OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [rtems-20020807/] [cpukit/] [libnetworking/] [netinet/] [ip_mroute.c] - Blame information for rev 1774

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1026 ivang
/*
2
 * IP multicast forwarding procedures
3
 *
4
 * Written by David Waitzman, BBN Labs, August 1988.
5
 * Modified by Steve Deering, Stanford, February 1989.
6
 * Modified by Mark J. Steiglitz, Stanford, May, 1991
7
 * Modified by Van Jacobson, LBL, January 1993
8
 * Modified by Ajit Thyagarajan, PARC, August 1993
9
 * Modified by Bill Fenner, PARC, April 1995
10
 *
11
 * MROUTING Revision: 3.5
12
 * ip_mroute.c,v 1.2 1998/08/21 13:04:54 joel Exp
13
 */
14
 
15
#include "opt_mrouting.h"
16
 
17
#include <sys/param.h>
18
#include <sys/queue.h>
19
#include <sys/systm.h>
20
#include <sys/mbuf.h>
21
#include <sys/socket.h>
22
#include <sys/socketvar.h>
23
#include <sys/protosw.h>
24
#include <sys/errno.h>
25
#include <sys/time.h>
26
#include <sys/kernel.h>
27
#include <sys/ioctl.h>
28
#include <sys/syslog.h>
29
#include <net/if.h>
30
#include <net/route.h>
31
#include <netinet/in.h>
32
#include <netinet/in_systm.h>
33
#include <netinet/ip.h>
34
#include <netinet/ip_var.h>
35
#include <netinet/in_pcb.h>
36
#include <netinet/in_var.h>
37
#include <netinet/igmp.h>
38
#include <netinet/igmp_var.h>
39
#include <netinet/ip_mroute.h>
40
#include <netinet/udp.h>
41
 
42
#ifndef NTOHL
43
#if BYTE_ORDER != BIG_ENDIAN
44
#define NTOHL(d) ((d) = ntohl((d)))
45
#define NTOHS(d) ((d) = ntohs((u_short)(d)))
46
#define HTONL(d) ((d) = htonl((d)))
47
#define HTONS(d) ((d) = htons((u_short)(d)))
48
#else
49
#define NTOHL(d)
50
#define NTOHS(d)
51
#define HTONL(d)
52
#define HTONS(d)
53
#endif
54
#endif
55
 
56
#ifndef MROUTING
57
extern u_long   _ip_mcast_src __P((int vifi));
58
extern int      _ip_mforward __P((struct ip *ip, struct ifnet *ifp,
59
                                  struct mbuf *m, struct ip_moptions *imo));
60
extern int      _ip_mrouter_done __P((void));
61
extern int      _ip_mrouter_get __P((int cmd, struct socket *so,
62
                                     struct mbuf **m));
63
extern int      _ip_mrouter_set __P((int cmd, struct socket *so,
64
                                     struct mbuf *m));
65
extern int      _mrt_ioctl __P((int req, caddr_t data, struct proc *p));
66
 
67
/*
68
 * Dummy routines and globals used when multicast routing is not compiled in.
69
 */
70
 
71
struct socket  *ip_mrouter  = NULL;
72
/* static u_int         ip_mrtproto = 0; */
73
/* static struct mrtstat        mrtstat; */
74
u_int           rsvpdebug = 0;
75
 
76
int
77
_ip_mrouter_set(cmd, so, m)
78
        int cmd;
79
        struct socket *so;
80
        struct mbuf *m;
81
{
82
        return(EOPNOTSUPP);
83
}
84
 
85
int (*ip_mrouter_set)(int, struct socket *, struct mbuf *) = _ip_mrouter_set;
86
 
87
 
88
int
89
_ip_mrouter_get(cmd, so, m)
90
        int cmd;
91
        struct socket *so;
92
        struct mbuf **m;
93
{
94
        return(EOPNOTSUPP);
95
}
96
 
97
int (*ip_mrouter_get)(int, struct socket *, struct mbuf **) = _ip_mrouter_get;
98
 
99
int
100
_ip_mrouter_done()
101
{
102
        return(0);
103
}
104
 
105
int (*ip_mrouter_done)(void) = _ip_mrouter_done;
106
 
107
int
108
_ip_mforward(ip, ifp, m, imo)
109
        struct ip *ip;
110
        struct ifnet *ifp;
111
        struct mbuf *m;
112
        struct ip_moptions *imo;
113
{
114
        return(0);
115
}
116
 
117
int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
118
                   struct ip_moptions *) = _ip_mforward;
119
 
120
int
121
_mrt_ioctl(int req, caddr_t data, struct proc *p)
122
{
123
        return EOPNOTSUPP;
124
}
125
 
126
int (*mrt_ioctl)(int, caddr_t, struct proc *) = _mrt_ioctl;
127
 
128
void
129
rsvp_input(m, iphlen)           /* XXX must fixup manually */
130
        struct mbuf *m;
131
        int iphlen;
132
{
133
    /* Can still get packets with rsvp_on = 0 if there is a local member
134
     * of the group to which the RSVP packet is addressed.  But in this
135
     * case we want to throw the packet away.
136
     */
137
    if (!rsvp_on) {
138
        m_freem(m);
139
        return;
140
    }
141
 
142
    if (ip_rsvpd != NULL) {
143
        if (rsvpdebug)
144
            printf("rsvp_input: Sending packet up old-style socket\n");
145
        rip_input(m, iphlen);
146
        return;
147
    }
148
    /* Drop the packet */
149
    m_freem(m);
150
}
151
 
152
void ipip_input(struct mbuf *m, int iphlen) { /* XXX must fixup manually */
153
        rip_input(m, iphlen);
154
}
155
 
156
int (*legal_vif_num)(int) = 0;
157
 
158
/*
159
 * This should never be called, since IP_MULTICAST_VIF should fail, but
160
 * just in case it does get called, the code a little lower in ip_output
161
 * will assign the packet a local address.
162
 */
163
u_long
164
_ip_mcast_src(int vifi) { return INADDR_ANY; }
165
u_long (*ip_mcast_src)(int) = _ip_mcast_src;
166
 
167
int
168
ip_rsvp_vif_init(so, m)
169
    struct socket *so;
170
    struct mbuf *m;
171
{
172
    return(EINVAL);
173
}
174
 
175
int
176
ip_rsvp_vif_done(so, m)
177
    struct socket *so;
178
    struct mbuf *m;
179
{
180
    return(EINVAL);
181
}
182
 
183
void
184
ip_rsvp_force_done(so)
185
    struct socket *so;
186
{
187
    return;
188
}
189
 
190
#else /* MROUTING */
191
 
192
#define M_HASCL(m)      ((m)->m_flags & M_EXT)
193
 
194
#define INSIZ           sizeof(struct in_addr)
195
#define same(a1, a2) \
196
        (bcmp((caddr_t)(a1), (caddr_t)(a2), INSIZ) == 0)
197
 
198
#define MT_MRTABLE MT_RTABLE    /* since nothing else uses it */
199
 
200
/*
201
 * Globals.  All but ip_mrouter and ip_mrtproto could be static,
202
 * except for netstat or debugging purposes.
203
 */
204
#ifndef MROUTE_LKM
205
struct socket  *ip_mrouter  = NULL;
206
struct mrtstat  mrtstat;
207
 
208
int             ip_mrtproto = IGMP_DVMRP;    /* for netstat only */
209
#else /* MROUTE_LKM */
210
extern void     X_ipip_input __P((struct mbuf *m, int iphlen));
211
extern struct mrtstat mrtstat;
212
static int ip_mrtproto;
213
#endif
214
 
215
#define NO_RTE_FOUND    0x1
216
#define RTE_FOUND       0x2
217
 
218
static struct mbuf    *mfctable[MFCTBLSIZ];
219
static u_char           nexpire[MFCTBLSIZ];
220
static struct vif       viftable[MAXVIFS];
221
static u_int    mrtdebug = 0;      /* debug level        */
222
#define         DEBUG_MFC       0x02
223
#define         DEBUG_FORWARD   0x04
224
#define         DEBUG_EXPIRE    0x08
225
#define         DEBUG_XMIT      0x10
226
static u_int    tbfdebug = 0;     /* tbf debug level     */
227
static u_int    rsvpdebug = 0;     /* rsvp debug level   */
228
 
229
#define         EXPIRE_TIMEOUT  (hz / 4)        /* 4x / second          */
230
#define         UPCALL_EXPIRE   6               /* number of timeouts   */
231
 
232
/*
233
 * Define the token bucket filter structures
234
 * tbftable -> each vif has one of these for storing info
235
 */
236
 
237
static struct tbf tbftable[MAXVIFS];
238
#define         TBF_REPROCESS   (hz / 100)      /* 100x / second */
239
 
240
/*
241
 * 'Interfaces' associated with decapsulator (so we can tell
242
 * packets that went through it from ones that get reflected
243
 * by a broken gateway).  These interfaces are never linked into
244
 * the system ifnet list & no routes point to them.  I.e., packets
245
 * can't be sent this way.  They only exist as a placeholder for
246
 * multicast source verification.
247
 */
248
static struct ifnet multicast_decap_if[MAXVIFS];
249
 
250
#define ENCAP_TTL 64
251
#define ENCAP_PROTO IPPROTO_IPIP        /* 4 */
252
 
253
/* prototype IP hdr for encapsulated packets */
254
static struct ip multicast_encap_iphdr = {
255
#if BYTE_ORDER == LITTLE_ENDIAN
256
        sizeof(struct ip) >> 2, IPVERSION,
257
#else
258
        IPVERSION, sizeof(struct ip) >> 2,
259
#endif
260
        0,                               /* tos */
261
        sizeof(struct ip),              /* total length */
262
        0,                               /* id */
263
        0,                               /* frag offset */
264
        ENCAP_TTL, ENCAP_PROTO,
265
        0,                               /* checksum */
266
};
267
 
