OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [uclinux/] [uClinux-2.0.x/] [arch/] [m68k/] [fpsp040/] [bindec.S] - Blame information for rev 1775

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 199 simons
|
2
|       bindec.sa 3.4 1/3/91
3
|
4
|       bindec
5
|
6
|       Description:
7
|               Converts an input in extended precision format
8
|               to bcd format.
9
|
10
|       Input:
11
|               a0 points to the input extended precision value
12
|               value in memory; d0 contains the k-factor sign-extended
13
|               to 32-bits.  The input may be either normalized,
14
|               unnormalized, or denormalized.
15
|
16
|       Output: result in the FP_SCR1 space on the stack.
17
|
18
|       Saves and Modifies: D2-D7,A2,FP2
19
|
20
|       Algorithm:
21
|
22
|       A1.     Set RM and size ext;  Set SIGMA = sign of input.
23
|               The k-factor is saved for use in d7. Clear the
24
|               BINDEC_FLG for separating normalized/denormalized
25
|               input.  If input is unnormalized or denormalized,
26
|               normalize it.
27
|
28
|       A2.     Set X = abs(input).
29
|
30
|       A3.     Compute ILOG.
31
|               ILOG is the log base 10 of the input value.  It is
32
|               approximated by adding e + 0.f when the original
33
|               value is viewed as 2^^e * 1.f in extended precision.
34
|               This value is stored in d6.
35
|
36
|       A4.     Clr INEX bit.
37
|               The operation in A3 above may have set INEX2.
38
|
39
|       A5.     Set ICTR = 0;
40
|               ICTR is a flag used in A13.  It must be set before the
41
|               loop entry A6.
42
|
43
|       A6.     Calculate LEN.
44
|               LEN is the number of digits to be displayed.  The
45
|               k-factor can dictate either the total number of digits,
46
|               if it is a positive number, or the number of digits
47
|               after the decimal point which are to be included as
48
|               significant.  See the 68882 manual for examples.
49
|               If LEN is computed to be greater than 17, set OPERR in
50
|               USER_FPSR.  LEN is stored in d4.
51
|
52
|       A7.     Calculate SCALE.
53
|               SCALE is equal to 10^ISCALE, where ISCALE is the number
54
|               of decimal places needed to insure LEN integer digits
55
|               in the output before conversion to bcd. LAMBDA is the
56
|               sign of ISCALE, used in A9. Fp1 contains
57
|               10^^(abs(ISCALE)) using a rounding mode which is a
58
|               function of the original rounding mode and the signs
59
|               of ISCALE and X.  A table is given in the code.
60
|
61
|       A8.     Clr INEX; Force RZ.
62
|               The operation in A3 above may have set INEX2.
63
|               RZ mode is forced for the scaling operation to insure
64
|               only one rounding error.  The grs bits are collected in
65
|               the INEX flag for use in A10.
66
|
67
|       A9.     Scale X -> Y.
68
|               The mantissa is scaled to the desired number of
69
|               significant digits.  The excess digits are collected
70
|               in INEX2.
71
|
72
|       A10.    Or in INEX.
73
|               If INEX is set, round error occurred.  This is
74
|               compensated for by 'or-ing' in the INEX2 flag to
75
|               the lsb of Y.
76
|
77
|       A11.    Restore original FPCR; set size ext.
78
|               Perform FINT operation in the user's rounding mode.
79
|               Keep the size to extended.
80
|
81
|       A12.    Calculate YINT = FINT(Y) according to user's rounding
82
|               mode.  The FPSP routine sintd0 is used.  The output
83
|               is in fp0.
84
|
85
|       A13.    Check for LEN digits.
86
|               If the int operation results in more than LEN digits,
87
|               or less than LEN -1 digits, adjust ILOG and repeat from
88
|               A6.  This test occurs only on the first pass.  If the
89
|               result is exactly 10^LEN, decrement ILOG and divide
90
|               the mantissa by 10.
91
|
92
|       A14.    Convert the mantissa to bcd.
93
|               The binstr routine is used to convert the LEN digit
94
|               mantissa to bcd in memory.  The input to binstr is
95
|               to be a fraction; i.e. (mantissa)/10^LEN and adjusted
96
|               such that the decimal point is to the left of bit 63.
97
|               The bcd digits are stored in the correct position in
98
|               the final string area in memory.
99
|
100
|       A15.    Convert the exponent to bcd.
101
|               As in A14 above, the exp is converted to bcd and the
102
|               digits are stored in the final string.
103
|               Test the length of the final exponent string.  If the
104
|               length is 4, set operr.
105
|
106
|       A16.    Write sign bits to final string.
107
|
108
|       Implementation Notes:
109
|
110
|       The registers are used as follows:
111
|
112
|               d0: scratch; LEN input to binstr
113
|               d1: scratch
114
|               d2: upper 32-bits of mantissa for binstr
115
|               d3: scratch;lower 32-bits of mantissa for binstr
116
|               d4: LEN
117
|               d5: LAMBDA/ICTR
118
|               d6: ILOG
119
|               d7: k-factor
120
|               a0: ptr for original operand/final result
121
|               a1: scratch pointer
122
|               a2: pointer to FP_X; abs(original value) in ext
123
|               fp0: scratch
124
|               fp1: scratch
125
|               fp2: scratch
126
|               F_SCR1:
127
|               F_SCR2:
128
|               L_SCR1:
129
|               L_SCR2:
130
 
