3721
  return s;
3722
}
3723
 
3724
 
3725
#ifdef DEBUG_ZLIB
3726
  extern uInt inflate_hufts;
3727
#endif
3728
int inflate_blocks(s, z, r)
3729
inflate_blocks_statef *s;
3730
z_streamp z;
3731
int r;
3732
{
3733
  uInt t;               /* temporary storage */
3734
  uLong b;              /* bit buffer */
3735
  uInt k;               /* bits in bit buffer */
3736
  Bytef *p;             /* input data pointer */
3737
  uInt n;               /* bytes available there */
3738
  Bytef *q;             /* output window write pointer */
3739
  uInt m;               /* bytes to end of window or read pointer */
3740
 
3741
  /* copy input/output information to locals (UPDATE macro restores) */
3742
  LOAD
3743
 
3744
  /* process input based on current state */
3745
  while (1) switch (s->mode)
3746
  {
3747
    case TYPE:
3748
      NEEDBITS(3)
3749
      t = (uInt)b & 7;
3750
      s->last = t & 1;
3751
      switch (t >> 1)
3752
      {
3753
        case 0:                         /* stored */
3754
          Trace((stderr, "inflate:     stored block%s\n",
3755
                 s->last ? " (last)" : ""));
3756
          DUMPBITS(3)
3757
          t = k & 7;                    /* go to byte boundary */
3758
          DUMPBITS(t)
3759
          s->mode = LENS;               /* get length of stored block */
3760
          break;
3761
        case 1:                         /* fixed */
3762
          Trace((stderr, "inflate:     fixed codes block%s\n",
3763
                 s->last ? " (last)" : ""));
3764
          {
3765
            uInt bl, bd;
3766
            inflate_huft *tl, *td;
3767
 
3768
            inflate_trees_fixed(&bl, &bd, &tl, &td);
3769
            s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3770
            if (s->sub.decode.codes == Z_NULL)
3771
            {
3772
              r = Z_MEM_ERROR;
3773
              LEAVE
3774
            }
3775
            s->sub.decode.tl = Z_NULL;  /* don't try to free these */
3776
            s->sub.decode.td = Z_NULL;
3777
          }
3778
          DUMPBITS(3)
3779
          s->mode = CODES;
3780
          break;
3781
        case 2:                         /* dynamic */
3782
          Trace((stderr, "inflate:     dynamic codes block%s\n",
3783
                 s->last ? " (last)" : ""));
3784
          DUMPBITS(3)
3785
          s->mode = TABLE;
3786
          break;
3787
        case 3:                         /* illegal */
3788
          DUMPBITS(3)
3789
          s->mode = BADB;
3790
          z->msg = (char*)"invalid block type";
3791
          r = Z_DATA_ERROR;
3792
          LEAVE
3793
      }
3794
      break;
3795
    case LENS:
3796
      NEEDBITS(32)
3797
      if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
3798
      {
3799
        s->mode = BADB;
3800
        z->msg = (char*)"invalid stored block lengths";
3801
        r = Z_DATA_ERROR;
3802
        LEAVE
3803
      }
3804
      s->sub.left = (uInt)b & 0xffff;
3805
      b = k = 0;                      /* dump bits */
3806
      Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
3807
      s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
3808
      break;
3809
    case STORED:
3810
      if (n == 0)
3811
        LEAVE
3812
      NEEDOUT
3813
      t = s->sub.left;
3814
      if (t > n) t = n;
3815
      if (t > m) t = m;
3816
      zmemcpy(q, p, t);
3817
      p += t;  n -= t;
3818
      q += t;  m -= t;
3819
      if ((s->sub.left -= t) != 0)
3820
        break;
3821
      Tracev((stderr, "inflate:       stored end, %lu total out\n",
3822
              z->total_out + (q >= s->read ? q - s->read :
3823
              (s->end - s->read) + (q - s->window))));
3824
      s->mode = s->last ? DRY : TYPE;
3825
      break;
3826
    case TABLE:
3827
      NEEDBITS(14)
3828
      s->sub.trees.table = t = (uInt)b & 0x3fff;
3829
#ifndef PKZIP_BUG_WORKAROUND
3830
      if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3831
      {
3832
        s->mode = BADB;
3833
        z->msg = (char*)"too many length or distance symbols";
3834
        r = Z_DATA_ERROR;
3835
        LEAVE
3836
      }
3837
#endif
3838
      t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3839
      if (t < 19)
3840
        t = 19;
3841
      if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3842
      {
3843
        r = Z_MEM_ERROR;
3844
        LEAVE
3845
      }
3846
      DUMPBITS(14)
3847
      s->sub.trees.index = 0;
3848
      Tracev((stderr, "inflate:       table sizes ok\n"));
3849
      s->mode = BTREE;
3850
    case BTREE:
3851
      while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3852
      {
3853
        NEEDBITS(3)
3854
        s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3855
        DUMPBITS(3)
3856
      }
3857
      while (s->sub.trees.index < 19)
3858
        s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3859
      s->sub.trees.bb = 7;
3860
      t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3861
                             &s->sub.trees.tb, z);
3862
      if (t != Z_OK)
3863
      {
3864
        ZFREE(z, s->sub.trees.blens);
3865
        r = t;
3866
        if (r == Z_DATA_ERROR)
3867
          s->mode = BADB;
3868
        LEAVE
3869
      }
3870
      s->sub.trees.index = 0;
3871
      Tracev((stderr, "inflate:       bits tree ok\n"));
3872
      s->mode = DTREE;
3873
    case DTREE:
3874
      while (t = s->sub.trees.table,
3875
             s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3876
      {
3877
        inflate_huft *h;
3878
        uInt i, j, c;
3879
 
3880
        t = s->sub.trees.bb;
3881
        NEEDBITS(t)
3882
        h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3883
        t = h->word.what.Bits;
3884
        c = h->more.Base;
3885
        if (c < 16)
3886
        {
3887
          DUMPBITS(t)
3888
          s->sub.trees.blens[s->sub.trees.index++] = c;
3889
        }
3890
        else /* c == 16..18 */
3891
        {
3892
          i = c == 18 ? 7 : c - 14;
3893
          j = c == 18 ? 11 : 3;
3894
          NEEDBITS(t + i)
3895
          DUMPBITS(t)
3896
          j += (uInt)b & inflate_mask[i];
3897
          DUMPBITS(i)
3898
          i = s->sub.trees.index;
3899
          t = s->sub.trees.table;
3900
          if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3901
              (c == 16 && i < 1))
3902
          {
3903
            inflate_trees_free(s->sub.trees.tb, z);
3904
            ZFREE(z, s->sub.trees.blens);
3905
            s->mode = BADB;
3906
            z->msg = (char*)"invalid bit length repeat";
3907
            r = Z_DATA_ERROR;
3908
            LEAVE
3909
          }
3910
          c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3911
          do {
3912
            s->sub.trees.blens[i++] = c;
3913
          } while (--j);
3914
          s->sub.trees.index = i;
3915
        }
3916
      }
3917
      inflate_trees_free(s->sub.trees.tb, z);
3918
      s->sub.trees.tb = Z_NULL;
3919
      {
3920
        uInt bl, bd;
3921
        inflate_huft *tl, *td;
3922
        inflate_codes_statef *c;
3923
 
