OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [rtems-20020807/] [cpukit/] [score/] [cpu/] [sparc/] [cpu.c] - Blame information for rev 1026

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1026 ivang
/*
2
 *  SPARC Dependent Source
3
 *
4
 *  COPYRIGHT (c) 1989-1999.
5
 *  On-Line Applications Research Corporation (OAR).
6
 *
7
 *  The license and distribution terms for this file may be
8
 *  found in the file LICENSE in this distribution or at
9
 *  http://www.OARcorp.com/rtems/license.html.
10
 *
11
 *  cpu.c,v 1.15 2002/04/03 14:16:32 joel Exp
12
 */
13
 
14
#include <rtems/system.h>
15
#include <rtems/score/isr.h>
16
#include <rtems/rtems/cache.h>
17
 
18
/*
19
 *  This initializes the set of opcodes placed in each trap
20
 *  table entry.  The routine which installs a handler is responsible
21
 *  for filling in the fields for the _handler address and the _vector
22
 *  trap type.
23
 *
24
 *  The constants following this structure are masks for the fields which
25
 *  must be filled in when the handler is installed.
26
 */
27
 
28
const CPU_Trap_table_entry _CPU_Trap_slot_template = {
29
  0xa1480000,      /* mov   %psr, %l0           */
30
  0x29000000,      /* sethi %hi(_handler), %l4  */
31
  0x81c52000,      /* jmp   %l4 + %lo(_handler) */
32
  0xa6102000       /* mov   _vector, %l3        */
33
};
34
 
35
/*PAGE
36
 *
37
 *  _CPU_Initialize
38
 *
39
 *  This routine performs processor dependent initialization.
40
 *
41
 *  Input Parameters:
42
 *    cpu_table       - CPU table to initialize
43
 *    thread_dispatch - address of disptaching routine
44
 *
45
 *  Output Parameters: NONE
46
 *
47
 *  NOTE: There is no need to save the pointer to the thread dispatch routine.
48
 *        The SPARC's assembly code can reference it directly with no problems.
49
 */
50
 
51
void _CPU_Initialize(
52
  rtems_cpu_table  *cpu_table,
53
  void            (*thread_dispatch)      /* ignored on this CPU */
54
)
55
{
56
  void                  *pointer;
57
 
58
#if (SPARC_HAS_FPU == 1)
59
 
60
  /*
61
   *  This seems to be the most appropriate way to obtain an initial
62
   *  FP context on the SPARC.  The NULL fp context is copied it to
63
   *  the task's FP context during Context_Initialize.
64
   */
65
 
66
  pointer = &_CPU_Null_fp_context;
67
  _CPU_Context_save_fp( &pointer );
68
#endif
69
 
70
  /*
71
   *  Grab our own copy of the user's CPU table.
72
   */
73
 
74
  _CPU_Table = *cpu_table;
75
}
76
 
77
/*PAGE
78
 *
79
 *  _CPU_ISR_Get_level
80
 *
81
 *  Input Parameters: NONE
82
 *
83
 *  Output Parameters:
84
 *    returns the current interrupt level (PIL field of the PSR)
85
 */
86
 