131
|               Copyright (C) Motorola, Inc. 1990
132
|                       All Rights Reserved
133
|
134
|       THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
135
|       The copyright notice above does not evidence any
136
|       actual or intended publication of such source code.
137
 
138
|BINDEC    idnt    2,1 | Motorola 040 Floating Point Software Package
139
 
140
        .include "fpsp.h"
141
 
142
        |section        8
143
 
144
| Constants in extended precision
145
LOG2:   .long   0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000
146
LOG2UP1:        .long   0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000
147
 
148
| Constants in single precision
149
FONE:   .long   0x3F800000,0x00000000,0x00000000,0x00000000
150
FTWO:   .long   0x40000000,0x00000000,0x00000000,0x00000000
151
FTEN:   .long   0x41200000,0x00000000,0x00000000,0x00000000
152
F4933:  .long   0x459A2800,0x00000000,0x00000000,0x00000000
153
 
154
RBDTBL:         .byte   0,0,0,0
155
        .byte   3,3,2,2
156
        .byte   3,2,2,3
157
        .byte   2,3,3,2
158
 
159
        |xref   binstr
160
        |xref   sintdo
161
        |xref   ptenrn,ptenrm,ptenrp
162
 
163
        .global bindec
164
        .global sc_mul
165
bindec:
166
        moveml  %d2-%d7/%a2,-(%a7)
167
        fmovemx %fp0-%fp2,-(%a7)
168
 
169
| A1. Set RM and size ext. Set SIGMA = sign input;
170
|     The k-factor is saved for use in d7.  Clear BINDEC_FLG for
171
|     separating  normalized/denormalized input.  If the input
172
|     is a denormalized number, set the BINDEC_FLG memory word
173
|     to signal denorm.  If the input is unnormalized, normalize
174
|     the input and test for denormalized result.
175
|
176
        fmovel  #rm_mode,%FPCR  |set RM and ext
177
        movel   (%a0),L_SCR2(%a6)       |save exponent for sign check
178
        movel   %d0,%d7         |move k-factor to d7
179
        clrb    BINDEC_FLG(%a6) |clr norm/denorm flag
180
        movew   STAG(%a6),%d0   |get stag
181
        andiw   #0xe000,%d0     |isolate stag bits
182
        beq     A2_str          |if zero, input is norm
183
|
184
| Normalize the denorm
185
|
186
un_de_norm:
187
        movew   (%a0),%d0
188
        andiw   #0x7fff,%d0     |strip sign of normalized exp
189
        movel   4(%a0),%d1
190
        movel   8(%a0),%d2
191
norm_loop:
192
        subw    #1,%d0
193
        lsll    #1,%d2
194
        roxll   #1,%d1
195
        tstl    %d1
196
        bges    norm_loop
197
|
198
| Test if the normalized input is denormalized
199
|
200
        tstw    %d0
201
        bgts    pos_exp         |if greater than zero, it is a norm
202
        st      BINDEC_FLG(%a6) |set flag for denorm
203
pos_exp:
204
        andiw   #0x7fff,%d0     |strip sign of normalized exp
205
        movew   %d0,(%a0)
206
        movel   %d1,4(%a0)
207
        movel   %d2,8(%a0)
208
 