3924
        bl = 9;         /* must be <= 9 for lookahead assumptions */
3925
        bd = 6;         /* must be <= 9 for lookahead assumptions */
3926
        t = s->sub.trees.table;
3927
#ifdef DEBUG_ZLIB
3928
      inflate_hufts = 0;
3929
#endif
3930
        t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3931
                                  s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3932
        ZFREE(z, s->sub.trees.blens);
3933
        if (t != Z_OK)
3934
        {
3935
          if (t == (uInt)Z_DATA_ERROR)
3936
            s->mode = BADB;
3937
          r = t;
3938
          LEAVE
3939
        }
3940
        Tracev((stderr, "inflate:       trees ok, %d * %d bytes used\n",
3941
              inflate_hufts, sizeof(inflate_huft)));
3942
        if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3943
        {
3944
          inflate_trees_free(td, z);
3945
          inflate_trees_free(tl, z);
3946
          r = Z_MEM_ERROR;
3947
          LEAVE
3948
        }
3949
        s->sub.decode.codes = c;
3950
        s->sub.decode.tl = tl;
3951
        s->sub.decode.td = td;
3952
      }
3953
      s->mode = CODES;
3954
    case CODES:
3955
      UPDATE
3956
      if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3957
        return inflate_flush(s, z, r);
3958
      r = Z_OK;
3959
      inflate_codes_free(s->sub.decode.codes, z);
3960
      inflate_trees_free(s->sub.decode.td, z);
3961
      inflate_trees_free(s->sub.decode.tl, z);
3962
      LOAD
3963
      Tracev((stderr, "inflate:       codes end, %lu total out\n",
3964
              z->total_out + (q >= s->read ? q - s->read :
3965
              (s->end - s->read) + (q - s->window))));
3966
      if (!s->last)
3967
      {
3968
        s->mode = TYPE;
3969
        break;
3970
      }
3971
      if (k > 7)              /* return unused byte, if any */
3972
      {
3973
        Assert(k < 16, "inflate_codes grabbed too many bytes")
3974
        k -= 8;
3975
        n++;
3976
        p--;                    /* can always return one */
3977
      }
3978
      s->mode = DRY;
3979
    case DRY:
3980
      FLUSH
3981
      if (s->read != s->write)
3982
        LEAVE
3983
      s->mode = DONEB;
3984
    case DONEB:
3985
      r = Z_STREAM_END;
3986
      LEAVE
3987
    case BADB:
3988
      r = Z_DATA_ERROR;
3989
      LEAVE
3990
    default:
3991
      r = Z_STREAM_ERROR;
3992
      LEAVE
3993
  }
3994
}
3995
 
3996
 
3997
int inflate_blocks_free(s, z, c)
3998
inflate_blocks_statef *s;
3999
z_streamp z;
4000
uLongf *c;
4001
{
4002
  inflate_blocks_reset(s, z, c);
4003
  ZFREE(z, s->window);
4004
  ZFREE(z, s);
4005
  Trace((stderr, "inflate:   blocks freed\n"));
4006
  return Z_OK;
4007
}
4008
 
4009
 
4010
void inflate_set_dictionary(s, d, n)
4011
inflate_blocks_statef *s;
4012
const Bytef *d;
4013
uInt  n;
4014
{
4015
  zmemcpy((charf *)s->window, d, n);
4016
  s->read = s->write = s->window + n;
4017
}
4018
 
4019
/*
4020
 * This subroutine adds the data at next_in/avail_in to the output history
4021
 * without performing any output.  The output buffer must be "caught up";
4022
 * i.e. no pending output (hence s->read equals s->write), and the state must
4023
 * be BLOCKS (i.e. we should be willing to see the start of a series of
4024
 * BLOCKS).  On exit, the output will also be caught up, and the checksum
4025
 * will have been updated if need be.
4026
 */
4027
int inflate_addhistory(s, z)
4028
inflate_blocks_statef *s;
4029
z_stream *z;
4030
{
4031
    uLong b;              /* bit buffer */  /* NOT USED HERE */
4032
    uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
4033
    uInt t;               /* temporary storage */
4034
    Bytef *p;             /* input data pointer */
4035
    uInt n;               /* bytes available there */
4036
    Bytef *q;             /* output window write pointer */
4037
    uInt m;               /* bytes to end of window or read pointer */
4038
 
4039
    if (s->read != s->write)
4040
        return Z_STREAM_ERROR;
4041
    if (s->mode != TYPE)
4042
        return Z_DATA_ERROR;
4043
 
4044
    /* we're ready to rock */
4045
    LOAD
4046
    /* while there is input ready, copy to output buffer, moving
4047
     * pointers as needed.
4048
     */
4049
    while (n) {
4050
        t = n;  /* how many to do */
4051
        /* is there room until end of buffer? */
4052
        if (t > m) t = m;
4053
        /* update check information */
4054
        if (s->checkfn != Z_NULL)
4055
            s->check = (*s->checkfn)(s->check, q, t);
4056
        zmemcpy(q, p, t);
4057
        q += t;
4058
        p += t;
4059
        n -= t;
4060
        z->total_out += t;
4061
        s->read = q;    /* drag read pointer forward */
4062
/*      WWRAP  */       /* expand WWRAP macro by hand to handle s->read */
4063
        if (q == s->end) {
4064
            s->read = q = s->window;
4065
            m = WAVAIL;
4066
        }
4067
    }
4068
    UPDATE
4069
    return Z_OK;
4070
}
4071
 
4072
 
4073
/*
4074
 * At the end of a Deflate-compressed PPP packet, we expect to have seen
4075
 * a `stored' block type value but not the (zero) length bytes.
4076
 */
4077
int inflate_packet_flush(s)
4078
    inflate_blocks_statef *s;
4079
{
4080
    if (s->mode != LENS)
4081
        return Z_DATA_ERROR;
4082
    s->mode = TYPE;
4083
    return Z_OK;
4084
}
4085
/* --- infblock.c */
4086
 
4087
/* +++ inftrees.c */
4088
/* inftrees.c -- generate Huffman trees for efficient decoding
4089
 * Copyright (C) 1995-1996 Mark Adler
4090
 * For conditions of distribution and use, see copyright notice in zlib.h
4091
 */
4092
 
4093
/* #include "zutil.h" */
4094
/* #include "inftrees.h" */
4095
 
4096
char inflate_copyright[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler ";
4097
/*
4098
  If you use the zlib library in a product, an acknowledgment is welcome
4099
  in the documentation of your product. If for some reason you cannot
4100
  include such an acknowledgment, I would appreciate that you keep this
4101
  copyright string in the executable of your product.
4102
 */
4103
 
4104
#ifndef NO_DUMMY_DECL
4105
struct internal_state  {int dummy;}; /* for buggy compilers */
4106
#endif
4107
 
4108
/* simplify the use of the inflate_huft type with some defines */
4109
#define base more.Base
4110
#define next more.Next
4111
#define exop word.what.Exop
4112
#define bits word.what.Bits
4113
 
4114
 
4115
local int huft_build OF((
4116
    uIntf *,            /* code lengths in bits */
4117
    uInt,               /* number of codes */
4118
    uInt,               /* number of "simple" codes */
4119
    const uIntf *,      /* list of base values for non-simple codes */
4120
    const uIntf *,      /* list of extra bits for non-simple codes */
4121
    inflate_huft * FAR*,/* result: starting table */
4122
    uIntf *,            /* maximum lookup bits (returns actual) */
4123
    z_streamp ));       /* for zalloc function */
4124
 
4125
local voidpf falloc OF((
4126
    voidpf,             /* opaque pointer (not used) */
4127
    uInt,               /* number of items */
4128
    uInt));             /* size of item */
4129
 
4130
/* Tables for deflate from PKZIP's appnote.txt. */
4131
local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4132
        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4133
        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4134
        /* see note #13 above about 258 */
4135
local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4136
        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4137
        3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4138
local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4139
        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4140
        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4141
        8193, 12289, 16385, 24577};
4142
local const uInt cpdext[30] = { /* Extra bits for distance codes */
4143
        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4144
        7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4145
        12, 12, 13, 13};
4146
 
