OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [rtems-20020807/] [cpukit/] [librpc/] [src/] [rpc/] [PSD.doc/] [rpcgen.ms] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1026 ivang
.\"
2
.\" Must use  --  tbl -- for this one
3
.\"
4
.\" @(#)rpcgen.ms       2.2 88/08/04 4.0 RPCSRC
5
.de BT
6
.if \\n%=1 .tl ''- % -''
7
..
8
.ND
9
.\" prevent excess underlining in nroff
10
.if n .fp 2 R
11
.OH '\fBrpcgen\fP Programming Guide''Page %'
12
.EH 'Page %''\fBrpcgen\fP Programming Guide'
13
.if \\n%=1 .bp
14
.SH
15
\&\fBrpcgen\fP Programming Guide
16
.NH 0
17
\&The \fBrpcgen\fP Protocol Compiler
18
.IX rpcgen "" \fIrpcgen\fP "" PAGE MAJOR
19
.LP
20
.IX RPC "" "" \fIrpcgen\fP
21
The details of programming applications to use Remote Procedure Calls
22
can be overwhelming.  Perhaps most daunting is the writing of the XDR
23
routines necessary to convert procedure arguments and results into
24
their network format and vice-versa.
25
.LP
26
Fortunately,
27
.I rpcgen(1)
28
exists to help programmers write RPC applications simply and directly.
29
.I rpcgen
30
does most of the dirty work, allowing programmers to debug
31
the  main  features of their application, instead of requiring them to
32
spend most of their time debugging their network interface code.
33
.LP
34
.I rpcgen
35
is a  compiler.  It accepts a remote program interface definition written
36
in a language, called RPC Language, which is similar to C.  It produces a C
37
language output which includes stub versions of the client routines, a
38
server skeleton, XDR filter routines for both parameters and results, and a
39
header file that contains common definitions. The client stubs interface
40
with the RPC library and effectively hide the network from their callers.
41
The server stub similarly hides the network from the server procedures that
42
are to be invoked by remote clients.
43
.I rpcgen 's
44
output files can be compiled and linked in the usual way.  The developer
45
writes server procedures\(emin any language that observes Sun calling
46
conventions\(emand links them with the server skeleton produced by
47
.I rpcgen
48
to get an executable server program.  To use a remote program, a programmer
49
writes an ordinary main program that makes local procedure calls to the
50
client stubs produced by
51
.I rpcgen .
52
Linking this program with
53
.I rpcgen 's
54
stubs creates an executable program.  (At present the main program must be
55
written in C).
56
.I rpcgen
57
options can be used to suppress stub generation and to specify the transport
58
to be used by the server stub.
59
.LP
60
Like all compilers,
61
.I rpcgen
62
reduces development time
63
that would otherwise be spent coding and debugging low-level routines.
64
All compilers, including
65
.I rpcgen ,
66
do this at a small cost in efficiency
67
and flexibility.  However,   many compilers allow  escape  hatches for
68
programmers to  mix low-level code with  high-level code.
69
.I rpcgen
70
is no exception.  In speed-critical applications, hand-written routines
71
can be linked with the
72
.I rpcgen
73
output without any difficulty.  Also, one may proceed by using
74
.I rpcgen
75
output as a starting point, and then rewriting it as necessary.
76
(If you need a discussion of RPC programming without
77
.I rpcgen ,
78
see the
79
.I "Remote Procedure Call Programming Guide)\.
80
.NH 1
81
\&Converting Local Procedures into Remote Procedures
82
.IX rpcgen "local procedures" \fIrpcgen\fP
83
.IX rpcgen "remote procedures" \fIrpcgen\fP
84
.LP
85
Assume an application that runs on a single machine, one which we want
86
to convert to run over the network.  Here we will demonstrate such a
87
conversion by way of a simple example\(ema program that prints a
88
message to the console:
89
.ie t .DS
90
.el .DS L
91
.ft I
92
/*
93
 * printmsg.c: print a message on the console
94
 */
95
.ft CW
96
#include 
97
 
98
main(argc, argv)
99
        int argc;
100
        char *argv[];
101
{
102
        char *message;
103
 
104
        if (argc < 2) {
105
                fprintf(stderr, "usage: %s \en", argv[0]);
106
                exit(1);
107
        }
108
        message = argv[1];
109
 
110
        if (!printmessage(message)) {
111
                fprintf(stderr, "%s: couldn't print your message\en",
112
                        argv[0]);
113
                exit(1);
114
        }
115
        printf("Message Delivered!\en");
116
        exit(0);
117
}
118
.ft I
119
/*
120
 * Print a message to the console.
121
 * Return a boolean indicating whether the message was actually printed.
122
 */
123
.ft CW
124
printmessage(msg)
125
        char *msg;
126
{
127
        FILE *f;
128
 