268
/*
269
 * Private variables.
270
 */
271
static vifi_t      numvifs = 0;
272
static int have_encap_tunnel = 0;
273
 
274
/*
275
 * one-back cache used by ipip_input to locate a tunnel's vif
276
 * given a datagram's src ip address.
277
 */
278
static u_long last_encap_src;
279
static struct vif *last_encap_vif;
280
 
281
static u_long   X_ip_mcast_src __P((int vifi));
282
static int      X_ip_mforward __P((struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo));
283
static int      X_ip_mrouter_done __P((void));
284
static int      X_ip_mrouter_get __P((int cmd, struct socket *so, struct mbuf **m));
285
static int      X_ip_mrouter_set __P((int cmd, struct socket *so, struct mbuf *m));
286
static int      X_legal_vif_num __P((int vif));
287
static int      X_mrt_ioctl __P((int cmd, caddr_t data));
288
 
289
static int get_sg_cnt(struct sioc_sg_req *);
290
static int get_vif_cnt(struct sioc_vif_req *);
291
static int ip_mrouter_init(struct socket *, struct mbuf *);
292
static int add_vif(struct vifctl *);
293
static int del_vif(vifi_t *);
294
static int add_mfc(struct mfcctl *);
295
static int del_mfc(struct mfcctl *);
296
static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
297
static int get_version(struct mbuf *);
298
static int get_assert(struct mbuf *);
299
static int set_assert(int *);
300
static void expire_upcalls(void *);
301
static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *,
302
                  vifi_t);
303
static void phyint_send(struct ip *, struct vif *, struct mbuf *);
304
static void encap_send(struct ip *, struct vif *, struct mbuf *);
305
static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
306
static void tbf_queue(struct vif *, struct mbuf *);
307
static void tbf_process_q(struct vif *);
308
static void tbf_reprocess_q(void *);
309
static int tbf_dq_sel(struct vif *, struct ip *);
310
static void tbf_send_packet(struct vif *, struct mbuf *);
311
static void tbf_update_tokens(struct vif *);
312
static int priority(struct vif *, struct ip *);
313
void multiencap_decap(struct mbuf *);
314
 
315
/*
316
 * whether or not special PIM assert processing is enabled.
317
 */
318
static int pim_assert;
319
/*
320
 * Rate limit for assert notification messages, in usec
321
 */
322
#define ASSERT_MSG_TIME         3000000
323
 
324
/*
325
 * Hash function for a source, group entry
326
 */
327
#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
328
                        ((g) >> 20) ^ ((g) >> 10) ^ (g))
329
 
330
/*
331
 * Find a route for a given origin IP address and Multicast group address
332
 * Type of service parameter to be added in the future!!!
333
 */
334
 
335
#define MFCFIND(o, g, rt) { \
336
        register struct mbuf *_mb_rt = mfctable[MFCHASH(o,g)]; \
337
        register struct mfc *_rt = NULL; \
338
        rt = NULL; \
339
        ++mrtstat.mrts_mfc_lookups; \
340
        while (_mb_rt) { \
341
                _rt = mtod(_mb_rt, struct mfc *); \
342
                if ((_rt->mfc_origin.s_addr == o) && \
343
                    (_rt->mfc_mcastgrp.s_addr == g) && \
344
                    (_mb_rt->m_act == NULL)) { \
345
                        rt = _rt; \
346
                        break; \
347
                } \
348
                _mb_rt = _mb_rt->m_next; \
349
        } \
350
        if (rt == NULL) { \
351
                ++mrtstat.mrts_mfc_misses; \
352
        } \
353
}
354
 
355
 
356
/*
357
 * Macros to compute elapsed time efficiently
358
 * Borrowed from Van Jacobson's scheduling code
359
 */
360
#define TV_DELTA(a, b, delta) { \
361
            register int xxs; \
362
                \
363
            delta = (a).tv_usec - (b).tv_usec; \
364
            if ((xxs = (a).tv_sec - (b).tv_sec)) { \
365
               switch (xxs) { \
366
                      case 2: \
367
                          delta += 1000000; \
368
                              /* fall through */ \
369
                      case 1: \
370
                          delta += 1000000; \
371
                          break; \
372
                      default: \
373
                          delta += (1000000 * xxs); \
374
               } \
375
            } \
376
}
377
 
378
#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
379
              (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
380
 
381
#ifdef UPCALL_TIMING
382
u_long upcall_data[51];
383
static void collate(struct timeval *);
384
#endif /* UPCALL_TIMING */
385
 
386
 
387
/*
388
 * Handle MRT setsockopt commands to modify the multicast routing tables.
389
 */
390
static int
391
X_ip_mrouter_set(cmd, so, m)
392
    int cmd;
393
    struct socket *so;
394
    struct mbuf *m;
395
{
396
   if (cmd != MRT_INIT && so != ip_mrouter) return EACCES;
397
 
398
    switch (cmd) {
399
        case MRT_INIT:     return ip_mrouter_init(so, m);
400
        case MRT_DONE:     return ip_mrouter_done();
401
        case MRT_ADD_VIF:  return add_vif (mtod(m, struct vifctl *));
402
        case MRT_DEL_VIF:  return del_vif (mtod(m, vifi_t *));
403
        case MRT_ADD_MFC:  return add_mfc (mtod(m, struct mfcctl *));
404
        case MRT_DEL_MFC:  return del_mfc (mtod(m, struct mfcctl *));
405
        case MRT_ASSERT:   return set_assert(mtod(m, int *));
406
        default:             return EOPNOTSUPP;
407
    }
408
}
409
 
410
#ifndef MROUTE_LKM
411
int (*ip_mrouter_set)(int, struct socket *, struct mbuf *) = X_ip_mrouter_set;
412
#endif
413
 
414
/*
415
 * Handle MRT getsockopt commands
416
 */
417
static int
418
X_ip_mrouter_get(cmd, so, m)
419
    int cmd;
420
    struct socket *so;
421
    struct mbuf **m;
422
{
423
    struct mbuf *mb;
424
 
425
    if (so != ip_mrouter) return EACCES;
426
 
427
    *m = mb = m_get(M_WAIT, MT_SOOPTS);
428
 
429
    switch (cmd) {
430
        case MRT_VERSION:   return get_version(mb);
431
        case MRT_ASSERT:    return get_assert(mb);
432
        default:            return EOPNOTSUPP;
433
    }
434
}
435
 
436
#ifndef MROUTE_LKM
437
int (*ip_mrouter_get)(int, struct socket *, struct mbuf **) = X_ip_mrouter_get;
438
#endif
439
 
440
/*
441
 * Handle ioctl commands to obtain information from the cache
442
 */
443
static int
444
X_mrt_ioctl(cmd, data)
445
    int cmd;
446
    caddr_t data;
447
{
448
    int error = 0;
449
 
450
    switch (cmd) {
451
        case (SIOCGETVIFCNT):
452
            return (get_vif_cnt((struct sioc_vif_req *)data));
453
            break;
454
        case (SIOCGETSGCNT):
455
            return (get_sg_cnt((struct sioc_sg_req *)data));
456
            break;
457
        default:
458
            return (EINVAL);
459
            break;
460
    }
461
    return error;
462
}
463
 
464
#ifndef MROUTE_LKM
465
int (*mrt_ioctl)(int, caddr_t) = X_mrt_ioctl;
466
#endif
467
 
468
/*
469
 * returns the packet, byte, rpf-failure count for the source group provided
470
 */
471
static int
472
get_sg_cnt(req)
473
    register struct sioc_sg_req *req;
474
{
475
    register struct mfc *rt;
476
    int s;
477
 
478
    s = splnet();
479
    MFCFIND(req->src.s_addr, req->grp.s_addr, rt);
480
    splx(s);
481
    if (rt != NULL) {
482
        req->pktcnt = rt->mfc_pkt_cnt;
483
        req->bytecnt = rt->mfc_byte_cnt;
484
        req->wrong_if = rt->mfc_wrong_if;
485
    } else
486
        req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
487
 
488
    return 0;
489
}
490
 
491
/*
492
 * returns the input and output packet and byte counts on the vif provided
493
 */
494
static int
495
get_vif_cnt(req)
496
    register struct sioc_vif_req *req;
497
{
498
    register vifi_t vifi = req->vifi;
499
 
500
    if (vifi >= numvifs) return EINVAL;
501
 
502
    req->icount = viftable[vifi].v_pkt_in;
503
    req->ocount = viftable[vifi].v_pkt_out;
504
    req->ibytes = viftable[vifi].v_bytes_in;
505
    req->obytes = viftable[vifi].v_bytes_out;
506
 
507
    return 0;
508
}
509
 
510
/*
511
 * Enable multicast routing
512
 */
513
static int
514
ip_mrouter_init(so, m)
515
        struct socket *so;
516
        struct mbuf *m;
517
{
518
    int *v;
519
 
520
    if (mrtdebug)
521
        log(LOG_DEBUG,"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
522
                so->so_type, so->so_proto->pr_protocol);
523
 
524
    if (so->so_type != SOCK_RAW ||
525
        so->so_proto->pr_protocol != IPPROTO_IGMP) return EOPNOTSUPP;
526
 
527
    if (!m || (m->m_len != sizeof(int *)))
528
        return ENOPROTOOPT;
529
 
530
    v = mtod(m, int *);
531
    if (*v != 1)
532
        return ENOPROTOOPT;
533
 
534
    if (ip_mrouter != NULL) return EADDRINUSE;
535
 
536
    ip_mrouter = so;
537
 
538
    bzero((caddr_t)mfctable, sizeof(mfctable));
539
    bzero((caddr_t)nexpire, sizeof(nexpire));
540
 
541
    pim_assert = 0;
542
 
543
    timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
544
 
545
    if (mrtdebug)
546
        log(LOG_DEBUG, "ip_mrouter_init\n");
547
 
548
    return 0;
549
}
550
 
551
/*
552
 * Disable multicast routing
553
 */
554
static int
555
X_ip_mrouter_done()
556
{
557
    vifi_t vifi;
558
    int i;
559
    struct ifnet *ifp;
560
    struct ifreq ifr;
561
    struct mbuf *mb_rt;
562
    struct mbuf *m;
563
    struct rtdetq *rte;
564
    int s;
565
 