4147
/*
4148
   Huffman code decoding is performed using a multi-level table lookup.
4149
   The fastest way to decode is to simply build a lookup table whose
4150
   size is determined by the longest code.  However, the time it takes
4151
   to build this table can also be a factor if the data being decoded
4152
   is not very long.  The most common codes are necessarily the
4153
   shortest codes, so those codes dominate the decoding time, and hence
4154
   the speed.  The idea is you can have a shorter table that decodes the
4155
   shorter, more probable codes, and then point to subsidiary tables for
4156
   the longer codes.  The time it costs to decode the longer codes is
4157
   then traded against the time it takes to make longer tables.
4158
 
4159
   This results of this trade are in the variables lbits and dbits
4160
   below.  lbits is the number of bits the first level table for literal/
4161
   length codes can decode in one step, and dbits is the same thing for
4162
   the distance codes.  Subsequent tables are also less than or equal to
4163
   those sizes.  These values may be adjusted either when all of the
4164
   codes are shorter than that, in which case the longest code length in
4165
   bits is used, or when the shortest code is *longer* than the requested
4166
   table size, in which case the length of the shortest code in bits is
4167
   used.
4168
 
4169
   There are two different values for the two tables, since they code a
4170
   different number of possibilities each.  The literal/length table
4171
   codes 286 possible values, or in a flat code, a little over eight
4172
   bits.  The distance table codes 30 possible values, or a little less
4173
   than five bits, flat.  The optimum values for speed end up being
4174
   about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4175
   The optimum values may differ though from machine to machine, and
4176
   possibly even between compilers.  Your mileage may vary.
4177
 */
4178
 
4179
 
4180
/* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4181
#define BMAX 15         /* maximum bit length of any code */
4182
#define N_MAX 288       /* maximum number of codes in any set */
4183
 
4184
#ifdef DEBUG_ZLIB
4185
  uInt inflate_hufts;
4186
#endif
4187
 
4188
local int huft_build(b, n, s, d, e, t, m, zs)
4189
uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
4190
uInt n;                 /* number of codes (assumed <= N_MAX) */
4191
uInt s;                 /* number of simple-valued codes (0..s-1) */
4192
const uIntf *d;         /* list of base values for non-simple codes */
4193
const uIntf *e;         /* list of extra bits for non-simple codes */
4194
inflate_huft * FAR *t;  /* result: starting table */
4195
uIntf *m;               /* maximum lookup bits, returns actual */
4196
z_streamp zs;           /* for zalloc function */
4197
/* Given a list of code lengths and a maximum table size, make a set of
4198
   tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
4199
   if the given code set is incomplete (the tables are still built in this
4200
   case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
4201
   lengths), or Z_MEM_ERROR if not enough memory. */
4202
{
4203
 
4204
  uInt a;                       /* counter for codes of length k */
4205
  uInt c[BMAX+1];               /* bit length count table */
4206
  uInt f;                       /* i repeats in table every f entries */
4207
  int g;                        /* maximum code length */
4208
  int h;                        /* table level */
4209
  register uInt i;              /* counter, current code */
4210
  register uInt j;              /* counter */
4211
  register int k;               /* number of bits in current code */
4212
  int l;                        /* bits per table (returned in m) */
4213
  register uIntf *p;            /* pointer into c[], b[], or v[] */
4214
  inflate_huft *q;              /* points to current table */
4215
  struct inflate_huft_s r;      /* table entry for structure assignment */
4216
  inflate_huft *u[BMAX];        /* table stack */
4217
  uInt v[N_MAX];                /* values in order of bit length */
4218
  register int w;               /* bits before this table == (l * h) */
4219
  uInt x[BMAX+1];               /* bit offsets, then code stack */
4220
  uIntf *xp;                    /* pointer into x */
4221
  int y;                        /* number of dummy codes added */
4222
  uInt z;                       /* number of entries in current table */
4223
 
4224
 
4225
  /* Generate counts for each bit length */
4226
  p = c;
4227
#define C0 *p++ = 0;
4228
#define C2 C0 C0 C0 C0
4229
#define C4 C2 C2 C2 C2
4230
  C4                            /* clear c[]--assume BMAX+1 is 16 */
4231
  p = b;  i = n;
4232
  do {
4233
    c[*p++]++;                  /* assume all entries <= BMAX */
4234
  } while (--i);
4235
  if (c[0] == n)                /* null input--all zero length codes */
4236
  {
4237
    *t = (inflate_huft *)Z_NULL;
4238
    *m = 0;
4239
    return Z_OK;
4240
  }
4241
 
4242
 
4243
  /* Find minimum and maximum length, bound *m by those */
4244
  l = *m;
4245
  for (j = 1; j <= BMAX; j++)
4246
    if (c[j])
4247
      break;
4248
  k = j;                        /* minimum code length */
4249
  if ((uInt)l < j)
4250
    l = j;
4251
  for (i = BMAX; i; i--)
4252
    if (c[i])
4253
      break;
4254
  g = i;                        /* maximum code length */
4255
  if ((uInt)l > i)
4256
    l = i;
4257
  *m = l;
4258
 
4259
 
4260
  /* Adjust last length count to fill out codes, if needed */
4261
  for (y = 1 << j; j < i; j++, y <<= 1)
4262
    if ((y -= c[j]) < 0)
4263
      return Z_DATA_ERROR;
4264
  if ((y -= c[i]) < 0)
4265
    return Z_DATA_ERROR;
4266
  c[i] += y;
4267
 
4268
 
4269
  /* Generate starting offsets into the value table for each length */
4270
  x[1] = j = 0;
4271
  p = c + 1;  xp = x + 2;
4272
  while (--i) {                 /* note that i == g from above */
4273
    *xp++ = (j += *p++);
4274
  }
4275
 
4276
 
4277
  /* Make a table of values in order of bit lengths */
4278
  p = b;  i = 0;
4279
  do {
4280
    if ((j = *p++) != 0)
4281
      v[x[j]++] = i;
4282
  } while (++i < n);
4283
  n = x[g];                   /* set n to length of v */
4284
 
4285
 
4286
  /* Generate the Huffman codes and for each, make the table entries */
4287
  x[0] = i = 0;                 /* first Huffman code is zero */
4288
  p = v;                        /* grab values in bit order */
4289
  h = -1;                       /* no tables yet--level -1 */
4290
  w = -l;                       /* bits decoded == (l * h) */
4291
  u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
4292
  q = (inflate_huft *)Z_NULL;   /* ditto */
4293
  z = 0;                        /* ditto */
4294
 
4295
  /* go through the bit lengths (k already is bits in shortest code) */
4296
  for (; k <= g; k++)
4297
  {
4298
    a = c[k];
4299
    while (a--)
4300
    {
4301
      /* here i is the Huffman code of length k bits for value *p */
4302
      /* make tables up to required level */
4303
      while (k > w + l)
4304
      {
4305
        h++;
4306
        w += l;                 /* previous table always l bits */
4307
 
4308
        /* compute minimum size table less than or equal to l bits */
4309
        z = g - w;
4310
        z = z > (uInt)l ? l : z;        /* table size upper limit */
4311
        if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
4312
        {                       /* too few codes for k-w bit table */
4313
          f -= a + 1;           /* deduct codes from patterns left */
4314
          xp = c + k;
4315
          if (j < z)
4316
            while (++j < z)     /* try smaller tables up to z bits */
4317
            {
4318
              if ((f <<= 1) <= *++xp)
4319
                break;          /* enough codes to use up j bits */
4320
              f -= *xp;         /* else deduct codes from patterns */
4321
            }
4322
        }
4323
        z = 1 << j;             /* table entries for j-bit table */
4324
 