129
        f = fopen("/dev/console", "w");
130
        if (f == NULL) {
131
                return (0);
132
        }
133
        fprintf(f, "%s\en", msg);
134
        fclose(f);
135
        return(1);
136
}
137
.DE
138
.LP
139
And then, of course:
140
.ie t .DS
141
.el .DS L
142
.ft CW
143
example%  \fBcc printmsg.c -o printmsg\fP
144
example%  \fBprintmsg "Hello, there."\fP
145
Message delivered!
146
example%
147
.DE
148
.LP
149
If
150
.I printmessage()
151
was turned into  a remote procedure,
152
then it could be  called from anywhere in   the network.
153
Ideally,  one would just  like to stick   a  keyword like
154
.I remote
155
in  front  of a
156
procedure to turn it into a  remote procedure.  Unfortunately,
157
we  have to live  within the  constraints of  the   C language, since
158
it existed   long before  RPC did.  But   even without language
159
support, it's not very difficult to make a procedure remote.
160
.LP
161
In  general, it's necessary to figure  out  what the types are for
162
all procedure inputs and outputs.  In  this case,   we  have a
163
procedure
164
.I printmessage()
165
which takes a  string as input, and returns  an integer
166
as output.  Knowing  this, we can write a  protocol specification in RPC
167
language that  describes the remote  version of
168
.I printmessage ().
169
Here it is:
170
.ie t .DS
171
.el .DS L
172
.ft I
173
/*
174
 * msg.x: Remote message printing protocol
175
 */
176
.ft CW
177
 
178
program MESSAGEPROG {
179
        version MESSAGEVERS {
180
                int PRINTMESSAGE(string) = 1;
181
        } = 1;
182
} = 99;
183
.DE
184
.LP
185
Remote procedures are part of remote programs, so we actually declared
186
an  entire  remote program  here  which contains  the single procedure
187
.I PRINTMESSAGE .
188
This procedure was declared to be  in version  1 of the
189
remote program.  No null procedure (procedure 0) is necessary because
190
.I rpcgen
191
generates it automatically.
192
.LP
193
Notice that everything is declared with all capital  letters.  This is
194
not required, but is a good convention to follow.
195
.LP
196
Notice also that the argument type is \*Qstring\*U and not \*Qchar *\*U.  This
197
is because a \*Qchar *\*U in C is ambiguous.  Programmers usually intend it
198
to mean  a null-terminated string   of characters, but  it  could also
199
represent a pointer to a single character or a  pointer to an array of
200
characters.  In  RPC language,  a  null-terminated  string is
201
unambiguously called a \*Qstring\*U.
202
.LP
203
There are  just two more things to  write.  First, there is the remote
204
procedure itself.  Here's the definition of a remote procedure
205
to implement the
206
.I PRINTMESSAGE
207
procedure we declared above:
208
.ie t .DS
209
.el .DS L
210
.vs 11
211
.ft I
212
/*
213
 * msg_proc.c: implementation of the remote procedure "printmessage"
214
 */
215
.ft CW
216
 
217
#include 
218
#include     /* \fIalways needed\fP  */
219
#include "msg.h"        /* \fIneed this too: msg.h will be generated by rpcgen\fP */
220
 
221
.ft I
222
/*
223
 * Remote verson of "printmessage"
224
 */
225
.ft CW
226
int *
227
printmessage_1(msg)
228
        char **msg;
229
{
230
        static int result;  /* \fImust be static!\fP */
231
        FILE *f;
232
 
233
        f = fopen("/dev/console", "w");
234
        if (f == NULL) {
235
                result = 0;
236
                return (&result);
237
        }
238
        fprintf(f, "%s\en", *msg);
239
        fclose(f);
240
        result = 1;
241
        return (&result);
242
}
243
.vs
244
.DE
245
.LP
246
Notice here that the declaration of the remote procedure
247
.I printmessage_1()
248
differs from that of the local procedure
249
.I printmessage()
250
in three ways:
251
.IP  1.
252
It takes a pointer to a string instead of a string itself.  This
253
is true of all  remote procedures:  they always take pointers to  their
254
arguments rather than the arguments themselves.
255
.IP  2.
256
It returns a pointer to an  integer instead of  an integer itself. This is
257
also generally true of remote procedures: they always return a pointer
258
to their results.
259
.IP  3.
260
It has an \*Q_1\*U appended to its name.  In general, all remote
261
procedures called by
262
.I rpcgen
263
are named by  the following rule: the name in the program  definition
264
(here
265
.I PRINTMESSAGE )
266
is converted   to all
267
lower-case letters, an underbar (\*Q_\*U) is appended to it, and
268
finally the version number (here 1) is appended.
269
.LP
270
The last thing to do is declare the main client program that will call
271
the remote procedure. Here it is:
272
.ie t .DS
273
.el .DS L
274
.ft I
275
/*
276
 * rprintmsg.c: remote version of "printmsg.c"
277
 */
278
.ft CW
279
#include 
280
#include      /* \fIalways needed\fP  */
281
#include "msg.h"         /* \fIneed this too: msg.h will be generated by rpcgen\fP */
282
 
283
main(argc, argv)
284
        int argc;
285
        char *argv[];
286
{
287
        CLIENT *cl;
288
        int *result;
289
        char *server;
290
        char *message;
291
 
292
        if (argc < 3) {
293
                fprintf(stderr, "usage: %s host message\en", argv[0]);
294
                exit(1);
295
        }
296
 
297
.ft I
298
        /*
299
         * Save values of command line arguments
300
         */
301
.ft CW
302
        server = argv[1];
303
        message = argv[2];
304
 