566
    s = splnet();
567
 
568
    /*
569
     * For each phyint in use, disable promiscuous reception of all IP
570
     * multicasts.
571
     */
572
    for (vifi = 0; vifi < numvifs; vifi++) {
573
        if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
574
            !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
575
            ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
576
            ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr
577
                                                                = INADDR_ANY;
578
            ifp = viftable[vifi].v_ifp;
579
            (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
580
        }
581
    }
582
    bzero((caddr_t)tbftable, sizeof(tbftable));
583
    bzero((caddr_t)viftable, sizeof(viftable));
584
    numvifs = 0;
585
    pim_assert = 0;
586
 
587
    untimeout(expire_upcalls, (caddr_t)NULL);
588
 
589
    /*
590
     * Free all multicast forwarding cache entries.
591
     */
592
    for (i = 0; i < MFCTBLSIZ; i++) {
593
        mb_rt = mfctable[i];
594
        while (mb_rt) {
595
            if (mb_rt->m_act != NULL) {
596
                while (mb_rt->m_act) {
597
                    m = mb_rt->m_act;
598
                    mb_rt->m_act = m->m_act;
599
                    rte = mtod(m, struct rtdetq *);
600
                    m_freem(rte->m);
601
                    m_free(m);
602
                }
603
            }
604
            mb_rt = m_free(mb_rt);
605
        }
606
    }
607
 
608
    bzero((caddr_t)mfctable, sizeof(mfctable));
609
 
610
    /*
611
     * Reset de-encapsulation cache
612
     */
613
    last_encap_src = 0;
614
    last_encap_vif = NULL;
615
    have_encap_tunnel = 0;
616
 
617
    ip_mrouter = NULL;
618
 
619
    splx(s);
620
 
621
    if (mrtdebug)
622
        log(LOG_DEBUG, "ip_mrouter_done\n");
623
 
624
    return 0;
625
}
626
 
627
#ifndef MROUTE_LKM
628
int (*ip_mrouter_done)(void) = X_ip_mrouter_done;
629
#endif
630
 
631
static int
632
get_version(mb)
633
    struct mbuf *mb;
634
{
635
    int *v;
636
 
637
    v = mtod(mb, int *);
638
 
639
    *v = 0x0305;        /* XXX !!!! */
640
    mb->m_len = sizeof(int);
641
 
642
    return 0;
643
}
644
 
645
/*
646
 * Set PIM assert processing global
647
 */
648
static int
649
set_assert(i)
650
    int *i;
651
{
652
    if ((*i != 1) && (*i != 0))
653
        return EINVAL;
654
 
655
    pim_assert = *i;
656
 
657
    return 0;
658
}
659
 
660
/*
661
 * Get PIM assert processing global
662
 */
663
static int
664
get_assert(m)
665
    struct mbuf *m;
666
{
667
    int *i;
668
 
669
    i = mtod(m, int *);
670
 
671
    *i = pim_assert;
672
 
673
    return 0;
674
}
675
 
676
/*
677
 * Add a vif to the vif table
678
 */
679
static int
680
add_vif(vifcp)
681
    register struct vifctl *vifcp;
682
{
683
    register struct vif *vifp = viftable + vifcp->vifc_vifi;
684
    static struct sockaddr_in sin = {sizeof sin, AF_INET};
685
    struct ifaddr *ifa;
686
    struct ifnet *ifp;
687
    struct ifreq ifr;
688
    int error, s;
689
    struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
690
 
691
    if (vifcp->vifc_vifi >= MAXVIFS)  return EINVAL;
692
    if (vifp->v_lcl_addr.s_addr != 0) return EADDRINUSE;
693
 
694
    /* Find the interface with an address in AF_INET family */
695
    sin.sin_addr = vifcp->vifc_lcl_addr;
696
    ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
697
    if (ifa == 0) return EADDRNOTAVAIL;
698
    ifp = ifa->ifa_ifp;
699
 
700
    if (vifcp->vifc_flags & VIFF_TUNNEL) {
701
        if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
702
                /*
703
                 * An encapsulating tunnel is wanted.  Tell ipip_input() to
704
                 * start paying attention to encapsulated packets.
705
                 */
706
                if (have_encap_tunnel == 0) {
707
                        have_encap_tunnel = 1;
708
                        for (s = 0; s < MAXVIFS; ++s) {
709
                                multicast_decap_if[s].if_name = "mdecap";
710
                                multicast_decap_if[s].if_unit = s;
711
                        }
712
                }
713
                /*
714
                 * Set interface to fake encapsulator interface
715
                 */
716
                ifp = &multicast_decap_if[vifcp->vifc_vifi];
717
                /*
718
                 * Prepare cached route entry
719
                 */
720
                bzero(&vifp->v_route, sizeof(vifp->v_route));
721
        } else {
722
            log(LOG_ERR, "source routed tunnels not supported\n");
723
            return EOPNOTSUPP;
724
        }
725
    } else {
726
        /* Make sure the interface supports multicast */
727
        if ((ifp->if_flags & IFF_MULTICAST) == 0)
728
            return EOPNOTSUPP;
729
 
730
        /* Enable promiscuous reception of all IP multicasts from the if */
731
        ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
732
        ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
733
        s = splnet();
734
        error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr);
735
        splx(s);
736
        if (error)
737
            return error;
738
    }
739
 
740
    s = splnet();
741
    /* define parameters for the tbf structure */
742
    vifp->v_tbf = v_tbf;
743
    GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
744
    vifp->v_tbf->tbf_n_tok = 0;
745
    vifp->v_tbf->tbf_q_len = 0;
746
    vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
747
    vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
748
 
749
    vifp->v_flags     = vifcp->vifc_flags;
750
    vifp->v_threshold = vifcp->vifc_threshold;
751
    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
752
    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
753
    vifp->v_ifp       = ifp;
754
    /* scaling up here allows division by 1024 in critical code */
755
    vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
756
    vifp->v_rsvp_on   = 0;
757
    vifp->v_rsvpd     = NULL;
758
    /* initialize per vif pkt counters */
759
    vifp->v_pkt_in    = 0;
760
    vifp->v_pkt_out   = 0;
761
    vifp->v_bytes_in  = 0;
762
    vifp->v_bytes_out = 0;
763
    splx(s);
764
 
765
    /* Adjust numvifs up if the vifi is higher than numvifs */
766
    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
767
 
768
    if (mrtdebug)
769
        log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
770
            vifcp->vifc_vifi,
771
            ntohl(vifcp->vifc_lcl_addr.s_addr),
772
            (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
773
            ntohl(vifcp->vifc_rmt_addr.s_addr),
774
            vifcp->vifc_threshold,
775
            vifcp->vifc_rate_limit);
776
 
777
    return 0;
778
}
779
 
780
/*
781
 * Delete a vif from the vif table
782
 */
783
static int
784
del_vif(vifip)
785
    vifi_t *vifip;
786
{
787
    register struct vif *vifp = viftable + *vifip;
788
    register vifi_t vifi;
789
    register struct mbuf *m;
790
    struct ifnet *ifp;
791
    struct ifreq ifr;
792
    int s;
793
 
794
    if (*vifip >= numvifs) return EINVAL;
795
    if (vifp->v_lcl_addr.s_addr == 0) return EADDRNOTAVAIL;
796
 
797
    s = splnet();
798
 
799
    if (!(vifp->v_flags & VIFF_TUNNEL)) {
800
        ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
801
        ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
802
        ifp = vifp->v_ifp;
803
        (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
804
    }
805
 
806
    if (vifp == last_encap_vif) {
807
        last_encap_vif = 0;
808
        last_encap_src = 0;
809
    }
810
 
811
    /*
812
     * Free packets queued at the interface
813
     */
814
    while (vifp->v_tbf->tbf_q) {
815
        m = vifp->v_tbf->tbf_q;
816
        vifp->v_tbf->tbf_q = m->m_act;
817
        m_freem(m);
818
    }
819
 
820
    bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
821
    bzero((caddr_t)vifp, sizeof (*vifp));
822
 
823
    /* Adjust numvifs down */
824
    for (vifi = numvifs; vifi > 0; vifi--)
825
        if (viftable[vifi-1].v_lcl_addr.s_addr != 0) break;
826
    numvifs = vifi;
827
 
828
    splx(s);
829
 
830
    if (mrtdebug)
831
      log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
832
 
833
    return 0;
834
}
835
 
836
/*
837
 * Add an mfc entry
838
 */
839
static int
840
add_mfc(mfccp)
841
    struct mfcctl *mfccp;
842
{
843
    struct mfc *rt;
844
    register struct mbuf *mb_rt;
845
    u_long hash;
846
    struct mbuf *mb_ntry;
847
    struct rtdetq *rte;
848
    register u_short nstl;
849
    int s;
850
    int i;
851
 
852
    MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
853
 
854
    /* If an entry already exists, just update the fields */
855
    if (rt) {
856
        if (mrtdebug & DEBUG_MFC)
857
            log(LOG_DEBUG,"add_mfc update o %x g %x p %x\n",
858
                ntohl(mfccp->mfcc_origin.s_addr),
859
                ntohl(mfccp->mfcc_mcastgrp.s_addr),
860
                mfccp->mfcc_parent);
861
 
862
        s = splnet();
863
        rt->mfc_parent = mfccp->mfcc_parent;
864
        for (i = 0; i < numvifs; i++)
865
            rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
866
        splx(s);
867
        return 0;
868
    }
869
 
870
    /*
871
     * Find the entry for which the upcall was made and update
872
     */
873
    s = splnet();
874
    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
875
    for (mb_rt = mfctable[hash], nstl = 0; mb_rt; mb_rt = mb_rt->m_next) {
876
 