209
| A2. Set X = abs(input).
210
|
211
A2_str:
212
        movel   (%a0),FP_SCR2(%a6) | move input to work space
213
        movel   4(%a0),FP_SCR2+4(%a6) | move input to work space
214
        movel   8(%a0),FP_SCR2+8(%a6) | move input to work space
215
        andil   #0x7fffffff,FP_SCR2(%a6) |create abs(X)
216
 
217
| A3. Compute ILOG.
218
|     ILOG is the log base 10 of the input value.  It is approx-
219
|     imated by adding e + 0.f when the original value is viewed
220
|     as 2^^e * 1.f in extended precision.  This value is stored
221
|     in d6.
222
|
223
| Register usage:
224
|       Input/Output
225
|       d0: k-factor/exponent
226
|       d2: x/x
227
|       d3: x/x
228
|       d4: x/x
229
|       d5: x/x
230
|       d6: x/ILOG
231
|       d7: k-factor/Unchanged
232
|       a0: ptr for original operand/final result
233
|       a1: x/x
234
|       a2: x/x
235
|       fp0: x/float(ILOG)
236
|       fp1: x/x
237
|       fp2: x/x
238
|       F_SCR1:x/x
239
|       F_SCR2:Abs(X)/Abs(X) with $3fff exponent
240
|       L_SCR1:x/x
241
|       L_SCR2:first word of X packed/Unchanged
242
 
243
        tstb    BINDEC_FLG(%a6) |check for denorm
244
        beqs    A3_cont         |if clr, continue with norm
245
        movel   #-4933,%d6      |force ILOG = -4933
246
        bras    A4_str
247
A3_cont:
248
        movew   FP_SCR2(%a6),%d0        |move exp to d0
249
        movew   #0x3fff,FP_SCR2(%a6) |replace exponent with 0x3fff
250
        fmovex  FP_SCR2(%a6),%fp0       |now fp0 has 1.f
251
        subw    #0x3fff,%d0     |strip off bias
252
        faddw   %d0,%fp0                |add in exp
253
        fsubs   FONE,%fp0       |subtract off 1.0
254
        fbge    pos_res         |if pos, branch
255
        fmulx   LOG2UP1,%fp0    |if neg, mul by LOG2UP1
256
        fmovel  %fp0,%d6                |put ILOG in d6 as a lword
257
        bras    A4_str          |go move out ILOG
258
pos_res:
259
        fmulx   LOG2,%fp0       |if pos, mul by LOG2
260
        fmovel  %fp0,%d6                |put ILOG in d6 as a lword
261
 
262
 
263
| A4. Clr INEX bit.
264
|     The operation in A3 above may have set INEX2.
265
 
266
A4_str:
267
        fmovel  #0,%FPSR                |zero all of fpsr - nothing needed
268
 
269
 
270
| A5. Set ICTR = 0;
271
|     ICTR is a flag used in A13.  It must be set before the
272
|     loop entry A6. The lower word of d5 is used for ICTR.
273
 