305
.ft I
306
        /*
307
         * Create client "handle" used for calling \fIMESSAGEPROG\fP on the
308
         * server designated on the command line. We tell the RPC package
309
         * to use the "tcp" protocol when contacting the server.
310
         */
311
.ft CW
312
        cl = clnt_create(server, MESSAGEPROG, MESSAGEVERS, "tcp");
313
        if (cl == NULL) {
314
.ft I
315
                /*
316
                 * Couldn't establish connection with server.
317
                 * Print error message and die.
318
                 */
319
.ft CW
320
                clnt_pcreateerror(server);
321
                exit(1);
322
        }
323
 
324
.ft I
325
        /*
326
         * Call the remote procedure "printmessage" on the server
327
         */
328
.ft CW
329
        result = printmessage_1(&message, cl);
330
        if (result == NULL) {
331
.ft I
332
                /*
333
                 * An error occurred while calling the server.
334
                 * Print error message and die.
335
                 */
336
.ft CW
337
                clnt_perror(cl, server);
338
                exit(1);
339
        }
340
 
341
.ft I
342
        /*
343
         * Okay, we successfully called the remote procedure.
344
         */
345
.ft CW
346
        if (*result == 0) {
347
.ft I
348
                /*
349
                 * Server was unable to print our message.
350
                 * Print error message and die.
351
                 */
352
.ft CW
353
                fprintf(stderr, "%s: %s couldn't print your message\en",
354
                        argv[0], server);
355
                exit(1);
356
        }
357
 
358
.ft I
359
        /*
360
         * The message got printed on the server's console
361
         */
362
.ft CW
363
        printf("Message delivered to %s!\en", server);
364
}
365
.DE
366
There are two things to note here:
367
.IP  1.
368
.IX "client handle, used by rpcgen" "" "client handle, used by \fIrpcgen\fP"
369
First a client \*Qhandle\*U is created using the RPC library routine
370
.I clnt_create ().
371
This client handle will be passed  to the stub routines
372
which call the remote procedure.
373
.IP  2.
374
The remote procedure
375
.I printmessage_1()
376
is called exactly  the same way as it is  declared in
377
.I msg_proc.c
378
except for the inserted client handle as the first argument.
379
.LP
380
Here's how to put all of the pieces together:
381
.ie t .DS
382
.el .DS L
383
.ft CW
384
example%  \fBrpcgen msg.x\fP
385
example%  \fBcc rprintmsg.c msg_clnt.c -o rprintmsg\fP
386
example%  \fBcc msg_proc.c msg_svc.c -o msg_server\fP
387
.DE
388
Two programs were compiled here: the client program
389
.I rprintmsg
390
and the server  program
391
.I msg_server .
392
Before doing this  though,
393
.I rpcgen
394
was used to fill in the missing pieces.
395
.LP
396
Here is what
397
.I rpcgen
398
did with the input file
399
.I msg.x :
400
.IP  1.
401
It created a header file called
402
.I msg.h
403
that contained
404
.I #define 's
405
for
406
.I MESSAGEPROG ,
407
.I MESSAGEVERS
408
and
409
.I PRINTMESSAGE
410
for use in  the  other modules.
411
.IP  2.
412
It created client \*Qstub\*U routines in the
413
.I msg_clnt.c
414
file.   In this case there is only one, the
415
.I printmessage_1()
416
that was referred to from the
417
.I printmsg
418
client program.  The name  of the output file for
419
client stub routines is always formed in this way:  if the name of the
420
input file is
421
.I FOO.x ,
422
the   client  stubs   output file is    called
423
.I FOO_clnt.c .
424
.IP  3.
425
It created  the  server   program which calls
426
.I printmessage_1()
427
in
428
.I msg_proc.c .
429
This server program is named
430
.I msg_svc.c .
431
The rule for naming the server output file is similar  to the
432
previous one:  for an input  file   called
433
.I FOO.x ,
434
the   output   server   file is  named
435
.I FOO_svc.c .
436
.LP
437
Now we're ready to have some fun.  First, copy the server to a
438
remote machine and run it.  For this  example,  the
439
machine is called \*Qmoon\*U.  Server processes are run in the
440
background, because they never exit.
441
.ie t .DS
442
.el .DS L
443
.ft CW
444
moon% \fBmsg_server &\fP
445
.DE
446
Then on our local machine (\*Qsun\*U) we can print a message on \*Qmoon\*Us
447
console.
448
.ie t .DS
449
.el .DS L
450
.ft CW
451
sun% \fBprintmsg moon "Hello, moon."\fP
452
.DE
453
The message will get printed to \*Qmoon\*Us console.  You can print a
454
message on anybody's console (including your own) with this program if
455
you are able to copy the server to their machine and run it.
456
.NH 1
457
\&Generating XDR Routines
458
.IX RPC "generating XDR routines"
459
.LP
460
The previous example  only demonstrated  the  automatic generation of
461
client  and server RPC  code.
462
.I rpcgen
463
may also  be used to generate XDR routines, that  is,  the routines
464
necessary to  convert   local  data
465
structures into network format and vice-versa.  This example presents
466
a complete RPC service\(ema remote directory listing service, which uses
467
.I rpcgen
468
not  only  to generate stub routines, but also to  generate  the XDR
469
routines.  Here is the protocol description file:
470
.ie t .DS
471
.el .DS L
472
.ft I
473
/*
474
 * dir.x: Remote directory listing protocol
475
 */
476
.ft CW
477
const MAXNAMELEN = 255;         /* \fImaximum length of a directory entry\fP */
478
 