877
        rt = mtod(mb_rt, struct mfc *);
878
        if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
879
            (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
880
            (mb_rt->m_act != NULL)) {
881
 
882
            if (nstl++)
883
                log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %x\n",
884
                    "multiple kernel entries",
885
                    ntohl(mfccp->mfcc_origin.s_addr),
886
                    ntohl(mfccp->mfcc_mcastgrp.s_addr),
887
                    mfccp->mfcc_parent, mb_rt->m_act);
888
 
889
            if (mrtdebug & DEBUG_MFC)
890
                log(LOG_DEBUG,"add_mfc o %x g %x p %x dbg %x\n",
891
                    ntohl(mfccp->mfcc_origin.s_addr),
892
                    ntohl(mfccp->mfcc_mcastgrp.s_addr),
893
                    mfccp->mfcc_parent, mb_rt->m_act);
894
 
895
            rt->mfc_origin     = mfccp->mfcc_origin;
896
            rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
897
            rt->mfc_parent     = mfccp->mfcc_parent;
898
            for (i = 0; i < numvifs; i++)
899
                rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
900
            /* initialize pkt counters per src-grp */
901
            rt->mfc_pkt_cnt    = 0;
902
            rt->mfc_byte_cnt   = 0;
903
            rt->mfc_wrong_if   = 0;
904
            rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
905
 
906
            rt->mfc_expire = 0;  /* Don't clean this guy up */
907
            nexpire[hash]--;
908
 
909
            /* free packets Qed at the end of this entry */
910
            while (mb_rt->m_act) {
911
                mb_ntry = mb_rt->m_act;
912
                rte = mtod(mb_ntry, struct rtdetq *);
913
/* #ifdef RSVP_ISI */
914
                ip_mdq(rte->m, rte->ifp, rt, -1);
915
/* #endif */
916
                mb_rt->m_act = mb_ntry->m_act;
917
                m_freem(rte->m);
918
#ifdef UPCALL_TIMING
919
                collate(&(rte->t));
920
#endif /* UPCALL_TIMING */
921
                m_free(mb_ntry);
922
            }
923
        }
924
    }
925
 
926
    /*
927
     * It is possible that an entry is being inserted without an upcall
928
     */
929
    if (nstl == 0) {
930
        if (mrtdebug & DEBUG_MFC)
931
            log(LOG_DEBUG,"add_mfc no upcall h %d o %x g %x p %x\n",
932
                hash, ntohl(mfccp->mfcc_origin.s_addr),
933
                ntohl(mfccp->mfcc_mcastgrp.s_addr),
934
                mfccp->mfcc_parent);
935
 
936
        for (mb_rt = mfctable[hash]; mb_rt; mb_rt = mb_rt->m_next) {
937
 
938
            rt = mtod(mb_rt, struct mfc *);
939
            if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
940
                (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
941
 
942
                rt->mfc_origin     = mfccp->mfcc_origin;
943
                rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
944
                rt->mfc_parent     = mfccp->mfcc_parent;
945
                for (i = 0; i < numvifs; i++)
946
                    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
947
                /* initialize pkt counters per src-grp */
948
                rt->mfc_pkt_cnt    = 0;
949
                rt->mfc_byte_cnt   = 0;
950
                rt->mfc_wrong_if   = 0;
951
                rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
952
                if (rt->mfc_expire)
953
                    nexpire[hash]--;
954
                rt->mfc_expire     = 0;
955
            }
956
        }
957
        if (mb_rt == NULL) {
958
            /* no upcall, so make a new entry */
959
            MGET(mb_rt, M_DONTWAIT, MT_MRTABLE);
960
            if (mb_rt == NULL) {
961
                splx(s);
962
                return ENOBUFS;
963
            }
964
 
965
            rt = mtod(mb_rt, struct mfc *);
966
 
967
            /* insert new entry at head of hash chain */
968
            rt->mfc_origin     = mfccp->mfcc_origin;
969
            rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
970
            rt->mfc_parent     = mfccp->mfcc_parent;
971
            for (i = 0; i < numvifs; i++)
972
                    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
973
            /* initialize pkt counters per src-grp */
974
            rt->mfc_pkt_cnt    = 0;
975
            rt->mfc_byte_cnt   = 0;
976
            rt->mfc_wrong_if   = 0;
977
            rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
978
            rt->mfc_expire     = 0;
979
 
980
            /* link into table */
981
            mb_rt->m_next  = mfctable[hash];
982
            mfctable[hash] = mb_rt;
983
            mb_rt->m_act = NULL;
984
        }
985
    }
986
    splx(s);
987
    return 0;
988
}
989
 
990
#ifdef UPCALL_TIMING
991
/*
992
 * collect delay statistics on the upcalls
993
 */
994
static void collate(t)
995
register struct timeval *t;
996
{
997
    register u_long d;
998
    register struct timeval tp;
999
    register u_long delta;
1000
 
1001
    GET_TIME(tp);
1002
 
1003
    if (TV_LT(*t, tp))
1004
    {
1005
        TV_DELTA(tp, *t, delta);
1006
 
1007
        d = delta >> 10;
1008
        if (d > 50)
1009
            d = 50;
1010
 
1011
        ++upcall_data[d];
1012
    }
1013
}
1014
#endif /* UPCALL_TIMING */
1015
 
1016
/*
1017
 * Delete an mfc entry
1018
 */
1019
static int
1020
del_mfc(mfccp)
1021
    struct mfcctl *mfccp;
1022
{
1023
    struct in_addr      origin;
1024
    struct in_addr      mcastgrp;
1025
    struct mfc          *rt;
1026
    struct mbuf         *mb_rt;
1027
    struct mbuf         **nptr;
1028
    u_long              hash;
1029
    int s;
1030
 
1031
    origin = mfccp->mfcc_origin;
1032
    mcastgrp = mfccp->mfcc_mcastgrp;
1033
    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1034
 
1035
    if (mrtdebug & DEBUG_MFC)
1036
        log(LOG_DEBUG,"del_mfc orig %x mcastgrp %x\n",
1037
            ntohl(origin.s_addr), ntohl(mcastgrp.s_addr));
1038
 
1039
    s = splnet();
1040
 
1041
    nptr = &mfctable[hash];
1042
    while ((mb_rt = *nptr) != NULL) {
1043
        rt = mtod(mb_rt, struct mfc *);
1044
        if (origin.s_addr == rt->mfc_origin.s_addr &&
1045
            mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1046
            mb_rt->m_act == NULL)
1047
            break;
1048
 
1049
        nptr = &mb_rt->m_next;
1050
    }
1051
    if (mb_rt == NULL) {
1052
        splx(s);
1053
        return EADDRNOTAVAIL;
1054
    }
1055
 
1056
    MFREE(mb_rt, *nptr);
1057
 
1058
    splx(s);
1059
 
1060
    return 0;
1061
}
1062
 
1063
/*
1064
 * Send a message to mrouted on the multicast routing socket
1065
 */
1066
static int
1067
socket_send(s, mm, src)
1068
        struct socket *s;
1069
        struct mbuf *mm;
1070
        struct sockaddr_in *src;
1071
{
1072
        if (s) {
1073
                if (sbappendaddr(&s->so_rcv,
1074
                                 (struct sockaddr *)src,
1075
                                 mm, (struct mbuf *)0) != 0) {
1076
                        sorwakeup(s);
1077
                        return 0;
1078
                }
1079
        }
1080
        m_freem(mm);
1081
        return -1;
1082
}
1083
 
1084
/*
1085
 * IP multicast forwarding function. This function assumes that the packet
1086
 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1087
 * pointed to by "ifp", and the packet is to be relayed to other networks
1088
 * that have members of the packet's destination IP multicast group.
1089
 *
1090
 * The packet is returned unscathed to the caller, unless it is
1091
 * erroneous, in which case a non-zero return value tells the caller to
1092
 * discard it.
1093
 */
1094
 
1095
#define IP_HDR_LEN  20  /* # bytes of fixed IP header (excluding options) */
1096
#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1097
 
1098
static int
1099
X_ip_mforward(ip, ifp, m, imo)
1100
    register struct ip *ip;
1101
    struct ifnet *ifp;
1102
    struct mbuf *m;
1103
    struct ip_moptions *imo;
1104
{
1105
    register struct mfc *rt;
1106
    register u_char *ipoptions;
1107
    static struct sockaddr_in   k_igmpsrc       = { sizeof k_igmpsrc, AF_INET };
1108
    static int srctun = 0;
1109
    register struct mbuf *mm;
1110
    int s;
1111
    vifi_t vifi;
1112
    struct vif *vifp;
1113
 
1114
    if (mrtdebug & DEBUG_FORWARD)
1115
        log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %x\n",
1116
            ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
1117
 
1118
    if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1119
        (ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1120
        /*
1121
         * Packet arrived via a physical interface or
1122
         * an encapsulated tunnel.
1123
         */
1124
    } else {
1125
        /*
1126
         * Packet arrived through a source-route tunnel.
1127
         * Source-route tunnels are no longer supported.
1128
         */
1129
        if ((srctun++ % 1000) == 0)
1130
            log(LOG_ERR, "ip_mforward: received source-routed packet from %x\n",
1131
                ntohl(ip->ip_src.s_addr));
1132
 
1133
        return 1;
1134
    }
1135
 
1136
    if ((imo) && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1137
        if (ip->ip_ttl < 255)
1138
                ip->ip_ttl++;   /* compensate for -1 in *_send routines */
1139
        if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1140
            vifp = viftable + vifi;
1141
            printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s%d)\n",
1142
                ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), vifi,
1143
                (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1144
                vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
1145
        }
1146
        return (ip_mdq(m, ifp, NULL, vifi));
1147
    }
1148
    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1149
        printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1150
            ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr));
1151
        if(!imo)
1152
                printf("In fact, no options were specified at all\n");
1153
    }
1154
 