274
        clrw    %d5             |clear ICTR
275
 
276
 
277
| A6. Calculate LEN.
278
|     LEN is the number of digits to be displayed.  The k-factor
279
|     can dictate either the total number of digits, if it is
280
|     a positive number, or the number of digits after the
281
|     original decimal point which are to be included as
282
|     significant.  See the 68882 manual for examples.
283
|     If LEN is computed to be greater than 17, set OPERR in
284
|     USER_FPSR.  LEN is stored in d4.
285
|
286
| Register usage:
287
|       Input/Output
288
|       d0: exponent/Unchanged
289
|       d2: x/x/scratch
290
|       d3: x/x
291
|       d4: exc picture/LEN
292
|       d5: ICTR/Unchanged
293
|       d6: ILOG/Unchanged
294
|       d7: k-factor/Unchanged
295
|       a0: ptr for original operand/final result
296
|       a1: x/x
297
|       a2: x/x
298
|       fp0: float(ILOG)/Unchanged
299
|       fp1: x/x
300
|       fp2: x/x
301
|       F_SCR1:x/x
302
|       F_SCR2:Abs(X) with $3fff exponent/Unchanged
303
|       L_SCR1:x/x
304
|       L_SCR2:first word of X packed/Unchanged
305
 
306
A6_str:
307
        tstl    %d7             |branch on sign of k
308
        bles    k_neg           |if k <= 0, LEN = ILOG + 1 - k
309
        movel   %d7,%d4         |if k > 0, LEN = k
310
        bras    len_ck          |skip to LEN check
311
k_neg:
312
        movel   %d6,%d4         |first load ILOG to d4
313
        subl    %d7,%d4         |subtract off k
314
        addql   #1,%d4          |add in the 1
315
len_ck:
316
        tstl    %d4             |LEN check: branch on sign of LEN
317
        bles    LEN_ng          |if neg, set LEN = 1
318
        cmpl    #17,%d4         |test if LEN > 17
319
        bles    A7_str          |if not, forget it
320
        movel   #17,%d4         |set max LEN = 17
321
        tstl    %d7             |if negative, never set OPERR
322
        bles    A7_str          |if positive, continue
323
        orl     #opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR
324
        bras    A7_str          |finished here
325
LEN_ng:
326
        moveql  #1,%d4          |min LEN is 1
327
 
328
 
329
| A7. Calculate SCALE.
330
|     SCALE is equal to 10^ISCALE, where ISCALE is the number
331
|     of decimal places needed to insure LEN integer digits
332
|     in the output before conversion to bcd. LAMBDA is the sign
333
|     of ISCALE, used in A9.  Fp1 contains 10^^(abs(ISCALE)) using
334
|     the rounding mode as given in the following table (see
335
|     Coonen, p. 7.23 as ref.; however, the SCALE variable is
336
|     of opposite sign in bindec.sa from Coonen).
337
|
338
|       Initial                                 USE
339
|       FPCR[6:5]       LAMBDA  SIGN(X)         FPCR[6:5]
340
|       ----------------------------------------------
341
|        RN     00         0       0            00/0    RN
342
|        RN     00         0       1            00/0    RN
343
|        RN     00         1       0            00/0    RN
344
|        RN     00         1       1            00/0    RN
345
|        RZ     01         0       0            11/3    RP
346
|        RZ     01         0       1            11/3    RP
347
|        RZ     01         1       0            10/2    RM
348
|        RZ     01         1       1            10/2    RM
349
|        RM     10         0       0            11/3    RP
350
|        RM     10         0       1            10/2    RM
351
|        RM     10         1       0            10/2    RM
352
|        RM     10         1       1            11/3    RP
353
|        RP     11         0       0            10/2    RM
354
|        RP     11         0       1            11/3    RP
355
|        RP     11         1       0            11/3    RP
356
|        RP     11         1       1            10/2    RM
357
|
358
| Register usage:
359
|       Input/Output
360
|       d0: exponent/scratch - final is 0
361
|       d2: x/0 or 24 for A9
362
|       d3: x/scratch - offset ptr into PTENRM array
363
|       d4: LEN/Unchanged
364
|       d5: 0/ICTR:LAMBDA
365
|       d6: ILOG/ILOG or k if ((k<=0)&(ILOG
366
|       d7: k-factor/Unchanged
367
|       a0: ptr for original operand/final result
368
|       a1: x/ptr to PTENRM array
369
|       a2: x/x
370
|       fp0: float(ILOG)/Unchanged
371
|       fp1: x/10^ISCALE
372
|       fp2: x/x
373
|       F_SCR1:x/x
374
|       F_SCR2:Abs(X) with $3fff exponent/Unchanged
375
|       L_SCR1:x/x
376
|       L_SCR2:first word of X packed/Unchanged
377
 