479
typedef string nametype;        /* \fIa directory entry\fP */
480
 
481
typedef struct namenode *namelist;              /* \fIa link in the listing\fP */
482
 
483
.ft I
484
/*
485
 * A node in the directory listing
486
 */
487
.ft CW
488
struct namenode {
489
        nametype name;          /* \fIname of directory entry\fP */
490
        namelist next;          /* \fInext entry\fP */
491
};
492
 
493
.ft I
494
/*
495
 * The result of a READDIR operation.
496
 */
497
.ft CW
498
union readdir_res switch (int errno) {
499
case 0:
500
        namelist list;  /* \fIno error: return directory listing\fP */
501
default:
502
        void;           /* \fIerror occurred: nothing else to return\fP */
503
};
504
 
505
.ft I
506
/*
507
 * The directory program definition
508
 */
509
.ft CW
510
program DIRPROG {
511
        version DIRVERS {
512
                readdir_res
513
                READDIR(nametype) = 1;
514
        } = 1;
515
} = 76;
516
.DE
517
.SH
518
Note:
519
.I
520
Types (like
521
.I readdir_res
522
in the example above) can be defined using
523
the \*Qstruct\*U, \*Qunion\*U and \*Qenum\*U keywords, but those keywords
524
should not be used in subsequent declarations of variables of those types.
525
For example, if you define a union \*Qfoo\*U, you should declare using
526
only \*Qfoo\*U and not \*Qunion foo\*U.  In fact,
527
.I rpcgen
528
compiles
529
RPC unions into C structures and it is an error to declare them using the
530
\*Qunion\*U keyword.
531
.LP
532
Running
533
.I rpcgen
534
on
535
.I dir.x
536
creates four output files.  Three are the same as before: header file,
537
client stub routines and server skeleton.  The fourth are the XDR routines
538
necessary for converting the data types we declared into XDR format and
539
vice-versa.  These are output in the file
540
.I dir_xdr.c .
541
.LP
542
Here is the implementation of the
543
.I READDIR
544
procedure.
545
.ie t .DS
546
.el .DS L
547
.vs 11
548
.ft I
549
/*
550
 * dir_proc.c: remote readdir implementation
551
 */
552
.ft CW
553
#include 
554
#include 
555
#include "dir.h"
556
 
557
extern int errno;
558
extern char *malloc();
559
extern char *strdup();
560
 
561
readdir_res *
562
readdir_1(dirname)
563
        nametype *dirname;
564
{
565
        DIR *dirp;
566
        struct direct *d;
567
        namelist nl;
568
        namelist *nlp;
569
        static readdir_res res; /* \fImust be static\fP! */
570
 
571
.ft I
572
        /*
573
         * Open directory
574
         */
575
.ft CW
576
        dirp = opendir(*dirname);
577
        if (dirp == NULL) {
578
                res.errno = errno;
579
                return (&res);
580
        }
581
 
582
.ft I
583
        /*
584
         * Free previous result
585
         */
586
.ft CW
587
        xdr_free(xdr_readdir_res, &res);
588
 
589
.ft I
590
        /*
591
         * Collect directory entries.
592
         * Memory allocated here will be freed by \fIxdr_free\fP
593
         * next time \fIreaddir_1\fP is called
594
         */
595
.ft CW
596
        nlp = &res.readdir_res_u.list;
597
        while (d = readdir(dirp)) {
598
                nl = *nlp = (namenode *) malloc(sizeof(namenode));
599
                nl->name = strdup(d->d_name);
600
                nlp = &nl->next;
601
        }
602
        *nlp = NULL;
603
 
604
.ft I
605
        /*
606
         * Return the result
607
         */
608
.ft CW
609
        res.errno = 0;
610
        closedir(dirp);
611
        return (&res);
612
}
613
.vs
614
.DE
615
Finally, there is the client side program to call the server:
616
.ie t .DS
617
.el .DS L
618
.ft I
619
/*
620
 * rls.c: Remote directory listing client
621
 */
622
.ft CW
623
#include 
624
#include        /* \fIalways need this\fP */
625
#include "dir.h"                /* \fIwill be generated by rpcgen\fI */
626
 
627
extern int errno;
628
 
629
main(argc, argv)
630
        int argc;
631
        char *argv[];
632
{
633
        CLIENT *cl;
634
        char *server;
635
        char *dir;
636
        readdir_res *result;
637
        namelist nl;
638
 
639
 
640
        if (argc != 3) {
641
                fprintf(stderr, "usage: %s host directory\en",
642
                  argv[0]);
643
                exit(1);
644
        }
645
 
646
.ft I
647
        /*
648
         * Remember what our command line arguments refer to
649
         */
650
.ft CW
651
        server = argv[1];
652
        dir = argv[2];
653
 