4325
        /* allocate and link in new table */
4326
        if ((q = (inflate_huft *)ZALLOC
4327
             (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
4328
        {
4329
          if (h)
4330
            inflate_trees_free(u[0], zs);
4331
          return Z_MEM_ERROR;   /* not enough memory */
4332
        }
4333
#ifdef DEBUG_ZLIB
4334
        inflate_hufts += z + 1;
4335
#endif
4336
        *t = q + 1;             /* link to list for huft_free() */
4337
        *(t = &(q->next)) = Z_NULL;
4338
        u[h] = ++q;             /* table starts after link */
4339
 
4340
        /* connect to last table, if there is one */
4341
        if (h)
4342
        {
4343
          x[h] = i;             /* save pattern for backing up */
4344
          r.bits = (Byte)l;     /* bits to dump before this table */
4345
          r.exop = (Byte)j;     /* bits in this table */
4346
          r.next = q;           /* pointer to this table */
4347
          j = i >> (w - l);     /* (get around Turbo C bug) */
4348
          u[h-1][j] = r;        /* connect to last table */
4349
        }
4350
      }
4351
 
4352
      /* set up table entry in r */
4353
      r.bits = (Byte)(k - w);
4354
      if (p >= v + n)
4355
        r.exop = 128 + 64;      /* out of values--invalid code */
4356
      else if (*p < s)
4357
      {
4358
        r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
4359
        r.base = *p++;          /* simple code is just the value */
4360
      }
4361
      else
4362
      {
4363
        r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
4364
        r.base = d[*p++ - s];
4365
      }
4366
 
4367
      /* fill code-like entries with r */
4368
      f = 1 << (k - w);
4369
      for (j = i >> w; j < z; j += f)
4370
        q[j] = r;
4371
 
4372
      /* backwards increment the k-bit code i */
4373
      for (j = 1 << (k - 1); i & j; j >>= 1)
4374
        i ^= j;
4375
      i ^= j;
4376
 
4377
      /* backup over finished tables */
4378
      while ((i & ((1 << w) - 1)) != x[h])
4379
      {
4380
        h--;                    /* don't need to update q */
4381
        w -= l;
4382
      }
4383
    }
4384
  }
4385
 
4386
 
4387
  /* Return Z_BUF_ERROR if we were given an incomplete table */
4388
  return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
4389
}
4390
 
4391
 
4392
int inflate_trees_bits(c, bb, tb, z)
4393
uIntf *c;               /* 19 code lengths */
4394
uIntf *bb;              /* bits tree desired/actual depth */
4395
inflate_huft * FAR *tb; /* bits tree result */
4396
z_streamp z;            /* for zfree function */
4397
{
4398
  int r;
4399
 
4400
  r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
4401
  if (r == Z_DATA_ERROR)
4402
    z->msg = (char*)"oversubscribed dynamic bit lengths tree";
4403
  else if (r == Z_BUF_ERROR || *bb == 0)
4404
  {
4405
    inflate_trees_free(*tb, z);
4406
    z->msg = (char*)"incomplete dynamic bit lengths tree";
4407
    r = Z_DATA_ERROR;
4408
  }
4409
  return r;
4410
}
4411
 
4412
 
4413
int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
4414
uInt nl;                /* number of literal/length codes */
4415
uInt nd;                /* number of distance codes */
4416
uIntf *c;               /* that many (total) code lengths */
4417
uIntf *bl;              /* literal desired/actual bit depth */
4418
uIntf *bd;              /* distance desired/actual bit depth */
4419
inflate_huft * FAR *tl; /* literal/length tree result */
4420
inflate_huft * FAR *td; /* distance tree result */
4421
z_streamp z;            /* for zfree function */
4422
{
4423
  int r;
4424
 
4425
  /* build literal/length tree */
4426
  r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z);
4427
  if (r != Z_OK || *bl == 0)
4428
  {
4429
    if (r == Z_DATA_ERROR)
4430
      z->msg = (char*)"oversubscribed literal/length tree";
4431
    else if (r != Z_MEM_ERROR)
4432
    {
4433
      inflate_trees_free(*tl, z);
4434
      z->msg = (char*)"incomplete literal/length tree";
4435
      r = Z_DATA_ERROR;
4436
    }
4437
    return r;
4438
  }
4439
 
4440
  /* build distance tree */
4441
  r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z);
4442
  if (r != Z_OK || (*bd == 0 && nl > 257))
4443
  {
4444
    if (r == Z_DATA_ERROR)
4445
      z->msg = (char*)"oversubscribed distance tree";
4446
    else if (r == Z_BUF_ERROR) {
4447
#ifdef PKZIP_BUG_WORKAROUND
4448
      r = Z_OK;
4449
    }
4450
#else
4451
      inflate_trees_free(*td, z);
4452
      z->msg = (char*)"incomplete distance tree";
4453
      r = Z_DATA_ERROR;
4454
    }
4455
    else if (r != Z_MEM_ERROR)
4456
    {
4457
      z->msg = (char*)"empty distance tree with lengths";
4458
      r = Z_DATA_ERROR;
4459
    }
4460
    inflate_trees_free(*tl, z);
4461
    return r;
4462
#endif
4463
  }
4464
 
4465
  /* done */
4466
  return Z_OK;
4467
}
4468
 
4469
 
4470
/* build fixed tables only once--keep them here */
4471
local int fixed_built = 0;
4472
#define FIXEDH 530      /* number of hufts used by fixed tables */
4473
local inflate_huft fixed_mem[FIXEDH];
4474
local uInt fixed_bl;
4475
local uInt fixed_bd;
4476
local inflate_huft *fixed_tl;
4477
local inflate_huft *fixed_td;
4478
 
4479
 
4480
local voidpf falloc(q, n, s)
4481
voidpf q;       /* opaque pointer */
4482
uInt n;         /* number of items */
4483
uInt s;         /* size of item */
4484
{
4485
  Assert(s == sizeof(inflate_huft) && n <= *(intf *)q,
4486
         "inflate_trees falloc overflow");
4487
  *(intf *)q -= n+s-s; /* s-s to avoid warning */
4488
  return (voidpf)(fixed_mem + *(intf *)q);
4489
}
4490
 
4491
 
4492
int inflate_trees_fixed(bl, bd, tl, td)
4493
uIntf *bl;               /* literal desired/actual bit depth */
4494
uIntf *bd;               /* distance desired/actual bit depth */
4495
inflate_huft * FAR *tl;  /* literal/length tree result */
4496
inflate_huft * FAR *td;  /* distance tree result */
4497
{
4498
  /* build fixed tables if not already (multiple overlapped executions ok) */
4499
  if (!fixed_built)
4500
  {
4501
    int k;              /* temporary variable */
4502
    unsigned c[288];    /* length list for huft_build */
4503
    z_stream z;         /* for falloc function */
4504
    int f = FIXEDH;     /* number of hufts left in fixed_mem */
4505
 
4506
    /* set up fake z_stream for memory routines */
4507
    z.zalloc = falloc;
4508
    z.zfree = Z_NULL;
4509
    z.opaque = (voidpf)&f;
4510
 
4511
    /* literal table */
4512
    for (k = 0; k < 144; k++)
4513
      c[k] = 8;
4514
    for (; k < 256; k++)
4515
      c[k] = 9;
4516
    for (; k < 280; k++)
4517
      c[k] = 7;
4518
    for (; k < 288; k++)
4519
      c[k] = 8;
4520
    fixed_bl = 7;
4521
    huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4522
 