378
A7_str:
379
        tstl    %d7             |test sign of k
380
        bgts    k_pos           |if pos and > 0, skip this
381
        cmpl    %d6,%d7         |test k - ILOG
382
        blts    k_pos           |if ILOG >= k, skip this
383
        movel   %d7,%d6         |if ((k<0) & (ILOG < k)) ILOG = k
384
k_pos:
385
        movel   %d6,%d0         |calc ILOG + 1 - LEN in d0
386
        addql   #1,%d0          |add the 1
387
        subl    %d4,%d0         |sub off LEN
388
        swap    %d5             |use upper word of d5 for LAMBDA
389
        clrw    %d5             |set it zero initially
390
        clrw    %d2             |set up d2 for very small case
391
        tstl    %d0             |test sign of ISCALE
392
        bges    iscale          |if pos, skip next inst
393
        addqw   #1,%d5          |if neg, set LAMBDA true
394
        cmpl    #0xffffecd4,%d0 |test iscale <= -4908
395
        bgts    no_inf          |if false, skip rest
396
        addil   #24,%d0         |add in 24 to iscale
397
        movel   #24,%d2         |put 24 in d2 for A9
398
no_inf:
399
        negl    %d0             |and take abs of ISCALE
400
iscale:
401
        fmoves  FONE,%fp1       |init fp1 to 1
402
        bfextu  USER_FPCR(%a6){#26:#2},%d1 |get initial rmode bits
403
        lslw    #1,%d1          |put them in bits 2:1
404
        addw    %d5,%d1         |add in LAMBDA
405
        lslw    #1,%d1          |put them in bits 3:1
406
        tstl    L_SCR2(%a6)     |test sign of original x
407
        bges    x_pos           |if pos, don't set bit 0
408
        addql   #1,%d1          |if neg, set bit 0
409
x_pos:
410
        leal    RBDTBL,%a2      |load rbdtbl base
411
        moveb   (%a2,%d1),%d3   |load d3 with new rmode
412
        lsll    #4,%d3          |put bits in proper position
413
        fmovel  %d3,%fpcr               |load bits into fpu
414
        lsrl    #4,%d3          |put bits in proper position
415
        tstb    %d3             |decode new rmode for pten table
416
        bnes    not_rn          |if zero, it is RN
417
        leal    PTENRN,%a1      |load a1 with RN table base
418
        bras    rmode           |exit decode
419
not_rn:
420
        lsrb    #1,%d3          |get lsb in carry
421
        bccs    not_rp          |if carry clear, it is RM
422
        leal    PTENRP,%a1      |load a1 with RP table base
423
        bras    rmode           |exit decode
424
not_rp:
425
        leal    PTENRM,%a1      |load a1 with RM table base
426
rmode:
427
        clrl    %d3             |clr table index
428
e_loop:
429
        lsrl    #1,%d0          |shift next bit into carry
430
        bccs    e_next          |if zero, skip the mul
431
        fmulx   (%a1,%d3),%fp1  |mul by 10**(d3_bit_no)
432
e_next:
433
        addl    #12,%d3         |inc d3 to next pwrten table entry
434
        tstl    %d0             |test if ISCALE is zero
435
        bnes    e_loop          |if not, loop
436
 
437
 
438
| A8. Clr INEX; Force RZ.
439
|     The operation in A3 above may have set INEX2.
440
|     RZ mode is forced for the scaling operation to insure
441
|     only one rounding error.  The grs bits are collected in
442
|     the INEX flag for use in A10.
443
|
444
| Register usage:
445
|       Input/Output
446
 
447
        fmovel  #0,%FPSR                |clr INEX
448
        fmovel  #rz_mode,%FPCR  |set RZ rounding mode
449
 