654
.ft I
655
        /*
656
         * Create client "handle" used for calling \fIMESSAGEPROG\fP on the
657
         * server designated on the command line. We tell the RPC package
658
         * to use the "tcp" protocol when contacting the server.
659
         */
660
.ft CW
661
        cl = clnt_create(server, DIRPROG, DIRVERS, "tcp");
662
        if (cl == NULL) {
663
.ft I
664
                /*
665
                 * Couldn't establish connection with server.
666
                 * Print error message and die.
667
                 */
668
.ft CW
669
                clnt_pcreateerror(server);
670
                exit(1);
671
        }
672
 
673
.ft I
674
        /*
675
         * Call the remote procedure \fIreaddir\fP on the server
676
         */
677
.ft CW
678
        result = readdir_1(&dir, cl);
679
        if (result == NULL) {
680
.ft I
681
                /*
682
                 * An error occurred while calling the server.
683
                 * Print error message and die.
684
                 */
685
.ft CW
686
                clnt_perror(cl, server);
687
                exit(1);
688
        }
689
 
690
.ft I
691
        /*
692
         * Okay, we successfully called the remote procedure.
693
         */
694
.ft CW
695
        if (result->errno != 0) {
696
.ft I
697
                /*
698
                 * A remote system error occurred.
699
                 * Print error message and die.
700
                 */
701
.ft CW
702
                errno = result->errno;
703
                perror(dir);
704
                exit(1);
705
        }
706
 
707
.ft I
708
        /*
709
         * Successfully got a directory listing.
710
         * Print it out.
711
         */
712
.ft CW
713
        for (nl = result->readdir_res_u.list; nl != NULL;
714
          nl = nl->next) {
715
                printf("%s\en", nl->name);
716
        }
717
        exit(0);
718
}
719
.DE
720
Compile everything, and run.
721
.DS
722
.ft CW
723
sun%  \fBrpcgen dir.x\fP
724
sun%  \fBcc rls.c dir_clnt.c dir_xdr.c -o rls\fP
725
sun%  \fBcc dir_svc.c dir_proc.c dir_xdr.c -o dir_svc\fP
726
 
727
sun%  \fBdir_svc &\fP
728
 
729
moon%  \fBrls sun /usr/pub\fP
730
\&.
731
\&..
732
ascii
733
eqnchar
734
greek
735
kbd
736
marg8
737
tabclr
738
tabs
739
tabs4
740
moon%
741
.DE
742
.LP
743
.IX "debugging with rpcgen" "" "debugging with \fIrpcgen\fP"
744
A final note about
745
.I rpcgen :
746
The client program and the server procedure can be tested together
747
as a single program by simply linking them with each other rather
748
than with the client and server stubs.  The procedure calls will be
749
executed as ordinary local procedure calls and the program can be
750
debugged with a local debugger such as
751
.I dbx .
752
When the program is working, the client program can be linked to
753
the client stub produced by
754
.I rpcgen
755
and the server procedures can be linked to the server stub produced
756
by
757
.I rpcgen .
758
.SH
759
.I NOTE :
760
\fIIf you do this, you may want to comment out calls to RPC library
761
routines, and have client-side routines call server routines
762
directly.\fP
763
.LP
764
.NH 1
765
\&The C-Preprocessor
766
.IX rpcgen "C-preprocessor" \fIrpcgen\fP
767
.LP
768
The C-preprocessor is  run on all input  files before they are
769
compiled, so all the preprocessor directives are legal within a \*Q.x\*U
770
file. Four symbols may be defined, depending upon which output file is
771
getting generated. The symbols are:
772
.TS
773
box tab (&);
774
lfI lfI
775
lfL l .
776
Symbol&Usage
777
_
778
RPC_HDR&for header-file output
779
RPC_XDR&for XDR routine output
780
RPC_SVC&for server-skeleton output
781
RPC_CLNT&for client stub output
782
.TE
783
.LP
784
Also,
785
.I rpcgen
786
does  a little preprocessing   of its own. Any  line that
787
begins  with  a percent sign is passed  directly into the output file,
788
without any interpretation of the line.  Here is a simple example that
789
demonstrates the preprocessing features.
790
.ie t .DS
791
.el .DS L
792
.ft I
793
/*
794
 * time.x: Remote time protocol
795
 */
796
.ft CW
797
program TIMEPROG {
798
        version TIMEVERS {
799
                unsigned int TIMEGET(void) = 1;
800
        } = 1;
801
} = 44;
802
 