1155
    /*
1156
     * Don't forward a packet with time-to-live of zero or one,
1157
     * or a packet destined to a local-only group.
1158
     */
1159
    if (ip->ip_ttl <= 1 ||
1160
        ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1161
        return 0;
1162
 
1163
    /*
1164
     * Determine forwarding vifs from the forwarding cache table
1165
     */
1166
    s = splnet();
1167
    MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt);
1168
 
1169
    /* Entry exists, so forward if necessary */
1170
    if (rt != NULL) {
1171
        splx(s);
1172
        return (ip_mdq(m, ifp, rt, -1));
1173
    } else {
1174
        /*
1175
         * If we don't have a route for packet's origin,
1176
         * Make a copy of the packet &
1177
         * send message to routing daemon
1178
         */
1179
 
1180
        register struct mbuf *mb_rt;
1181
        register struct mbuf *mb_ntry;
1182
        register struct mbuf *mb0;
1183
        register struct rtdetq *rte;
1184
        register struct mbuf *rte_m;
1185
        register u_long hash;
1186
        register int npkts;
1187
        int hlen = ip->ip_hl << 2;
1188
#ifdef UPCALL_TIMING
1189
        struct timeval tp;
1190
 
1191
        GET_TIME(tp);
1192
#endif
1193
 
1194
        mrtstat.mrts_no_route++;
1195
        if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1196
            log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
1197
                ntohl(ip->ip_src.s_addr),
1198
                ntohl(ip->ip_dst.s_addr));
1199
 
1200
        /*
1201
         * Allocate mbufs early so that we don't do extra work if we are
1202
         * just going to fail anyway.  Make sure to pullup the header so
1203
         * that other people can't step on it.
1204
         */
1205
        MGET(mb_ntry, M_DONTWAIT, MT_DATA);
1206
        if (mb_ntry == NULL) {
1207
            splx(s);
1208
            return ENOBUFS;
1209
        }
1210
        mb0 = m_copy(m, 0, M_COPYALL);
1211
        if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1212
            mb0 = m_pullup(mb0, hlen);
1213
        if (mb0 == NULL) {
1214
            m_free(mb_ntry);
1215
            splx(s);
1216
            return ENOBUFS;
1217
        }
1218
 
1219
        /* is there an upcall waiting for this packet? */
1220
        hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1221
        for (mb_rt = mfctable[hash]; mb_rt; mb_rt = mb_rt->m_next) {
1222
            rt = mtod(mb_rt, struct mfc *);
1223
            if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1224
                (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1225
                (mb_rt->m_act != NULL))
1226
                break;
1227
        }
1228
 
1229
        if (mb_rt == NULL) {
1230
            int i;
1231
            struct igmpmsg *im;
1232
 
1233
            /* no upcall, so make a new entry */
1234
            MGET(mb_rt, M_DONTWAIT, MT_MRTABLE);
1235
            if (mb_rt == NULL) {
1236
                m_free(mb_ntry);
1237
                m_freem(mb0);
1238
                splx(s);
1239
                return ENOBUFS;
1240
            }
1241
            /* Make a copy of the header to send to the user level process */
1242
            mm = m_copy(mb0, 0, hlen);
1243
            if (mm == NULL) {
1244
                m_free(mb_ntry);
1245
                m_freem(mb0);
1246
                m_free(mb_rt);
1247
                splx(s);
1248
                return ENOBUFS;
1249
            }
1250
 
1251
            /*
1252
             * Send message to routing daemon to install
1253
             * a route into the kernel table
1254
             */
1255
            k_igmpsrc.sin_addr = ip->ip_src;
1256
 
1257
            im = mtod(mm, struct igmpmsg *);
1258
            im->im_msgtype      = IGMPMSG_NOCACHE;
1259
            im->im_mbz          = 0;
1260
 
1261
            mrtstat.mrts_upcalls++;
1262
 
1263
            if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1264
                log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1265
                ++mrtstat.mrts_upq_sockfull;
1266
                m_free(mb_ntry);
1267
                m_freem(mb0);
1268
                m_free(mb_rt);
1269
                splx(s);
1270
                return ENOBUFS;
1271
            }
1272
 
1273
            rt = mtod(mb_rt, struct mfc *);
1274
 
1275
            /* insert new entry at head of hash chain */
1276
            rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1277
            rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1278
            rt->mfc_expire            = UPCALL_EXPIRE;
1279
            nexpire[hash]++;
1280
            for (i = 0; i < numvifs; i++)
1281
                rt->mfc_ttls[i] = 0;
1282
            rt->mfc_parent = -1;
1283
 
1284
            /* link into table */
1285
            mb_rt->m_next  = mfctable[hash];
1286
            mfctable[hash] = mb_rt;
1287
            mb_rt->m_act = NULL;
1288
 
1289
            rte_m = mb_rt;
1290
        } else {
1291
            /* determine if q has overflowed */
1292
            for (rte_m = mb_rt, npkts = 0; rte_m->m_act; rte_m = rte_m->m_act)
1293
                npkts++;
1294
 
1295
            if (npkts > MAX_UPQ) {
1296
                mrtstat.mrts_upq_ovflw++;
1297
                m_free(mb_ntry);
1298
                m_freem(mb0);
1299
                splx(s);
1300
                return 0;
1301
            }
1302
        }
1303
 
1304
        mb_ntry->m_act = NULL;
1305
        rte = mtod(mb_ntry, struct rtdetq *);
1306
 
1307
        rte->m                  = mb0;
1308
        rte->ifp                = ifp;
1309
#ifdef UPCALL_TIMING
1310
        rte->t                  = tp;
1311
#endif
1312
 
1313
        /* Add this entry to the end of the queue */
1314
        rte_m->m_act            = mb_ntry;
1315
 
1316
        splx(s);
1317
 
1318
        return 0;
1319
    }
1320
}
1321
 
1322
#ifndef MROUTE_LKM
1323
int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
1324
                   struct ip_moptions *) = X_ip_mforward;
1325
#endif
1326
 
1327
/*
1328
 * Clean up the cache entry if upcall is not serviced
1329
 */
1330
static void
1331
expire_upcalls(void *unused)
1332
{
1333
    struct mbuf *mb_rt, *m, **nptr;
1334
    struct rtdetq *rte;
1335
    struct mfc *mfc;
1336
    int i;
1337
    int s;
1338
 
1339
    s = splnet();
1340
    for (i = 0; i < MFCTBLSIZ; i++) {
1341
        if (nexpire[i] == 0)
1342
            continue;
1343
        nptr = &mfctable[i];
1344
        for (mb_rt = *nptr; mb_rt != NULL; mb_rt = *nptr) {
1345
            mfc = mtod(mb_rt, struct mfc *);
1346
 
1347
            /*
1348
             * Skip real cache entries
1349
             * Make sure it wasn't marked to not expire (shouldn't happen)
1350
             * If it expires now
1351
             */
1352
            if (mb_rt->m_act != NULL &&
1353
                mfc->mfc_expire != 0 &&
1354
                --mfc->mfc_expire == 0) {
1355
                if (mrtdebug & DEBUG_EXPIRE)
1356
                    log(LOG_DEBUG, "expire_upcalls: expiring (%x %x)\n",
1357
                        ntohl(mfc->mfc_origin.s_addr),
1358
                        ntohl(mfc->mfc_mcastgrp.s_addr));
1359
                /*
1360
                 * drop all the packets
1361
                 * free the mbuf with the pkt, if, timing info
1362
                 */
1363
                while (mb_rt->m_act) {
1364
                    m = mb_rt->m_act;
1365
                    mb_rt->m_act = m->m_act;
1366
 
1367
                    rte = mtod(m, struct rtdetq *);
1368
                    m_freem(rte->m);
1369
                    m_free(m);
1370
                }
1371
                ++mrtstat.mrts_cache_cleanups;
1372
                nexpire[i]--;
1373
 
1374
                MFREE(mb_rt, *nptr);
1375
            } else {
1376
                nptr = &mb_rt->m_next;
1377
            }
1378
        }
1379
    }
1380
    splx(s);
1381
    timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
1382
}
1383
 
1384
/*
1385
 * Packet forwarding routine once entry in the cache is made
1386
 */
1387
static int
1388
ip_mdq(m, ifp, rt, xmt_vif)
1389
    register struct mbuf *m;
1390
    register struct ifnet *ifp;
1391
    register struct mfc *rt;
1392
    register vifi_t xmt_vif;
1393
{
1394
    register struct ip  *ip = mtod(m, struct ip *);
1395
    register vifi_t vifi;
1396
    register struct vif *vifp;
1397
    register int plen = ntohs(ip->ip_len);
1398
 
1399
/*
1400
 * Macro to send packet on vif.  Since RSVP packets don't get counted on
1401
 * input, they shouldn't get counted on output, so statistics keeping is
1402
 * seperate.
1403
 */
1404
#define MC_SEND(ip,vifp,m) {                             \
1405
                if ((vifp)->v_flags & VIFF_TUNNEL)       \
1406
                    encap_send((ip), (vifp), (m));       \
1407
                else                                     \
1408
                    phyint_send((ip), (vifp), (m));      \
1409
}
1410
 
1411
    /*
1412
     * If xmt_vif is not -1, send on only the requested vif.
1413
     *
1414
     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1415
     */
1416
    if (xmt_vif < numvifs) {
1417
        MC_SEND(ip, viftable + xmt_vif, m);
1418
        return 1;
1419
    }
1420
 
1421
    /*
1422
     * Don't forward if it didn't arrive from the parent vif for its origin.
1423
     */
1424
    vifi = rt->mfc_parent;
1425
    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1426
        /* came in the wrong interface */
1427
        if (mrtdebug & DEBUG_FORWARD)
1428
            log(LOG_DEBUG, "wrong if: ifp %x vifi %d vififp %x\n",
1429
                ifp, vifi, viftable[vifi].v_ifp);
1430
        ++mrtstat.mrts_wrong_if;
1431
        ++rt->mfc_wrong_if;
1432
        /*
1433
         * If we are doing PIM assert processing, and we are forwarding
1434
         * packets on this interface, and it is a broadcast medium
1435
         * interface (and not a tunnel), send a message to the routing daemon.
1436
         */
1437
        if (pim_assert && rt->mfc_ttls[vifi] &&
1438
                (ifp->if_flags & IFF_BROADCAST) &&
1439
                !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1440
            struct sockaddr_in k_igmpsrc;
1441
            struct mbuf *mm;
1442
            struct igmpmsg *im;
1443
            int hlen = ip->ip_hl << 2;
1444
            struct timeval now;
1445
            register u_long delta;
1446
 