4523
    /* distance table */
4524
    for (k = 0; k < 30; k++)
4525
      c[k] = 5;
4526
    fixed_bd = 5;
4527
    huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4528
 
4529
    /* done */
4530
    Assert(f == 0, "invalid build of fixed tables");
4531
    fixed_built = 1;
4532
  }
4533
  *bl = fixed_bl;
4534
  *bd = fixed_bd;
4535
  *tl = fixed_tl;
4536
  *td = fixed_td;
4537
  return Z_OK;
4538
}
4539
 
4540
 
4541
int inflate_trees_free(t, z)
4542
inflate_huft *t;        /* table to free */
4543
z_streamp z;            /* for zfree function */
4544
/* Free the malloc'ed tables built by huft_build(), which makes a linked
4545
   list of the tables it made, with the links in a dummy first entry of
4546
   each table. */
4547
{
4548
  register inflate_huft *p, *q, *r;
4549
 
4550
  /* Reverse linked list */
4551
  p = Z_NULL;
4552
  q = t;
4553
  while (q != Z_NULL)
4554
  {
4555
    r = (q - 1)->next;
4556
    (q - 1)->next = p;
4557
    p = q;
4558
    q = r;
4559
  }
4560
  /* Go through linked list, freeing from the malloced (t[-1]) address. */
4561
  while (p != Z_NULL)
4562
  {
4563
    q = (--p)->next;
4564
    ZFREE(z,p);
4565
    p = q;
4566
  }
4567
  return Z_OK;
4568
}
4569
/* --- inftrees.c */
4570
 
4571
/* +++ infcodes.c */
4572
/* infcodes.c -- process literals and length/distance pairs
4573
 * Copyright (C) 1995-1996 Mark Adler
4574
 * For conditions of distribution and use, see copyright notice in zlib.h
4575
 */
4576
 
4577
/* #include "zutil.h" */
4578
/* #include "inftrees.h" */
4579
/* #include "infblock.h" */
4580
/* #include "infcodes.h" */
4581
/* #include "infutil.h" */
4582
 
4583
/* +++ inffast.h */
4584
/* inffast.h -- header to use inffast.c
4585
 * Copyright (C) 1995-1996 Mark Adler
4586
 * For conditions of distribution and use, see copyright notice in zlib.h
4587
 */
4588
 
4589
/* WARNING: this file should *not* be used by applications. It is
4590
   part of the implementation of the compression library and is
4591
   subject to change. Applications should only use zlib.h.
4592
 */
4593
 
4594
extern int inflate_fast OF((
4595
    uInt,
4596
    uInt,
4597
    inflate_huft *,
4598
    inflate_huft *,
4599
    inflate_blocks_statef *,
4600
    z_streamp ));
4601
/* --- inffast.h */
4602
 
4603
/* simplify the use of the inflate_huft type with some defines */
4604
#define base more.Base
4605
#define next more.Next
4606
#define exop word.what.Exop
4607
#define bits word.what.Bits
4608
 
4609
/* inflate codes private state */
4610
struct inflate_codes_state {
4611
 
4612
  /* mode */
4613
  enum {        /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4614
      START,    /* x: set up for LEN */
4615
      LEN,      /* i: get length/literal/eob next */
4616
      LENEXT,   /* i: getting length extra (have base) */
4617
      DIST,     /* i: get distance next */
4618
      DISTEXT,  /* i: getting distance extra */
4619
      COPY,     /* o: copying bytes in window, waiting for space */
4620
      LIT,      /* o: got literal, waiting for output space */
4621
      WASH,     /* o: got eob, possibly still output waiting */
4622
      END,      /* x: got eob and all data flushed */
4623
      BADCODE}  /* x: got error */
4624
    mode;               /* current inflate_codes mode */
4625
 
4626
  /* mode dependent information */
4627
  uInt len;
4628
  union {
4629
    struct {
4630
      inflate_huft *tree;       /* pointer into tree */
4631
      uInt need;                /* bits needed */
4632
    } code;             /* if LEN or DIST, where in tree */
4633
    uInt lit;           /* if LIT, literal */
4634
    struct {
4635
      uInt get;                 /* bits to get for extra */
4636
      uInt dist;                /* distance back to copy from */
4637
    } copy;             /* if EXT or COPY, where and how much */
4638
  } sub;                /* submode */
4639
 
4640
  /* mode independent information */
4641
  Byte lbits;           /* ltree bits decoded per branch */
4642
  Byte dbits;           /* dtree bits decoder per branch */
4643
  inflate_huft *ltree;          /* literal/length/eob tree */
4644
  inflate_huft *dtree;          /* distance tree */
4645
 
4646
};
4647
 
4648
 
4649
inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4650
uInt bl, bd;
4651
inflate_huft *tl;
4652
inflate_huft *td; /* need separate declaration for Borland C++ */
4653
z_streamp z;
4654
{
4655
  inflate_codes_statef *c;
4656
 
4657
  if ((c = (inflate_codes_statef *)
4658
       ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4659
  {
4660
    c->mode = START;
4661
    c->lbits = (Byte)bl;
4662
    c->dbits = (Byte)bd;
4663
    c->ltree = tl;
4664
    c->dtree = td;
4665
    Tracev((stderr, "inflate:       codes new\n"));
4666
  }
4667
  return c;
4668
}
4669
 
4670
 
4671
int inflate_codes(s, z, r)
4672
inflate_blocks_statef *s;
4673
z_streamp z;
4674
int r;
4675
{
4676
  uInt j;               /* temporary storage */
4677
  inflate_huft *t;      /* temporary pointer */
4678
  uInt e;               /* extra bits or operation */
4679
  uLong b;              /* bit buffer */
4680
  uInt k;               /* bits in bit buffer */
4681
  Bytef *p;             /* input data pointer */
4682
  uInt n;               /* bytes available there */
4683
  Bytef *q;             /* output window write pointer */
4684
  uInt m;               /* bytes to end of window or read pointer */
4685
  Bytef *f;             /* pointer to copy strings from */
4686
  inflate_codes_statef *c = s->sub.decode.codes;  /* codes state */
4687
 
4688
  /* copy input/output information to locals (UPDATE macro restores) */
4689
  LOAD
4690
 