803
#ifdef RPC_SVC
804
%int *
805
%timeget_1()
806
%{
807
%        static int thetime;
808
%
809
%        thetime = time(0);
810
%        return (&thetime);
811
%}
812
#endif
813
.DE
814
The '%' feature is not generally recommended, as there is no guarantee
815
that the compiler will stick the output where you intended.
816
.NH 1
817
\&\fBrpcgen\fP Programming Notes
818
.IX rpcgen "other operations" \fIrpcgen\fP
819
.sp
820
.NH 2
821
\&Timeout Changes
822
.IX rpcgen "timeout changes" \fIrpcgen\fP
823
.LP
824
RPC sets a default timeout of 25 seconds for RPC calls when
825
.I clnt_create()
826
is used.  This timeout may be changed using
827
.I clnt_control()
828
Here is a small code fragment to demonstrate use of
829
.I clnt_control ():
830
.ID
831
struct timeval tv;
832
CLIENT *cl;
833
.sp .5
834
cl = clnt_create("somehost", SOMEPROG, SOMEVERS, "tcp");
835
if (cl == NULL) {
836
        exit(1);
837
}
838
tv.tv_sec = 60; /* \fIchange timeout to 1 minute\fP */
839
tv.tv_usec = 0;
840
clnt_control(cl, CLSET_TIMEOUT, &tv);
841
.DE
842
.NH 2
843
\&Handling Broadcast on the Server Side
844
.IX "broadcast RPC"
845
.IX rpcgen "broadcast RPC" \fIrpcgen\fP
846
.LP
847
When a procedure is known to be called via broadcast RPC,
848
it is usually wise for the server to not reply unless it can provide
849
some useful information to the client.  This prevents the network
850
from getting flooded by useless replies.
851
.LP
852
To prevent the server from replying, a remote procedure can
853
return NULL as its result, and the server code generated by
854
.I rpcgen
855
will detect this and not send out a reply.
856
.LP
857
Here is an example of a procedure that replies only if it
858
thinks it is an NFS server:
859
.ID
860
void *
861
reply_if_nfsserver()
862
{
863
        char notnull;   /* \fIjust here so we can use its address\fP */
864
.sp .5
865
        if (access("/etc/exports", F_OK) < 0) {
866
                return (NULL);  /* \fIprevent RPC from replying\fP */
867
        }
868
.ft I
869
        /*
870
         * return non-null pointer so RPC will send out a reply
871
         */
872
.ft L
873
        return ((void *)¬null);
874
}
875
.DE
876
Note that if procedure returns type \*Qvoid *\*U, they must return a non-NULL
877
pointer if they want RPC to reply for them.
878
.NH 2
879
\&Other Information Passed to Server Procedures
880
.LP
881
Server procedures will often want to know more about an RPC call
882
than just its arguments.  For example, getting authentication information
883
is important to procedures that want to implement some level of security.
884
This extra information is actually supplied to the server procedure as a
885
second argument.  Here is an example to demonstrate its use.  What we've
886
done here is rewrite the previous
887
.I printmessage_1()
888
procedure to only allow root users to print a message to the console.
889
.ID
890
int *
891
printmessage_1(msg, rq)
892
        char **msg;
893
        struct svc_req  *rq;
894
{
895
        static in result;       /* \fIMust be static\fP */
896
        FILE *f;
897
        struct suthunix_parms *aup;
898
.sp .5
899
        aup = (struct authunix_parms *)rq->rq_clntcred;
900
        if (aup->aup_uid != 0) {
901
                result = 0;
902
                return (&result);
903
        }
904
.sp
905
.ft I
906
        /*
907
         * Same code as before.
908
         */
909
.ft L
910
}
911
.DE
912
.NH 1
913
\&RPC Language
914
.IX RPCL
915
.IX rpcgen "RPC Language" \fIrpcgen\fP
916
.LP
917
RPC language is an extension of XDR  language.   The sole extension is
918
the addition of the
919
.I program
920
type.  For a complete description of the XDR language syntax, see the
921
.I "External Data Representation Standard: Protocol Specification"
922
chapter.  For a description of the RPC extensions to the XDR language,
923
see the
924
.I "Remote Procedure Calls: Protocol Specification"
925
chapter.
926
.LP
927
However, XDR language is so close to C that if you know C, you know most
928
of it already.  We describe here  the syntax of the RPC language,
929
showing a  few examples along the way.   We also show how  the various
930
RPC and XDR type definitions get  compiled into C  type definitions in
931
the output header file.
932
.KS
933
.NH 2
934
Definitions
935
\&
936
.IX rpcgen definitions \fIrpcgen\fP
937
.LP
938
An RPC language file consists of a series of definitions.
939
.DS L
940
.ft CW
941
    definition-list:
942
        definition ";"
943
        definition ";" definition-list
944
.DE
945
.KE
946
It recognizes five types of definitions.
947
.DS L
948
.ft CW
949
    definition:
950
        enum-definition
951
        struct-definition
952
        union-definition
953
        typedef-definition
954
        const-definition
955
        program-definition
956
.DE
957
.NH 2
958
Structures
959
\&
960
.IX rpcgen structures \fIrpcgen\fP
961
.LP
962
An XDR struct  is declared almost exactly like  its C counterpart.  It
963
looks like the following:
964
.DS L
965
.ft CW
966
    struct-definition:
967
        "struct" struct-ident "{"
968
            declaration-list
969
        "}"
970
 
971
    declaration-list:
972
        declaration ";"
973
        declaration ";" declaration-list
974
.DE
975
As an example, here is an XDR structure to a two-dimensional
976
coordinate, and the C structure  that it  gets compiled into  in the
977
output header file.
978
.DS
979
.ft CW
980
   struct coord {             struct coord {
981
        int x;       -->           int x;
982
        int y;                     int y;
983
   };                         };
984
                              typedef struct coord coord;
985
.DE
986
The output is identical to the  input, except  for the added
987
.I typedef
988
at the end of the output.  This allows one to use \*Qcoord\*U instead of
989
\*Qstruct coord\*U when declaring items.
990
.NH 2
991
Unions
992
\&
993
.IX rpcgen unions \fIrpcgen\fP
994
.LP
995
XDR unions are discriminated unions, and look quite different from C
996
unions. They are more analogous to  Pascal variant records than they
997
are to C unions.
998
.DS L
999
.ft CW
1000
    union-definition:
1001
        "union" union-ident "switch" "(" declaration ")" "{"
1002
            case-list
1003
        "}"
1004
 