1447
            GET_TIME(now);
1448
 
1449
            TV_DELTA(rt->mfc_last_assert, now, delta);
1450
 
1451
            if (delta > ASSERT_MSG_TIME) {
1452
                mm = m_copy(m, 0, hlen);
1453
                if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1454
                    mm = m_pullup(mm, hlen);
1455
                if (mm == NULL) {
1456
                    return ENOBUFS;
1457
                }
1458
 
1459
                rt->mfc_last_assert = now;
1460
 
1461
                im = mtod(mm, struct igmpmsg *);
1462
                im->im_msgtype  = IGMPMSG_WRONGVIF;
1463
                im->im_mbz              = 0;
1464
                im->im_vif              = vifi;
1465
 
1466
                k_igmpsrc.sin_addr = im->im_src;
1467
 
1468
                socket_send(ip_mrouter, mm, &k_igmpsrc);
1469
            }
1470
        }
1471
        return 0;
1472
    }
1473
 
1474
    /* If I sourced this packet, it counts as output, else it was input. */
1475
    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1476
        viftable[vifi].v_pkt_out++;
1477
        viftable[vifi].v_bytes_out += plen;
1478
    } else {
1479
        viftable[vifi].v_pkt_in++;
1480
        viftable[vifi].v_bytes_in += plen;
1481
    }
1482
    rt->mfc_pkt_cnt++;
1483
    rt->mfc_byte_cnt += plen;
1484
 
1485
    /*
1486
     * For each vif, decide if a copy of the packet should be forwarded.
1487
     * Forward if:
1488
     *          - the ttl exceeds the vif's threshold
1489
     *          - there are group members downstream on interface
1490
     */
1491
    for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1492
        if ((rt->mfc_ttls[vifi] > 0) &&
1493
            (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1494
            vifp->v_pkt_out++;
1495
            vifp->v_bytes_out += plen;
1496
            MC_SEND(ip, vifp, m);
1497
        }
1498
 
1499
    return 0;
1500
}
1501
 
1502
/*
1503
 * check if a vif number is legal/ok. This is used by ip_output, to export
1504
 * numvifs there,
1505
 */
1506
static int
1507
X_legal_vif_num(vif)
1508
    int vif;
1509
{
1510
    if (vif >= 0 && vif < numvifs)
1511
       return(1);
1512
    else
1513
       return(0);
1514
}
1515
 
1516
#ifndef MROUTE_LKM
1517
int (*legal_vif_num)(int) = X_legal_vif_num;
1518
#endif
1519
 
1520
/*
1521
 * Return the local address used by this vif
1522
 */
1523
static u_long
1524
X_ip_mcast_src(vifi)
1525
    int vifi;
1526
{
1527
    if (vifi >= 0 && vifi < numvifs)
1528
        return viftable[vifi].v_lcl_addr.s_addr;
1529
    else
1530
        return INADDR_ANY;
1531
}
1532
 
1533
#ifndef MROUTE_LKM
1534
u_long (*ip_mcast_src)(int) = X_ip_mcast_src;
1535
#endif
1536
 
1537
static void
1538
phyint_send(ip, vifp, m)
1539
    struct ip *ip;
1540
    struct vif *vifp;
1541
    struct mbuf *m;
1542
{
1543
    register struct mbuf *mb_copy;
1544
    register int hlen = ip->ip_hl << 2;
1545
 
1546
    /*
1547
     * Make a new reference to the packet; make sure that
1548
     * the IP header is actually copied, not just referenced,
1549
     * so that ip_output() only scribbles on the copy.
1550
     */
1551
    mb_copy = m_copy(m, 0, M_COPYALL);
1552
    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1553
        mb_copy = m_pullup(mb_copy, hlen);
1554
    if (mb_copy == NULL)
1555
        return;
1556
 
1557
    if (vifp->v_rate_limit <= 0)
1558
        tbf_send_packet(vifp, mb_copy);
1559
    else
1560
        tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1561
}
1562
 
1563
static void
1564
encap_send(ip, vifp, m)
1565
    register struct ip *ip;
1566
    register struct vif *vifp;
1567
    register struct mbuf *m;
1568
{
1569
    register struct mbuf *mb_copy;
1570
    register struct ip *ip_copy;
1571
    register int i, len = ip->ip_len;
1572
 
1573
    /*
1574
     * copy the old packet & pullup it's IP header into the
1575
     * new mbuf so we can modify it.  Try to fill the new
1576
     * mbuf since if we don't the ethernet driver will.
1577
     */
1578
    MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1579
    if (mb_copy == NULL)
1580
        return;
1581
    mb_copy->m_data += max_linkhdr;
1582
    mb_copy->m_len = sizeof(multicast_encap_iphdr);
1583
 
1584
    if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1585
        m_freem(mb_copy);
1586
        return;
1587
    }
1588
    i = MHLEN - M_LEADINGSPACE(mb_copy);
1589
    if (i > len)
1590
        i = len;
1591
    mb_copy = m_pullup(mb_copy, i);
1592
    if (mb_copy == NULL)
1593
        return;
1594
    mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1595
 
1596
    /*
1597
     * fill in the encapsulating IP header.
1598
     */
1599
    ip_copy = mtod(mb_copy, struct ip *);
1600
    *ip_copy = multicast_encap_iphdr;
1601
    ip_copy->ip_id = htons(ip_id++);
1602
    ip_copy->ip_len += len;
1603
    ip_copy->ip_src = vifp->v_lcl_addr;
1604
    ip_copy->ip_dst = vifp->v_rmt_addr;
1605
 
1606
    /*
1607
     * turn the encapsulated IP header back into a valid one.
1608
     */
1609
    ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1610
    --ip->ip_ttl;
1611
    HTONS(ip->ip_len);
1612
    HTONS(ip->ip_off);
1613
    ip->ip_sum = 0;
1614
    mb_copy->m_data += sizeof(multicast_encap_iphdr);
1615
    ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1616
    mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1617
 
1618
    if (vifp->v_rate_limit <= 0)
1619
        tbf_send_packet(vifp, mb_copy);
1620
    else
1621
        tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1622
}
1623
 
1624
/*
1625
 * De-encapsulate a packet and feed it back through ip input (this
1626
 * routine is called whenever IP gets a packet with proto type
1627
 * ENCAP_PROTO and a local destination address).
1628
 */
1629
void
1630
#ifdef MROUTE_LKM
1631
X_ipip_input(m, iphlen)
1632
#else
1633
ipip_input(m, iphlen)
1634
#endif
1635
        register struct mbuf *m;
1636
        int iphlen;
1637
{
1638
    struct ifnet *ifp = m->m_pkthdr.rcvif;
1639
    register struct ip *ip = mtod(m, struct ip *);
1640
    register int hlen = ip->ip_hl << 2;
1641
    register int s;
1642
    register struct ifqueue *ifq;
1643
    register struct vif *vifp;
1644
 
1645
    if (!have_encap_tunnel) {
1646
            rip_input(m, iphlen);
1647
            return;
1648
    }
1649
    /*
1650
     * dump the packet if it's not to a multicast destination or if
1651
     * we don't have an encapsulating tunnel with the source.
1652
     * Note:  This code assumes that the remote site IP address
1653
     * uniquely identifies the tunnel (i.e., that this site has
1654
     * at most one tunnel with the remote site).
1655
     */
1656
    if (! IN_MULTICAST(ntohl(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr))) {
1657
        ++mrtstat.mrts_bad_tunnel;
1658
        m_freem(m);
1659
        return;
1660
    }
1661
    if (ip->ip_src.s_addr != last_encap_src) {
1662
        register struct vif *vife;
1663
 
1664
        vifp = viftable;
1665
        vife = vifp + numvifs;
1666
        last_encap_src = ip->ip_src.s_addr;
1667
        last_encap_vif = 0;
1668
        for ( ; vifp < vife; ++vifp)
1669
            if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
1670
                if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
1671
                    == VIFF_TUNNEL)
1672
                    last_encap_vif = vifp;
1673
                break;
1674
            }
1675
    }
1676
    if ((vifp = last_encap_vif) == 0) {
1677
        last_encap_src = 0;
1678
        mrtstat.mrts_cant_tunnel++; /*XXX*/
1679
        m_freem(m);
1680
        if (mrtdebug)
1681
          log(LOG_DEBUG, "ip_mforward: no tunnel with %x\n",
1682
                ntohl(ip->ip_src.s_addr));
1683
        return;
1684
    }
1685
    ifp = vifp->v_ifp;
1686
 
1687
    if (hlen > IP_HDR_LEN)
1688
      ip_stripoptions(m, (struct mbuf *) 0);
1689
    m->m_data += IP_HDR_LEN;
1690
    m->m_len -= IP_HDR_LEN;
1691
    m->m_pkthdr.len -= IP_HDR_LEN;
1692
    m->m_pkthdr.rcvif = ifp;
1693
 
1694
    ifq = &ipintrq;
1695
    s = splimp();
1696
    if (IF_QFULL(ifq)) {
1697
        IF_DROP(ifq);
1698
        m_freem(m);
1699
    } else {
1700
        IF_ENQUEUE(ifq, m);
1701
        /*
1702
         * normally we would need a "schednetisr(NETISR_IP)"
1703
         * here but we were called by ip_input and it is going
1704
         * to loop back & try to dequeue the packet we just
1705
         * queued as soon as we return so we avoid the
1706
         * unnecessary software interrrupt.
1707
         */
1708
    }
1709
    splx(s);
1710
}
1711
 