87
unsigned32 _CPU_ISR_Get_level( void )
88
{
89
  unsigned32 level;
90
 
91
  sparc_get_interrupt_level( level );
92
 
93
  return level;
94
}
95
 
96
/*PAGE
97
 *
98
 *  _CPU_ISR_install_raw_handler
99
 *
100
 *  This routine installs the specified handler as a "raw" non-executive
101
 *  supported trap handler (a.k.a. interrupt service routine).
102
 *
103
 *  Input Parameters:
104
 *    vector      - trap table entry number plus synchronous
105
 *                    vs. asynchronous information
106
 *    new_handler - address of the handler to be installed
107
 *    old_handler - pointer to an address of the handler previously installed
108
 *
109
 *  Output Parameters: NONE
110
 *    *new_handler - address of the handler previously installed
111
 *
112
 *  NOTE:
113
 *
114
 *  On the SPARC, there are really only 256 vectors.  However, the executive
115
 *  has no easy, fast, reliable way to determine which traps are synchronous
116
 *  and which are asynchronous.  By default, synchronous traps return to the
117
 *  instruction which caused the interrupt.  So if you install a software
118
 *  trap handler as an executive interrupt handler (which is desirable since
119
 *  RTEMS takes care of window and register issues), then the executive needs
120
 *  to know that the return address is to the trap rather than the instruction
121
 *  following the trap.
122
 *
123
 *  So vectors 0 through 255 are treated as regular asynchronous traps which
124
 *  provide the "correct" return address.  Vectors 256 through 512 are assumed
125
 *  by the executive to be synchronous and to require that the return address
126
 *  be fudged.
127
 *
128
 *  If you use this mechanism to install a trap handler which must reexecute
129
 *  the instruction which caused the trap, then it should be installed as
130
 *  an asynchronous trap.  This will avoid the executive changing the return
131
 *  address.
132
 */
133
 
134
void _CPU_ISR_install_raw_handler(
135
  unsigned32  vector,
136
  proc_ptr    new_handler,
137
  proc_ptr   *old_handler
138
)
139
{
140
  unsigned32             real_vector;
141
  CPU_Trap_table_entry  *tbr;
142
  CPU_Trap_table_entry  *slot;
143
  unsigned32             u32_tbr;
144
  unsigned32             u32_handler;
145
 
146
  /*
147
   *  Get the "real" trap number for this vector ignoring the synchronous
148
   *  versus asynchronous indicator included with our vector numbers.
149
   */
150
 
151
  real_vector = SPARC_REAL_TRAP_NUMBER( vector );
152
 
153
  /*
154
   *  Get the current base address of the trap table and calculate a pointer
155
   *  to the slot we are interested in.
156
   */
157
 
158
  sparc_get_tbr( u32_tbr );
159
 
160
  u32_tbr &= 0xfffff000;
161
 
162
  tbr = (CPU_Trap_table_entry *) u32_tbr;
163
 
164
  slot = &tbr[ real_vector ];
165
 
166
  /*
167
   *  Get the address of the old_handler from the trap table.
168
   *
169
   *  NOTE: The old_handler returned will be bogus if it does not follow
170
   *        the RTEMS model.
171
   */
172
 
173
#define HIGH_BITS_MASK   0xFFFFFC00
174
#define HIGH_BITS_SHIFT  10
175
#define LOW_BITS_MASK    0x000003FF
176
 
177
  if ( slot->mov_psr_l0 == _CPU_Trap_slot_template.mov_psr_l0 ) {
178
    u32_handler =
179
      ((slot->sethi_of_handler_to_l4 & HIGH_BITS_MASK) << HIGH_BITS_SHIFT) |
180
      (slot->jmp_to_low_of_handler_plus_l4 & LOW_BITS_MASK);
181
    *old_handler = (proc_ptr) u32_handler;
182
  } else
183
    *old_handler = 0;
184
 
185
  /*
186
   *  Copy the template to the slot and then fix it.
187
   */
188
 
189
  *slot = _CPU_Trap_slot_template;
190
 
191
  u32_handler = (unsigned32) new_handler;
192
 
193
  slot->mov_vector_l3 |= vector;
194
  slot->sethi_of_handler_to_l4 |=
195
    (u32_handler & HIGH_BITS_MASK) >> HIGH_BITS_SHIFT;
196
  slot->jmp_to_low_of_handler_plus_l4 |= (u32_handler & LOW_BITS_MASK);
197
 
198
  /* need to flush icache after this !!! */
199
 
200
  rtems_cache_invalidate_entire_instruction();
201
 
202
}
203
 
204
/*PAGE
205
 *
206
 *  _CPU_ISR_install_vector
207
 *
208
 *  This kernel routine installs the RTEMS handler for the
209
 *  specified vector.
210
 *
211
 *  Input parameters:
212
 *    vector       - interrupt vector number
213
 *    new_handler  - replacement ISR for this vector number
214
 *    old_handler  - pointer to former ISR for this vector number
215
 *
216
 *  Output parameters:
217
 *    *old_handler - former ISR for this vector number
218
 *
219
 */
220
 