1005
    case-list:
1006
        "case" value ":" declaration ";"
1007
        "default" ":" declaration ";"
1008
        "case" value ":" declaration ";" case-list
1009
.DE
1010
Here is an example of a type that might be returned as the result of a
1011
\*Qread data\*U operation.  If there is no error, return a block of data.
1012
Otherwise, don't return anything.
1013
.DS L
1014
.ft CW
1015
    union read_result switch (int errno) {
1016
    case 0:
1017
        opaque data[1024];
1018
    default:
1019
        void;
1020
    };
1021
.DE
1022
It gets compiled into the following:
1023
.DS L
1024
.ft CW
1025
    struct read_result {
1026
        int errno;
1027
        union {
1028
            char data[1024];
1029
        } read_result_u;
1030
    };
1031
    typedef struct read_result read_result;
1032
.DE
1033
Notice that the union component of the  output struct  has the name as
1034
the type name, except for the trailing \*Q_u\*U.
1035
.NH 2
1036
Enumerations
1037
\&
1038
.IX rpcgen enumerations \fIrpcgen\fP
1039
.LP
1040
XDR enumerations have the same syntax as C enumerations.
1041
.DS L
1042
.ft CW
1043
    enum-definition:
1044
        "enum" enum-ident "{"
1045
            enum-value-list
1046
        "}"
1047
 
1048
    enum-value-list:
1049
        enum-value
1050
        enum-value "," enum-value-list
1051
 
1052
    enum-value:
1053
        enum-value-ident
1054
        enum-value-ident "=" value
1055
.DE
1056
Here is a short example of  an XDR enum,  and the C enum that  it gets
1057
compiled into.
1058
.DS L
1059
.ft CW
1060
     enum colortype {      enum colortype {
1061
          RED = 0,              RED = 0,
1062
          GREEN = 1,   -->      GREEN = 1,
1063
          BLUE = 2              BLUE = 2,
1064
     };                    };
1065
                           typedef enum colortype colortype;
1066
.DE
1067
.NH 2
1068
Typedef
1069
\&
1070
.IX rpcgen typedef \fIrpcgen\fP
1071
.LP
1072
XDR typedefs have the same syntax as C typedefs.
1073
.DS L
1074
.ft CW
1075
    typedef-definition:
1076
        "typedef" declaration
1077
.DE
1078
Here  is an example  that defines a
1079
.I fname_type
1080
used  for declaring
1081
file name strings that have a maximum length of 255 characters.
1082
.DS L
1083
.ft CW
1084
typedef string fname_type<255>; --> typedef char *fname_type;
1085
.DE
1086
.NH 2
1087
Constants
1088
\&
1089
.IX rpcgen constants \fIrpcgen\fP
1090
.LP
1091
XDR constants  symbolic constants  that may be  used wherever  a
1092
integer constant is used, for example, in array size specifications.
1093
.DS L
1094
.ft CW
1095
    const-definition:
1096
        "const" const-ident "=" integer
1097
.DE
1098
For example, the following defines a constant
1099
.I DOZEN
1100
equal to 12.
1101
.DS L
1102
.ft CW
1103
    const DOZEN = 12;  -->  #define DOZEN 12
1104
.DE
1105
.NH 2
1106
Programs
1107
\&
1108
.IX rpcgen programs \fIrpcgen\fP
1109
.LP
1110
RPC programs are declared using the following syntax:
1111
.DS L
1112
.ft CW
1113
    program-definition:
1114
        "program" program-ident "{"
1115
            version-list
1116
        "}" "=" value
1117
 
1118
    version-list:
1119
        version ";"
1120
        version ";" version-list
1121
 
1122
    version:
1123
        "version" version-ident "{"
1124
            procedure-list
1125
        "}" "=" value
1126
 
1127
    procedure-list:
1128
        procedure ";"
1129
        procedure ";" procedure-list
1130
 