4691
  /* process input and output based on current state */
4692
  while (1) switch (c->mode)
4693
  {             /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4694
    case START:         /* x: set up for LEN */
4695
#ifndef SLOW
4696
      if (m >= 258 && n >= 10)
4697
      {
4698
        UPDATE
4699
        r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4700
        LOAD
4701
        if (r != Z_OK)
4702
        {
4703
          c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4704
          break;
4705
        }
4706
      }
4707
#endif /* !SLOW */
4708
      c->sub.code.need = c->lbits;
4709
      c->sub.code.tree = c->ltree;
4710
      c->mode = LEN;
4711
    case LEN:           /* i: get length/literal/eob next */
4712
      j = c->sub.code.need;
4713
      NEEDBITS(j)
4714
      t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4715
      DUMPBITS(t->bits)
4716
      e = (uInt)(t->exop);
4717
      if (e == 0)               /* literal */
4718
      {
4719
        c->sub.lit = t->base;
4720
        Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4721
                 "inflate:         literal '%c'\n" :
4722
                 "inflate:         literal 0x%02x\n", t->base));
4723
        c->mode = LIT;
4724
        break;
4725
      }
4726
      if (e & 16)               /* length */
4727
      {
4728
        c->sub.copy.get = e & 15;
4729
        c->len = t->base;
4730
        c->mode = LENEXT;
4731
        break;
4732
      }
4733
      if ((e & 64) == 0)        /* next table */
4734
      {
4735
        c->sub.code.need = e;
4736
        c->sub.code.tree = t->next;
4737
        break;
4738
      }
4739
      if (e & 32)               /* end of block */
4740
      {
4741
        Tracevv((stderr, "inflate:         end of block\n"));
4742
        c->mode = WASH;
4743
        break;
4744
      }
4745
      c->mode = BADCODE;        /* invalid code */
4746
      z->msg = (char*)"invalid literal/length code";
4747
      r = Z_DATA_ERROR;
4748
      LEAVE
4749
    case LENEXT:        /* i: getting length extra (have base) */
4750
      j = c->sub.copy.get;
4751
      NEEDBITS(j)
4752
      c->len += (uInt)b & inflate_mask[j];
4753
      DUMPBITS(j)
4754
      c->sub.code.need = c->dbits;
4755
      c->sub.code.tree = c->dtree;
4756
      Tracevv((stderr, "inflate:         length %u\n", c->len));
4757
      c->mode = DIST;
4758
    case DIST:          /* i: get distance next */
4759
      j = c->sub.code.need;
4760
      NEEDBITS(j)
4761
      t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4762
      DUMPBITS(t->bits)
4763
      e = (uInt)(t->exop);
4764
      if (e & 16)               /* distance */
4765
      {
4766
        c->sub.copy.get = e & 15;
4767
        c->sub.copy.dist = t->base;
4768
        c->mode = DISTEXT;
4769
        break;
4770
      }
4771
      if ((e & 64) == 0)        /* next table */
4772
      {
4773
        c->sub.code.need = e;
4774
        c->sub.code.tree = t->next;
4775
        break;
4776
      }
4777
      c->mode = BADCODE;        /* invalid code */
4778
      z->msg = (char*)"invalid distance code";
4779
      r = Z_DATA_ERROR;
4780
      LEAVE
4781
    case DISTEXT:       /* i: getting distance extra */
4782
      j = c->sub.copy.get;
4783
      NEEDBITS(j)
4784
      c->sub.copy.dist += (uInt)b & inflate_mask[j];
4785
      DUMPBITS(j)
4786
      Tracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
4787
      c->mode = COPY;
4788
    case COPY:          /* o: copying bytes in window, waiting for space */
4789
#ifndef __TURBOC__ /* Turbo C bug for following expression */
4790
      f = (uInt)(q - s->window) < c->sub.copy.dist ?
4791
          s->end - (c->sub.copy.dist - (q - s->window)) :
4792
          q - c->sub.copy.dist;
4793
#else
4794
      f = q - c->sub.copy.dist;
4795
      if ((uInt)(q - s->window) < c->sub.copy.dist)
4796
        f = s->end - (c->sub.copy.dist - (uInt)(q - s->window));
4797
#endif
4798
      while (c->len)
4799
      {
4800
        NEEDOUT
4801
        OUTBYTE(*f++)
4802
        if (f == s->end)
4803
          f = s->window;
4804
        c->len--;
4805
      }
4806
      c->mode = START;
4807
      break;
4808
    case LIT:           /* o: got literal, waiting for output space */
4809
      NEEDOUT
4810
      OUTBYTE(c->sub.lit)
4811
      c->mode = START;
4812
      break;
4813
    case WASH:          /* o: got eob, possibly more output */
4814
      FLUSH
4815
      if (s->read != s->write)
4816
        LEAVE
4817
      c->mode = END;
4818
    case END:
4819
      r = Z_STREAM_END;
4820
      LEAVE
4821
    case BADCODE:       /* x: got error */
4822
      r = Z_DATA_ERROR;
4823
      LEAVE
4824
    default:
4825
      r = Z_STREAM_ERROR;
4826
      LEAVE
4827
  }
4828
}
4829
 
4830
 
4831
void inflate_codes_free(c, z)
4832
inflate_codes_statef *c;
4833
z_streamp z;
4834
{
4835
  ZFREE(z, c);
4836
  Tracev((stderr, "inflate:       codes free\n"));
4837
}
4838
/* --- infcodes.c */
4839
 
4840
/* +++ infutil.c */
4841
/* inflate_util.c -- data and routines common to blocks and codes
4842
 * Copyright (C) 1995-1996 Mark Adler
4843
 * For conditions of distribution and use, see copyright notice in zlib.h
4844
 */
4845
 
4846
/* #include "zutil.h" */
4847
/* #include "infblock.h" */
4848
/* #include "inftrees.h" */
4849
/* #include "infcodes.h" */
4850
/* #include "infutil.h" */
4851
 
4852
#ifndef NO_DUMMY_DECL
4853
struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4854
#endif
4855
 
4856
/* And'ing with mask[n] masks the lower n bits */
4857
uInt inflate_mask[17] = {
4858
    0x0000,
4859
    0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
4860
    0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
4861
};
4862
 
4863
 
4864
/* copy as much as possible from the sliding window to the output area */
4865
int inflate_flush(s, z, r)
4866
inflate_blocks_statef *s;
4867
z_streamp z;
4868
int r;
4869
{
4870
  uInt n;
4871
  Bytef *p;
4872
  Bytef *q;
4873
 
4874
  /* local copies of source and destination pointers */
4875
  p = z->next_out;
4876
  q = s->read;
4877
 
4878
  /* compute number of bytes to copy as far as end of window */
4879
  n = (uInt)((q <= s->write ? s->write : s->end) - q);
4880
  if (n > z->avail_out) n = z->avail_out;
4881
  if (n && r == Z_BUF_ERROR) r = Z_OK;
4882
 
4883
  /* update counters */
4884
  z->avail_out -= n;
4885
  z->total_out += n;
4886
 
4887
  /* update check information */
4888
  if (s->checkfn != Z_NULL)
4889
    z->adler = s->check = (*s->checkfn)(s->check, q, n);
4890
 
4891
  /* copy as far as end of window */
4892
  if (p != Z_NULL) {
4893
    zmemcpy(p, q, n);
4894
    p += n;
4895
  }
4896
  q += n;
4897
 
4898
  /* see if more to copy at beginning of window */
4899
  if (q == s->end)
4900
  {
4901
    /* wrap pointers */
4902
    q = s->window;
4903
    if (s->write == s->end)
4904
      s->write = s->window;
4905
 
4906
    /* compute bytes to copy */
4907
    n = (uInt)(s->write - q);
4908
    if (n > z->avail_out) n = z->avail_out;
4909
    if (n && r == Z_BUF_ERROR) r = Z_OK;
4910
 
4911
    /* update counters */
4912
    z->avail_out -= n;
4913
    z->total_out += n;
4914
 
4915
    /* update check information */
4916
    if (s->checkfn != Z_NULL)
4917
      z->adler = s->check = (*s->checkfn)(s->check, q, n);
4918
 
4919
    /* copy */
4920
    if (p != Z_NULL) {
4921
      zmemcpy(p, q, n);
4922
      p += n;
4923
    }
4924
    q += n;
4925
  }
4926
 
4927
  /* update pointers */
4928
  z->next_out = p;
4929
  s->read = q;
4930
 
4931
  /* done */
4932
  return r;
4933
}
4934
/* --- infutil.c */
4935
 
4936
/* +++ inffast.c */
4937
/* inffast.c -- process literals and length/distance pairs fast
4938
 * Copyright (C) 1995-1996 Mark Adler
4939
 * For conditions of distribution and use, see copyright notice in zlib.h
4940
 */
4941
 