450
 
451
| A9. Scale X -> Y.
452
|     The mantissa is scaled to the desired number of significant
453
|     digits.  The excess digits are collected in INEX2. If mul,
454
|     Check d2 for excess 10 exponential value.  If not zero,
455
|     the iscale value would have caused the pwrten calculation
456
|     to overflow.  Only a negative iscale can cause this, so
457
|     multiply by 10^(d2), which is now only allowed to be 24,
458
|     with a multiply by 10^8 and 10^16, which is exact since
459
|     10^24 is exact.  If the input was denormalized, we must
460
|     create a busy stack frame with the mul command and the
461
|     two operands, and allow the fpu to complete the multiply.
462
|
463
| Register usage:
464
|       Input/Output
465
|       d0: FPCR with RZ mode/Unchanged
466
|       d2: 0 or 24/unchanged
467
|       d3: x/x
468
|       d4: LEN/Unchanged
469
|       d5: ICTR:LAMBDA
470
|       d6: ILOG/Unchanged
471
|       d7: k-factor/Unchanged
472
|       a0: ptr for original operand/final result
473
|       a1: ptr to PTENRM array/Unchanged
474
|       a2: x/x
475
|       fp0: float(ILOG)/X adjusted for SCALE (Y)
476
|       fp1: 10^ISCALE/Unchanged
477
|       fp2: x/x
478
|       F_SCR1:x/x
479
|       F_SCR2:Abs(X) with $3fff exponent/Unchanged
480
|       L_SCR1:x/x
481
|       L_SCR2:first word of X packed/Unchanged
482
 
483
A9_str:
484
        fmovex  (%a0),%fp0      |load X from memory
485
        fabsx   %fp0            |use abs(X)
486
        tstw    %d5             |LAMBDA is in lower word of d5
487
        bnes    sc_mul          |if neg (LAMBDA = 1), scale by mul
488
        fdivx   %fp1,%fp0               |calculate X / SCALE -> Y to fp0
489
        bras    A10_st          |branch to A10
490
 
491
sc_mul:
492
        tstb    BINDEC_FLG(%a6) |check for denorm
493
        beqs    A9_norm         |if norm, continue with mul
494
        fmovemx %fp1-%fp1,-(%a7)        |load ETEMP with 10^ISCALE
495
        movel   8(%a0),-(%a7)   |load FPTEMP with input arg
496
        movel   4(%a0),-(%a7)
497
        movel   (%a0),-(%a7)
498
        movel   #18,%d3         |load count for busy stack
499
A9_loop:
500
        clrl    -(%a7)          |clear lword on stack
501
        dbf     %d3,A9_loop
502
        moveb   VER_TMP(%a6),(%a7) |write current version number
503
        moveb   #BUSY_SIZE-4,1(%a7) |write current busy size
504
        moveb   #0x10,0x44(%a7) |set fcefpte[15] bit
505
        movew   #0x0023,0x40(%a7)       |load cmdreg1b with mul command
506
        moveb   #0xfe,0x8(%a7)  |load all 1s to cu savepc
507
        frestore (%a7)+         |restore frame to fpu for completion
508
        fmulx   36(%a1),%fp0    |multiply fp0 by 10^8
509
        fmulx   48(%a1),%fp0    |multiply fp0 by 10^16
510
        bras    A10_st
511
A9_norm:
512
        tstw    %d2             |test for small exp case
513
        beqs    A9_con          |if zero, continue as normal
514
        fmulx   36(%a1),%fp0    |multiply fp0 by 10^8
515
        fmulx   48(%a1),%fp0    |multiply fp0 by 10^16
516
A9_con:
517
        fmulx   %fp1,%fp0               |calculate X * SCALE -> Y to fp0
518
 
519
 
520
| A10. Or in INEX.
521
|      If INEX is set, round error occurred.  This is compensated
522
|      for by 'or-ing' in the INEX2 flag to the lsb of Y.
523
|
524
| Register usage:
525
|       Input/Output
526
|       d0: FPCR with RZ mode/FPSR with INEX2 isolated
527
|       d2: x/x
528
|       d3: x/x
529
|       d4: LEN/Unchanged
530
|       d5: ICTR:LAMBDA
531
|       d6: ILOG/Unchanged
532
|       d7: k-factor/Unchanged
533
|       a0: ptr for original operand/final result
534
|       a1: ptr to PTENxx array/Unchanged
535
|       a2: x/ptr to FP_SCR2(a6)
536
|       fp0: Y/Y with lsb adjusted
537
|       fp1: 10^ISCALE/Unchanged
538
|       fp2: x/x
539
 