1131
    procedure:
1132
        type-ident procedure-ident "(" type-ident ")" "=" value
1133
.DE
1134
For example, here is the time protocol, revisited:
1135
.ie t .DS
1136
.el .DS L
1137
.ft I
1138
/*
1139
 * time.x: Get or set the time. Time is represented as number of seconds
1140
 * since 0:00, January 1, 1970.
1141
 */
1142
.ft CW
1143
program TIMEPROG {
1144
    version TIMEVERS {
1145
        unsigned int TIMEGET(void) = 1;
1146
        void TIMESET(unsigned) = 2;
1147
    } = 1;
1148
} = 44;
1149
.DE
1150
This file compiles into #defines in the output header file:
1151
.ie t .DS
1152
.el .DS L
1153
.ft CW
1154
#define TIMEPROG 44
1155
#define TIMEVERS 1
1156
#define TIMEGET 1
1157
#define TIMESET 2
1158
.DE
1159
.NH 2
1160
Declarations
1161
\&
1162
.IX rpcgen declarations \fIrpcgen\fP
1163
.LP
1164
In XDR, there are only four kinds of declarations.
1165
.DS L
1166
.ft CW
1167
    declaration:
1168
        simple-declaration
1169
        fixed-array-declaration
1170
        variable-array-declaration
1171
        pointer-declaration
1172
.DE
1173
\fB1) Simple declarations\fP are just like simple C declarations.
1174
.DS L
1175
.ft CW
1176
    simple-declaration:
1177
        type-ident variable-ident
1178
.DE
1179
Example:
1180
.DS L
1181
.ft CW
1182
    colortype color;    --> colortype color;
1183
.DE
1184
\fB2) Fixed-length Array Declarations\fP are just like C array declarations:
1185
.DS L
1186
.ft CW
1187
    fixed-array-declaration:
1188
        type-ident variable-ident "[" value "]"
1189
.DE
1190
Example:
1191
.DS L
1192
.ft CW
1193
    colortype palette[8];    --> colortype palette[8];
1194
.DE
1195
\fB3) Variable-Length Array Declarations\fP have no explicit syntax
1196
in C, so XDR invents its own using angle-brackets.
1197
.DS L
1198
.ft CW
1199
variable-array-declaration:
1200
    type-ident variable-ident "<" value ">"
1201
    type-ident variable-ident "<" ">"
1202
.DE
1203
The maximum size is specified between the angle brackets. The size may
1204
be omitted, indicating that the array may be of any size.
1205
.DS L
1206
.ft CW
1207
    int heights<12>;    /* \fIat most 12 items\fP */
1208
    int widths<>;       /* \fIany number of items\fP */
1209
.DE
1210
Since  variable-length  arrays have no  explicit  syntax in  C,  these
1211
declarations are actually compiled into \*Qstruct\*Us.  For example, the
1212
\*Qheights\*U declaration gets compiled into the following struct:
1213
.DS L
1214
.ft CW
1215
    struct {
1216
        u_int heights_len;  /* \fI# of items in array\fP */
1217
        int *heights_val;   /* \fIpointer to array\fP */
1218
    } heights;
1219
.DE
1220
Note that the number of items in the array is stored in the \*Q_len\*U
1221
component and the pointer to the array is stored in the \*Q_val\*U
1222
component. The first part of each of these component's names is the
1223
same as the name of the declared XDR variable.
1224
.LP
1225
\fB4) Pointer Declarations\fP are made in
1226
XDR  exactly as they  are  in C.  You  can't
1227
really send pointers over the network,  but  you  can use XDR pointers
1228
for sending recursive data types such as lists and trees.  The type is
1229
actually called \*Qoptional-data\*U, not \*Qpointer\*U, in XDR language.
1230
.DS L
1231
.ft CW
1232
    pointer-declaration:
1233
        type-ident "*" variable-ident
1234
.DE
1235
Example:
1236
.DS L
1237
.ft CW
1238
    listitem *next;  -->  listitem *next;
1239
.DE
1240
.NH 2
1241
\&Special Cases
1242
.IX rpcgen "special cases" \fIrpcgen\fP
1243
.LP
1244
There are a few exceptions to the rules described above.
1245
.LP
1246
.B Booleans:
1247
C has no built-in boolean type. However, the RPC library does  a
1248
boolean type   called
1249
.I bool_t
1250
that   is either
1251
.I TRUE
1252
or
1253
.I FALSE .
1254
Things declared as  type
1255
.I bool
1256
in  XDR language  are  compiled  into
1257
.I bool_t
1258
in the output header file.
1259
.LP
1260
Example:
1261
.DS L
1262
.ft CW
1263
    bool married;  -->  bool_t married;
1264
.DE
1265
.B Strings:
1266
C has  no built-in string  type, but  instead uses the null-terminated
1267
\*Qchar *\*U convention.  In XDR language, strings are declared using the
1268
\*Qstring\*U keyword, and compiled into \*Qchar *\*Us in the output header
1269
file. The  maximum size contained  in the angle brackets specifies the
1270
maximum number of characters allowed in the  strings (not counting the
1271
.I NULL
1272
character). The maximum size may be left off, indicating a string
1273
of arbitrary length.
1274
.LP
1275
Examples:
1276
.DS L
1277
.ft CW
1278
    string name<32>;    -->  char *name;
1279
    string longname<>;  -->  char *longname;
1280
.DE
1281
.B "Opaque  Data:"
1282
Opaque data is used in RPC and XDR to describe untyped  data, that is,
1283
just  sequences of arbitrary  bytes.  It may be  declared  either as a
1284
fixed or variable length array.
1285
.DS L
1286
Examples:
1287
.ft CW
1288
    opaque diskblock[512];  -->  char diskblock[512];
1289
 
1290
    opaque filedata<1024>;  -->  struct {
1291
                                    u_int filedata_len;
1292
                                    char *filedata_val;
1293
                                 } filedata;
1294
.DE
1295
.B Voids:
1296
In a void declaration, the variable is  not named.  The declaration is
1297
just \*Qvoid\*U and nothing else.  Void declarations can only occur in two
1298
places: union definitions and program definitions (as the  argument or
1299
result of a remote procedure).

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.