4942
/* #include "zutil.h" */
4943
/* #include "inftrees.h" */
4944
/* #include "infblock.h" */
4945
/* #include "infcodes.h" */
4946
/* #include "infutil.h" */
4947
/* #include "inffast.h" */
4948
 
4949
#ifndef NO_DUMMY_DECL
4950
struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4951
#endif
4952
 
4953
/* simplify the use of the inflate_huft type with some defines */
4954
#define base more.Base
4955
#define next more.Next
4956
#define exop word.what.Exop
4957
#define bits word.what.Bits
4958
 
4959
/* macros for bit input with no checking and for returning unused bytes */
4960
#define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4961
#define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4962
 
4963
/* Called with number of bytes left to write in window at least 258
4964
   (the maximum string length) and number of input bytes available
4965
   at least ten.  The ten bytes are six bytes for the longest length/
4966
   distance pair plus four bytes for overloading the bit buffer. */
4967
 
4968
int inflate_fast(bl, bd, tl, td, s, z)
4969
uInt bl, bd;
4970
inflate_huft *tl;
4971
inflate_huft *td; /* need separate declaration for Borland C++ */
4972
inflate_blocks_statef *s;
4973
z_streamp z;
4974
{
4975
  inflate_huft *t;      /* temporary pointer */
4976
  uInt e;               /* extra bits or operation */
4977
  uLong b;              /* bit buffer */
4978
  uInt k;               /* bits in bit buffer */
4979
  Bytef *p;             /* input data pointer */
4980
  uInt n;               /* bytes available there */
4981
  Bytef *q;             /* output window write pointer */
4982
  uInt m;               /* bytes to end of window or read pointer */
4983
  uInt ml;              /* mask for literal/length tree */
4984
  uInt md;              /* mask for distance tree */
4985
  uInt c;               /* bytes to copy */
4986
  uInt d;               /* distance back to copy from */
4987
  Bytef *r;             /* copy source pointer */
4988
 
4989
  /* load input, output, bit values */
4990
  LOAD
4991
 
4992
  /* initialize masks */
4993
  ml = inflate_mask[bl];
4994
  md = inflate_mask[bd];
4995
 
4996
  /* do until not enough input or output space for fast loop */
4997
  do {                          /* assume called with m >= 258 && n >= 10 */
4998
    /* get literal/length code */
4999
    GRABBITS(20)                /* max bits for literal/length code */
5000
    if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
5001
    {
5002
      DUMPBITS(t->bits)
5003
      Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5004
                "inflate:         * literal '%c'\n" :
5005
                "inflate:         * literal 0x%02x\n", t->base));
5006
      *q++ = (Byte)t->base;
5007
      m--;
5008
      continue;
5009
    }
5010
    do {
5011
      DUMPBITS(t->bits)
5012
      if (e & 16)
5013
      {
5014
        /* get extra bits for length */
5015
        e &= 15;
5016
        c = t->base + ((uInt)b & inflate_mask[e]);
5017
        DUMPBITS(e)
5018
        Tracevv((stderr, "inflate:         * length %u\n", c));
5019
 
5020
        /* decode distance base of block to copy */
5021
        GRABBITS(15);           /* max bits for distance code */
5022
        e = (t = td + ((uInt)b & md))->exop;
5023
        do {
5024
          DUMPBITS(t->bits)
5025
          if (e & 16)
5026
          {
5027
            /* get extra bits to add to distance base */
5028
            e &= 15;
5029
            GRABBITS(e)         /* get extra bits (up to 13) */
5030
            d = t->base + ((uInt)b & inflate_mask[e]);
5031
            DUMPBITS(e)
5032
            Tracevv((stderr, "inflate:         * distance %u\n", d));
5033
 
5034
            /* do the copy */
5035
            m -= c;
5036
            if ((uInt)(q - s->window) >= d)     /* offset before dest */
5037
            {                                   /*  just copy */
5038
              r = q - d;
5039
              *q++ = *r++;  c--;        /* minimum count is three, */
5040
              *q++ = *r++;  c--;        /*  so unroll loop a little */
5041
            }
5042
            else                        /* else offset after destination */
5043
            {
5044
              e = d - (uInt)(q - s->window); /* bytes from offset to end */
5045
              r = s->end - e;           /* pointer to offset */
5046
              if (c > e)                /* if source crosses, */
5047
              {
5048
                c -= e;                 /* copy to end of window */
5049
                do {
5050
                  *q++ = *r++;
5051
                } while (--e);
5052
                r = s->window;          /* copy rest from start of window */
5053
              }
5054
            }
5055
            do {                        /* copy all or what's left */
5056
              *q++ = *r++;
5057
            } while (--c);
5058
            break;
5059
          }
5060
          else if ((e & 64) == 0)
5061
            e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
5062
          else
5063
          {
5064
            z->msg = (char*)"invalid distance code";
5065
            UNGRAB
5066
            UPDATE
5067
            return Z_DATA_ERROR;
5068
          }
5069
        } while (1);
5070
        break;
5071
      }
5072
      if ((e & 64) == 0)
5073
      {
5074
        if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
5075
        {
5076
          DUMPBITS(t->bits)
5077
          Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5078
                    "inflate:         * literal '%c'\n" :
5079
                    "inflate:         * literal 0x%02x\n", t->base));
5080
          *q++ = (Byte)t->base;
5081
          m--;
5082
          break;
5083
        }
5084
      }
5085
      else if (e & 32)
5086
      {
5087
        Tracevv((stderr, "inflate:         * end of block\n"));
5088
        UNGRAB
5089
        UPDATE
5090
        return Z_STREAM_END;
5091
      }
5092
      else
5093
      {
5094
        z->msg = (char*)"invalid literal/length code";
5095
        UNGRAB
5096
        UPDATE
5097
        return Z_DATA_ERROR;
5098
      }
5099
    } while (1);
5100
  } while (m >= 258 && n >= 10);
5101
 
5102
  /* not enough input or output--restore pointers and return */
5103
  UNGRAB
5104
  UPDATE
5105
  return Z_OK;
5106
}
5107
/* --- inffast.c */
5108
 
5109
/* +++ zutil.c */
5110
/* zutil.c -- target dependent utility functions for the compression library
5111
 * Copyright (C) 1995-1996 Jean-loup Gailly.
5112
 * For conditions of distribution and use, see copyright notice in zlib.h
5113
 */
5114
 
5115
/* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */
5116
 
5117
#ifdef DEBUG_ZLIB
5118
#include <stdio.h>
5119
#endif
5120
 
5121
/* #include "zutil.h" */
5122
 
5123
#ifndef NO_DUMMY_DECL
5124
struct internal_state      {int dummy;}; /* for buggy compilers */
5125
#endif
5126
 
5127
#ifndef STDC
5128
extern void exit OF((int));
5129
#endif
5130
 
5131
const char *z_errmsg[10] = {
5132
"need dictionary",     /* Z_NEED_DICT       2  */
5133
"stream end",          /* Z_STREAM_END      1  */
5134
"",                    /* Z_OK              0  */
5135
"file error",          /* Z_ERRNO         (-1) */
5136
"stream error",        /* Z_STREAM_ERROR  (-2) */
5137
"data error",          /* Z_DATA_ERROR    (-3) */
5138
"insufficient memory", /* Z_MEM_ERROR     (-4) */
5139
"buffer error",        /* Z_BUF_ERROR     (-5) */
5140
"incompatible version",/* Z_VERSION_ERROR (-6) */
5141
""};
5142
 