1712
/*
1713
 * Token bucket filter module
1714
 */
1715
 
1716
static void
1717
tbf_control(vifp, m, ip, p_len)
1718
        register struct vif *vifp;
1719
        register struct mbuf *m;
1720
        register struct ip *ip;
1721
        register u_long p_len;
1722
{
1723
    register struct tbf *t = vifp->v_tbf;
1724
 
1725
    if (p_len > MAX_BKT_SIZE) {
1726
        /* drop if packet is too large */
1727
        mrtstat.mrts_pkt2large++;
1728
        m_freem(m);
1729
        return;
1730
    }
1731
 
1732
    tbf_update_tokens(vifp);
1733
 
1734
    /* if there are enough tokens,
1735
     * and the queue is empty,
1736
     * send this packet out
1737
     */
1738
 
1739
    if (t->tbf_q_len == 0) {
1740
        /* queue empty, send packet if enough tokens */
1741
        if (p_len <= t->tbf_n_tok) {
1742
            t->tbf_n_tok -= p_len;
1743
            tbf_send_packet(vifp, m);
1744
        } else {
1745
            /* queue packet and timeout till later */
1746
            tbf_queue(vifp, m);
1747
            timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1748
        }
1749
    } else if (t->tbf_q_len < t->tbf_max_q_len) {
1750
        /* finite queue length, so queue pkts and process queue */
1751
        tbf_queue(vifp, m);
1752
        tbf_process_q(vifp);
1753
    } else {
1754
        /* queue length too much, try to dq and queue and process */
1755
        if (!tbf_dq_sel(vifp, ip)) {
1756
            mrtstat.mrts_q_overflow++;
1757
            m_freem(m);
1758
            return;
1759
        } else {
1760
            tbf_queue(vifp, m);
1761
            tbf_process_q(vifp);
1762
        }
1763
    }
1764
    return;
1765
}
1766
 
1767
/*
1768
 * adds a packet to the queue at the interface
1769
 */
1770
static void
1771
tbf_queue(vifp, m)
1772
        register struct vif *vifp;
1773
        register struct mbuf *m;
1774
{
1775
    register int s = splnet();
1776
    register struct tbf *t = vifp->v_tbf;
1777
 
1778
    if (t->tbf_t == NULL) {
1779
        /* Queue was empty */
1780
        t->tbf_q = m;
1781
    } else {
1782
        /* Insert at tail */
1783
        t->tbf_t->m_act = m;
1784
    }
1785
 
1786
    /* Set new tail pointer */
1787
    t->tbf_t = m;
1788
 
1789
#ifdef DIAGNOSTIC
1790
    /* Make sure we didn't get fed a bogus mbuf */
1791
    if (m->m_act)
1792
        panic("tbf_queue: m_act");
1793
#endif
1794
    m->m_act = NULL;
1795
 
1796
    t->tbf_q_len++;
1797
 
1798
    splx(s);
1799
}
1800
 
1801
 
1802
/*
1803
 * processes the queue at the interface
1804
 */
1805
static void
1806
tbf_process_q(vifp)
1807
    register struct vif *vifp;
1808
{
1809
    register struct mbuf *m;
1810
    register int len;
1811
    register int s = splnet();
1812
    register struct tbf *t = vifp->v_tbf;
1813
 
1814
    /* loop through the queue at the interface and send as many packets
1815
     * as possible
1816
     */
1817
    while (t->tbf_q_len > 0) {
1818
        m = t->tbf_q;
1819
 
1820
        len = mtod(m, struct ip *)->ip_len;
1821
 
1822
        /* determine if the packet can be sent */
1823
        if (len <= t->tbf_n_tok) {
1824
            /* if so,
1825
             * reduce no of tokens, dequeue the packet,
1826
             * send the packet.
1827
             */
1828
            t->tbf_n_tok -= len;
1829
 
1830
            t->tbf_q = m->m_act;
1831
            if (--t->tbf_q_len == 0)
1832
                t->tbf_t = NULL;
1833
 
1834
            m->m_act = NULL;
1835
            tbf_send_packet(vifp, m);
1836
 
1837
        } else break;
1838
    }
1839
    splx(s);
1840
}
1841
 
1842
static void
1843
tbf_reprocess_q(xvifp)
1844
        void *xvifp;
1845
{
1846
    register struct vif *vifp = xvifp;
1847
    if (ip_mrouter == NULL)
1848
        return;
1849
 
1850
    tbf_update_tokens(vifp);
1851
 
1852
    tbf_process_q(vifp);
1853
 
1854
    if (vifp->v_tbf->tbf_q_len)
1855
        timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1856
}
1857
 
1858
/* function that will selectively discard a member of the queue
1859
 * based on the precedence value and the priority
1860
 */
1861
static int
1862
tbf_dq_sel(vifp, ip)
1863
    register struct vif *vifp;
1864
    register struct ip *ip;
1865
{
1866
    register int s = splnet();
1867
    register u_int p;
1868
    register struct mbuf *m, *last;
1869
    register struct mbuf **np;
1870
    register struct tbf *t = vifp->v_tbf;
1871
 
1872
    p = priority(vifp, ip);
1873
 
1874
    np = &t->tbf_q;
1875
    last = NULL;
1876
    while ((m = *np) != NULL) {
1877
        if (p > priority(vifp, mtod(m, struct ip *))) {
1878
            *np = m->m_act;
1879
            /* If we're removing the last packet, fix the tail pointer */
1880
            if (m == t->tbf_t)
1881
                t->tbf_t = last;
1882
            m_freem(m);
1883
            /* it's impossible for the queue to be empty, but
1884
             * we check anyway. */
1885
            if (--t->tbf_q_len == 0)
1886
                t->tbf_t = NULL;
1887
            splx(s);
1888
            mrtstat.mrts_drop_sel++;
1889
            return(1);
1890
        }
1891
        np = &m->m_act;
1892
        last = m;
1893
    }
1894
    splx(s);
1895
    return(0);
1896
}
1897
 
1898
static void
1899
tbf_send_packet(vifp, m)
1900
    register struct vif *vifp;
1901
    register struct mbuf *m;
1902
{
1903
    struct ip_moptions imo;
1904
    int error;
1905
    static struct route ro;
1906
    int s = splnet();
1907
 
1908
    if (vifp->v_flags & VIFF_TUNNEL) {
1909
        /* If tunnel options */
1910
        ip_output(m, (struct mbuf *)0, &vifp->v_route,
1911
                  IP_FORWARDING, (struct ip_moptions *)0);
1912
    } else {
1913
        imo.imo_multicast_ifp  = vifp->v_ifp;
1914
        imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1915
        imo.imo_multicast_loop = 1;
1916
        imo.imo_multicast_vif  = -1;
1917
 
1918
        /*
1919
         * Re-entrancy should not be a problem here, because
1920
         * the packets that we send out and are looped back at us
1921
         * should get rejected because they appear to come from
1922
         * the loopback interface, thus preventing looping.
1923
         */
1924
        error = ip_output(m, (struct mbuf *)0, &ro,
1925
                          IP_FORWARDING, &imo);
1926
 
1927
        if (mrtdebug & DEBUG_XMIT)
1928
            log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1929
                vifp - viftable, error);
1930
    }
1931
    splx(s);
1932
}
1933
 
1934
/* determine the current time and then
1935
 * the elapsed time (between the last time and time now)
1936
 * in milliseconds & update the no. of tokens in the bucket
1937
 */
1938
static void
1939
tbf_update_tokens(vifp)
1940
    register struct vif *vifp;
1941
{
1942
    struct timeval tp;
1943
    register u_long tm;
1944
    register int s = splnet();
1945
    register struct tbf *t = vifp->v_tbf;
1946
 
1947
    GET_TIME(tp);
1948
 
1949
    TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1950
 
1951
    /*
1952
     * This formula is actually
1953
     * "time in seconds" * "bytes/second".
1954
     *
1955
     * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1956
     *
1957
     * The (1000/1024) was introduced in add_vif to optimize
1958
     * this divide into a shift.
1959
     */
1960
    t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1961
    t->tbf_last_pkt_t = tp;
1962
 
1963
    if (t->tbf_n_tok > MAX_BKT_SIZE)
1964
        t->tbf_n_tok = MAX_BKT_SIZE;
1965
 
1966
    splx(s);
1967
}
1968
 
1969
static int
1970
priority(vifp, ip)
1971
    register struct vif *vifp;
1972
    register struct ip *ip;
1973
{
1974
    register int prio;
1975
 
1976
    /* temporary hack; may add general packet classifier some day */
1977
 
1978
    /*
1979
     * The UDP port space is divided up into four priority ranges:
1980
     * [0, 16384)     : unclassified - lowest priority
1981
     * [16384, 32768) : audio - highest priority
1982
     * [32768, 49152) : whiteboard - medium priority
1983
     * [49152, 65536) : video - low priority
1984
     */
1985
    if (ip->ip_p == IPPROTO_UDP) {
1986
        struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1987
        switch (ntohs(udp->uh_dport) & 0xc000) {
1988
            case 0x4000:
1989
                prio = 70;
1990
                break;
1991
            case 0x8000:
1992
                prio = 60;
1993
                break;
1994
            case 0xc000:
1995
                prio = 55;
1996
                break;
1997
            default:
1998
                prio = 50;
1999
                break;
2000
        }
2001
        if (tbfdebug > 1)
2002
                log(LOG_DEBUG, "port %x prio%d\n", ntohs(udp->uh_dport), prio);
2003
    } else {
2004
            prio = 50;
2005
    }
2006
    return prio;
2007
}
2008
 
2009
/*
2010
 * End of token bucket filter modifications
2011
 */
2012
 
2013
int
2014
ip_rsvp_vif_init(so, m)
2015
    struct socket *so;
2016
    struct mbuf *m;
2017
{
2018
    int i;
2019
    register int s;
2020
 