221
void _CPU_ISR_install_vector(
222
  unsigned32  vector,
223
  proc_ptr    new_handler,
224
  proc_ptr   *old_handler
225
)
226
{
227
   unsigned32 real_vector;
228
   proc_ptr   ignored;
229
 
230
  /*
231
   *  Get the "real" trap number for this vector ignoring the synchronous
232
   *  versus asynchronous indicator included with our vector numbers.
233
   */
234
 
235
   real_vector = SPARC_REAL_TRAP_NUMBER( vector );
236
 
237
   /*
238
    *  Return the previous ISR handler.
239
    */
240
 
241
   *old_handler = _ISR_Vector_table[ real_vector ];
242
 
243
   /*
244
    *  Install the wrapper so this ISR can be invoked properly.
245
    */
246
 
247
   _CPU_ISR_install_raw_handler( vector, _ISR_Handler, &ignored );
248
 
249
   /*
250
    *  We put the actual user ISR address in '_ISR_vector_table'.  This will
251
    *  be used by the _ISR_Handler so the user gets control.
252
    */
253
 
254
    _ISR_Vector_table[ real_vector ] = new_handler;
255
}
256
 
257
/*PAGE
258
 *
259
 *  _CPU_Context_Initialize
260
 *
261
 *  This kernel routine initializes the basic non-FP context area associated
262
 *  with each thread.
263
 *
264
 *  Input parameters:
265
 *    the_context  - pointer to the context area
266
 *    stack_base   - address of memory for the SPARC
267
 *    size         - size in bytes of the stack area
268
 *    new_level    - interrupt level for this context area
269
 *    entry_point  - the starting execution point for this this context
270
 *    is_fp        - TRUE if this context is associated with an FP thread
271
 *
272
 *  Output parameters: NONE
273
 */
274
 
275
void _CPU_Context_Initialize(
276
  Context_Control  *the_context,
277
  unsigned32       *stack_base,
278
  unsigned32        size,
279
  unsigned32        new_level,
280
  void             *entry_point,
281
  boolean           is_fp
282
)
283
{
284
    unsigned32   stack_high;  /* highest "stack aligned" address */
285
    unsigned32   the_size;
286
    unsigned32   tmp_psr;
287
 
288
    /*
289
     *  On CPUs with stacks which grow down (i.e. SPARC), we build the stack
290
     *  based on the stack_high address.
291
     */
292
 
293
    stack_high = ((unsigned32)(stack_base) + size);
294
    stack_high &= ~(CPU_STACK_ALIGNMENT - 1);
295
 
296
    the_size = size & ~(CPU_STACK_ALIGNMENT - 1);
297
 
298
    /*
299
     *  See the README in this directory for a diagram of the stack.
300
     */
301
 
302
    the_context->o7    = ((unsigned32) entry_point) - 8;
303
    the_context->o6_sp = stack_high - CPU_MINIMUM_STACK_FRAME_SIZE;
304
    the_context->i6_fp = stack_high;
305
 
306
    /*
307
     *  Build the PSR for the task.  Most everything can be 0 and the
308
     *  CWP is corrected during the context switch.
309
     *
310
     *  The EF bit determines if the floating point unit is available.
311
     *  The FPU is ONLY enabled if the context is associated with an FP task
312
     *  and this SPARC model has an FPU.
313
     */
314
 
315
    sparc_get_psr( tmp_psr );
316
    tmp_psr &= ~SPARC_PSR_PIL_MASK;
317
    tmp_psr |= (new_level << 8) & SPARC_PSR_PIL_MASK;
318
    tmp_psr &= ~SPARC_PSR_EF_MASK;      /* disabled by default */
319
 
320
#if (SPARC_HAS_FPU == 1)
321
    /*
322
     *  If this bit is not set, then a task gets a fault when it accesses
323
     *  a floating point register.  This is a nice way to detect floating
324
     *  point tasks which are not currently declared as such.
325
     */
326
 
327
    if ( is_fp )
328
      tmp_psr |= SPARC_PSR_EF_MASK;
329
#endif
330
    the_context->psr = tmp_psr;
331
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.