5143
 
5144
const char *zlibVersion()
5145
{
5146
    return ZLIB_VERSION;
5147
}
5148
 
5149
#ifdef DEBUG_ZLIB
5150
void z_error (m)
5151
    char *m;
5152
{
5153
    fprintf(stderr, "%s\n", m);
5154
    exit(1);
5155
}
5156
#endif
5157
 
5158
#ifndef HAVE_MEMCPY
5159
 
5160
void zmemcpy(dest, source, len)
5161
    Bytef* dest;
5162
    Bytef* source;
5163
    uInt  len;
5164
{
5165
    if (len == 0) return;
5166
    do {
5167
        *dest++ = *source++; /* ??? to be unrolled */
5168
    } while (--len != 0);
5169
}
5170
 
5171
int zmemcmp(s1, s2, len)
5172
    Bytef* s1;
5173
    Bytef* s2;
5174
    uInt  len;
5175
{
5176
    uInt j;
5177
 
5178
    for (j = 0; j < len; j++) {
5179
        if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
5180
    }
5181
    return 0;
5182
}
5183
 
5184
void zmemzero(dest, len)
5185
    Bytef* dest;
5186
    uInt  len;
5187
{
5188
    if (len == 0) return;
5189
    do {
5190
        *dest++ = 0;  /* ??? to be unrolled */
5191
    } while (--len != 0);
5192
}
5193
#endif
5194
 
5195
#ifdef __TURBOC__
5196
#if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5197
/* Small and medium model in Turbo C are for now limited to near allocation
5198
 * with reduced MAX_WBITS and MAX_MEM_LEVEL
5199
 */
5200
#  define MY_ZCALLOC
5201
 
5202
/* Turbo C malloc() does not allow dynamic allocation of 64K bytes
5203
 * and farmalloc(64K) returns a pointer with an offset of 8, so we
5204
 * must fix the pointer. Warning: the pointer must be put back to its
5205
 * original form in order to free it, use zcfree().
5206
 */
5207
 
5208
#define MAX_PTR 10
5209
/* 10*64K = 640K */
5210
 
5211
local int next_ptr = 0;
5212
 
5213
typedef struct ptr_table_s {
5214
    voidpf org_ptr;
5215
    voidpf new_ptr;
5216
} ptr_table;
5217
 
5218
local ptr_table table[MAX_PTR];
5219
/* This table is used to remember the original form of pointers
5220
 * to large buffers (64K). Such pointers are normalized with a zero offset.
5221
 * Since MSDOS is not a preemptive multitasking OS, this table is not
5222
 * protected from concurrent access. This hack doesn't work anyway on
5223
 * a protected system like OS/2. Use Microsoft C instead.
5224
 */
5225
 
5226
voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5227
{
5228
    voidpf buf = opaque; /* just to make some compilers happy */
5229
    ulg bsize = (ulg)items*size;
5230
 
5231
    /* If we allocate less than 65520 bytes, we assume that farmalloc
5232
     * will return a usable pointer which doesn't have to be normalized.
5233
     */
5234
    if (bsize < 65520L) {
5235
        buf = farmalloc(bsize);
5236
        if (*(ush*)&buf != 0) return buf;
5237
    } else {
5238
        buf = farmalloc(bsize + 16L);
5239
    }
5240
    if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
5241
    table[next_ptr].org_ptr = buf;
5242
 
5243
    /* Normalize the pointer to seg:0 */
5244
    *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
5245
    *(ush*)&buf = 0;
5246
    table[next_ptr++].new_ptr = buf;
5247
    return buf;
5248
}
5249
 
5250
void  zcfree (voidpf opaque, voidpf ptr)
5251
{
5252
    int n;
5253
    if (*(ush*)&ptr != 0) { /* object < 64K */
5254
        farfree(ptr);
5255
        return;
5256
    }
5257
    /* Find the original pointer */
5258
    for (n = 0; n < next_ptr; n++) {
5259
        if (ptr != table[n].new_ptr) continue;
5260
 
5261
        farfree(table[n].org_ptr);
5262
        while (++n < next_ptr) {
5263
            table[n-1] = table[n];
5264
        }
5265
        next_ptr--;
5266
        return;
5267
    }
5268
    ptr = opaque; /* just to make some compilers happy */
5269
    Assert(0, "zcfree: ptr not found");
5270
}
5271
#endif
5272
#endif /* __TURBOC__ */
5273
 
5274
 
5275
#if defined(M_I86) && !defined(__32BIT__)
5276
/* Microsoft C in 16-bit mode */
5277
 
5278
#  define MY_ZCALLOC
5279
 
5280
#if (!defined(_MSC_VER) || (_MSC_VER < 600))
5281
#  define _halloc  halloc
5282
#  define _hfree   hfree
5283
#endif
5284
 
5285
voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5286
{
5287
    if (opaque) opaque = 0; /* to make compiler happy */
5288
    return _halloc((long)items, size);
5289
}
5290
 
5291
void  zcfree (voidpf opaque, voidpf ptr)
5292
{
5293
    if (opaque) opaque = 0; /* to make compiler happy */
5294
    _hfree(ptr);
5295
}
5296
 
5297
#endif /* MSC */
5298
 
5299
 
5300
#ifndef MY_ZCALLOC /* Any system without a special alloc function */
5301
 
5302
#ifndef STDC
5303
extern voidp  calloc OF((uInt items, uInt size));
5304
extern void   free   OF((voidpf ptr));
5305
#endif
5306
 
5307
voidpf zcalloc (opaque, items, size)
5308
    voidpf opaque;
5309
    unsigned items;
5310
    unsigned size;
5311
{
5312
    if (opaque) items += size - size; /* make compiler happy */
5313
    return (voidpf)calloc(items, size);
5314
}
5315
 
5316
void  zcfree (opaque, ptr)
5317
    voidpf opaque;
5318
    voidpf ptr;
5319
{
5320
    free(ptr);
5321
    if (opaque) return; /* make compiler happy */
5322
}
5323
 
5324
#endif /* MY_ZCALLOC */
5325
/* --- zutil.c */
5326
 
5327
/* +++ adler32.c */
5328
/* adler32.c -- compute the Adler-32 checksum of a data stream
5329
 * Copyright (C) 1995-1996 Mark Adler
5330
 * For conditions of distribution and use, see copyright notice in zlib.h
5331
 */
5332
 
5333
/* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */
5334
 
5335
/* #include "zlib.h" */
5336
 
5337
#define BASE 65521L /* largest prime smaller than 65536 */
5338
#define NMAX 5552
5339
/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
5340
 
5341
#define DO1(buf,i)  {s1 += buf[i]; s2 += s1;}
5342
#define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
5343
#define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
5344
#define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
5345
#define DO16(buf)   DO8(buf,0); DO8(buf,8);
5346
 
5347
/* ========================================================================= */
5348
uLong adler32(adler, buf, len)
5349
    uLong adler;
5350
    const Bytef *buf;
5351
    uInt len;
5352
{
5353
    unsigned long s1 = adler & 0xffff;
5354
    unsigned long s2 = (adler >> 16) & 0xffff;
5355
    int k;
5356
 
5357
    if (buf == Z_NULL) return 1L;
5358
 
5359
    while (len > 0) {
5360
        k = len < NMAX ? len : NMAX;
5361
        len -= k;
5362
        while (k >= 16) {
5363
            DO16(buf);
5364
            buf += 16;
5365
            k -= 16;
5366
        }
5367
        if (k != 0) do {
5368
            s1 += *buf++;
5369
            s2 += s1;
5370
        } while (--k);
5371
        s1 %= BASE;
5372
        s2 %= BASE;
5373
    }
5374
    return (s2 << 16) | s1;
5375
}
5376
/* --- adler32.c */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.