2021
    if (rsvpdebug)
2022
        printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
2023
               so->so_type, so->so_proto->pr_protocol);
2024
 
2025
    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2026
        return EOPNOTSUPP;
2027
 
2028
    /* Check mbuf. */
2029
    if (m == NULL || m->m_len != sizeof(int)) {
2030
        return EINVAL;
2031
    }
2032
    i = *(mtod(m, int *));
2033
 
2034
    if (rsvpdebug)
2035
        printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",i,rsvp_on);
2036
 
2037
    s = splnet();
2038
 
2039
    /* Check vif. */
2040
    if (!legal_vif_num(i)) {
2041
        splx(s);
2042
        return EADDRNOTAVAIL;
2043
    }
2044
 
2045
    /* Check if socket is available. */
2046
    if (viftable[i].v_rsvpd != NULL) {
2047
        splx(s);
2048
        return EADDRINUSE;
2049
    }
2050
 
2051
    viftable[i].v_rsvpd = so;
2052
    /* This may seem silly, but we need to be sure we don't over-increment
2053
     * the RSVP counter, in case something slips up.
2054
     */
2055
    if (!viftable[i].v_rsvp_on) {
2056
        viftable[i].v_rsvp_on = 1;
2057
        rsvp_on++;
2058
    }
2059
 
2060
    splx(s);
2061
    return 0;
2062
}
2063
 
2064
int
2065
ip_rsvp_vif_done(so, m)
2066
    struct socket *so;
2067
    struct mbuf *m;
2068
{
2069
        int i;
2070
        register int s;
2071
 
2072
    if (rsvpdebug)
2073
        printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
2074
               so->so_type, so->so_proto->pr_protocol);
2075
 
2076
    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2077
        return EOPNOTSUPP;
2078
 
2079
    /* Check mbuf. */
2080
    if (m == NULL || m->m_len != sizeof(int)) {
2081
            return EINVAL;
2082
    }
2083
    i = *(mtod(m, int *));
2084
 
2085
    s = splnet();
2086
 
2087
    /* Check vif. */
2088
    if (!legal_vif_num(i)) {
2089
        splx(s);
2090
        return EADDRNOTAVAIL;
2091
    }
2092
 
2093
    if (rsvpdebug)
2094
        printf("ip_rsvp_vif_done: v_rsvpd = %p so = %p\n",
2095
               viftable[i].v_rsvpd, so);
2096
 
2097
    viftable[i].v_rsvpd = NULL;
2098
    /* This may seem silly, but we need to be sure we don't over-decrement
2099
     * the RSVP counter, in case something slips up.
2100
     */
2101
    if (viftable[i].v_rsvp_on) {
2102
        viftable[i].v_rsvp_on = 0;
2103
        rsvp_on--;
2104
    }
2105
 
2106
    splx(s);
2107
    return 0;
2108
}
2109
 
2110
void
2111
ip_rsvp_force_done(so)
2112
    struct socket *so;
2113
{
2114
    int vifi;
2115
    register int s;
2116
 
2117
    /* Don't bother if it is not the right type of socket. */
2118
    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2119
        return;
2120
 
2121
    s = splnet();
2122
 
2123
    /* The socket may be attached to more than one vif...this
2124
     * is perfectly legal.
2125
     */
2126
    for (vifi = 0; vifi < numvifs; vifi++) {
2127
        if (viftable[vifi].v_rsvpd == so) {
2128
            viftable[vifi].v_rsvpd = NULL;
2129
            /* This may seem silly, but we need to be sure we don't
2130
             * over-decrement the RSVP counter, in case something slips up.
2131
             */
2132
            if (viftable[vifi].v_rsvp_on) {
2133
                viftable[vifi].v_rsvp_on = 0;
2134
                rsvp_on--;
2135
            }
2136
        }
2137
    }
2138
 
2139
    splx(s);
2140
    return;
2141
}
2142
 
2143
void
2144
rsvp_input(m, iphlen)
2145
        struct mbuf *m;
2146
        int iphlen;
2147
{
2148
    int vifi;
2149
    register struct ip *ip = mtod(m, struct ip *);
2150
    static struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2151
    register int s;
2152
    struct ifnet *ifp;
2153
 
2154
    if (rsvpdebug)
2155
        printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2156
 
2157
    /* Can still get packets with rsvp_on = 0 if there is a local member
2158
     * of the group to which the RSVP packet is addressed.  But in this
2159
     * case we want to throw the packet away.
2160
     */
2161
    if (!rsvp_on) {
2162
        m_freem(m);
2163
        return;
2164
    }
2165
 
2166
    /* If the old-style non-vif-associated socket is set, then use
2167
     * it and ignore the new ones.
2168
     */
2169
    if (ip_rsvpd != NULL) {
2170
        if (rsvpdebug)
2171
            printf("rsvp_input: Sending packet up old-style socket\n");
2172
        rip_input(m, iphlen);
2173
        return;
2174
    }
2175
 
2176
    s = splnet();
2177
 
2178
    if (rsvpdebug)
2179
        printf("rsvp_input: check vifs\n");
2180
 
2181
#ifdef DIAGNOSTIC
2182
    if (!(m->m_flags & M_PKTHDR))
2183
            panic("rsvp_input no hdr");
2184
#endif
2185
 
2186
    ifp = m->m_pkthdr.rcvif;
2187
    /* Find which vif the packet arrived on. */
2188
    for (vifi = 0; vifi < numvifs; vifi++) {
2189
        if (viftable[vifi].v_ifp == ifp)
2190
                break;
2191
        }
2192
 
2193
    if (vifi == numvifs) {
2194
        /* Can't find vif packet arrived on. Drop packet. */
2195
        if (rsvpdebug)
2196
            printf("rsvp_input: Can't find vif for packet...dropping it.\n");
2197
        m_freem(m);
2198
        splx(s);
2199
        return;
2200
    }
2201
 
2202
    if (rsvpdebug)
2203
        printf("rsvp_input: check socket\n");
2204
 
2205
    if (viftable[vifi].v_rsvpd == NULL) {
2206
        /* drop packet, since there is no specific socket for this
2207
         * interface */
2208
            if (rsvpdebug)
2209
                    printf("rsvp_input: No socket defined for vif %d\n",vifi);
2210
            m_freem(m);
2211
            splx(s);
2212
            return;
2213
    }
2214
    rsvp_src.sin_addr = ip->ip_src;
2215
 
2216
    if (rsvpdebug && m)
2217
        printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2218
               m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2219
 
2220
    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
2221
        if (rsvpdebug)
2222
            printf("rsvp_input: Failed to append to socket\n");
2223
    else
2224
        if (rsvpdebug)
2225
            printf("rsvp_input: send packet up\n");
2226
 
2227
    splx(s);
2228
}
2229
 
2230
#ifdef MROUTE_LKM
2231
#include <sys/conf.h>
2232
#include <sys/exec.h>
2233
#include <sys/sysent.h>
2234
#include <sys/lkm.h>
2235
 
2236
MOD_MISC("ip_mroute_mod")
2237
 
2238
static int
2239
ip_mroute_mod_handle(struct lkm_table *lkmtp, int cmd)
2240
{
2241
        int i;
2242
        struct lkm_misc *args = lkmtp->private.lkm_misc;
2243
        int err = 0;
2244
 
2245
        switch(cmd) {
2246
                static int (*old_ip_mrouter_cmd)();
2247
                static int (*old_ip_mrouter_done)();
2248
                static int (*old_ip_mforward)();
2249
                static int (*old_mrt_ioctl)();
2250
                static void (*old_proto4_input)();
2251
                static int (*old_legal_vif_num)();
2252
                extern struct protosw inetsw[];
2253
 
2254
        case LKM_E_LOAD:
2255
                if(lkmexists(lkmtp) || ip_mrtproto)
2256
                  return(EEXIST);
2257
                old_ip_mrouter_cmd = ip_mrouter_cmd;
2258
                ip_mrouter_cmd = X_ip_mrouter_cmd;
2259
                old_ip_mrouter_done = ip_mrouter_done;
2260
                ip_mrouter_done = X_ip_mrouter_done;
2261
                old_ip_mforward = ip_mforward;
2262
                ip_mforward = X_ip_mforward;
2263
                old_mrt_ioctl = mrt_ioctl;
2264
                mrt_ioctl = X_mrt_ioctl;
2265
              old_proto4_input = inetsw[ip_protox[ENCAP_PROTO]].pr_input;
2266
              inetsw[ip_protox[ENCAP_PROTO]].pr_input = X_ipip_input;
2267
                old_legal_vif_num = legal_vif_num;
2268
                legal_vif_num = X_legal_vif_num;
2269
                ip_mrtproto = IGMP_DVMRP;
2270
 
2271
                printf("\nIP multicast routing loaded\n");
2272
                break;
2273
 
2274
        case LKM_E_UNLOAD:
2275
                if (ip_mrouter)
2276
                  return EINVAL;
2277
 
2278
                ip_mrouter_cmd = old_ip_mrouter_cmd;
2279
                ip_mrouter_done = old_ip_mrouter_done;
2280
                ip_mforward = old_ip_mforward;
2281
                mrt_ioctl = old_mrt_ioctl;
2282
              inetsw[ip_protox[ENCAP_PROTO]].pr_input = old_proto4_input;
2283
                legal_vif_num = old_legal_vif_num;
2284
                ip_mrtproto = 0;
2285
                break;
2286
 
2287
        default:
2288
                err = EINVAL;
2289
                break;
2290
        }
2291
 
2292
        return(err);
2293
}
2294
 
2295
int
2296
ip_mroute_mod(struct lkm_table *lkmtp, int cmd, int ver) {
2297
        DISPATCH(lkmtp, cmd, ver, ip_mroute_mod_handle, ip_mroute_mod_handle,
2298
                 nosys);
2299
}
2300
 
2301
#endif /* MROUTE_LKM */
2302
#endif /* MROUTING */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.