540
A10_st:
541
        fmovel  %FPSR,%d0               |get FPSR
542
        fmovex  %fp0,FP_SCR2(%a6)       |move Y to memory
543
        leal    FP_SCR2(%a6),%a2        |load a2 with ptr to FP_SCR2
544
        btstl   #9,%d0          |check if INEX2 set
545
        beqs    A11_st          |if clear, skip rest
546
        oril    #1,8(%a2)       |or in 1 to lsb of mantissa
547
        fmovex  FP_SCR2(%a6),%fp0       |write adjusted Y back to fpu
548
 
549
 
550
| A11. Restore original FPCR; set size ext.
551
|      Perform FINT operation in the user's rounding mode.  Keep
552
|      the size to extended.  The sintdo entry point in the sint
553
|      routine expects the FPCR value to be in USER_FPCR for
554
|      mode and precision.  The original FPCR is saved in L_SCR1.
555
 
556
A11_st:
557
        movel   USER_FPCR(%a6),L_SCR1(%a6) |save it for later
558
        andil   #0x00000030,USER_FPCR(%a6) |set size to ext,
559
|                                       ;block exceptions
560
 
561
 
562
| A12. Calculate YINT = FINT(Y) according to user's rounding mode.
563
|      The FPSP routine sintd0 is used.  The output is in fp0.
564
|
565
| Register usage:
566
|       Input/Output
567
|       d0: FPSR with AINEX cleared/FPCR with size set to ext
568
|       d2: x/x/scratch
569
|       d3: x/x
570
|       d4: LEN/Unchanged
571
|       d5: ICTR:LAMBDA/Unchanged
572
|       d6: ILOG/Unchanged
573
|       d7: k-factor/Unchanged
574
|       a0: ptr for original operand/src ptr for sintdo
575
|       a1: ptr to PTENxx array/Unchanged
576
|       a2: ptr to FP_SCR2(a6)/Unchanged
577
|       a6: temp pointer to FP_SCR2(a6) - orig value saved and restored
578
|       fp0: Y/YINT
579
|       fp1: 10^ISCALE/Unchanged
580
|       fp2: x/x
581
|       F_SCR1:x/x
582
|       F_SCR2:Y adjusted for inex/Y with original exponent
583
|       L_SCR1:x/original USER_FPCR
584
|       L_SCR2:first word of X packed/Unchanged
585
 
586
A12_st:
587
        moveml  %d0-%d1/%a0-%a1,-(%a7)  |save regs used by sintd0
588
        movel   L_SCR1(%a6),-(%a7)
589
        movel   L_SCR2(%a6),-(%a7)
590
        leal    FP_SCR2(%a6),%a0                |a0 is ptr to F_SCR2(a6)
591
        fmovex  %fp0,(%a0)              |move Y to memory at FP_SCR2(a6)
592
        tstl    L_SCR2(%a6)             |test sign of original operand
593
        bges    do_fint                 |if pos, use Y
594
        orl     #0x80000000,(%a0)               |if neg, use -Y
595
do_fint:
596
        movel   USER_FPSR(%a6),-(%a7)
597
        bsr     sintdo                  |sint routine returns int in fp0
598
        moveb   (%a7),USER_FPSR(%a6)
599
        addl    #4,%a7
600
        movel   (%a7)+,L_SCR2(%a6)
601
        movel   (%a7)+,L_SCR1(%a6)
602
        moveml  (%a7)+,%d0-%d1/%a0-%a1  |restore regs used by sint
603
        movel   L_SCR2(%a6),FP_SCR2(%a6)        |restore original exponent
604
        movel   L_SCR1(%a6),USER_FPCR(%a6) |restore user's FPCR
605
 
606
 
607
| A13. Check for LEN digits.
608
|      If the int operation results in more than LEN digits,
609
|      or less than LEN -1 digits, adjust ILOG and repeat from
610
|      A6.  This test occurs only on the first pass.  If the
611
|      result is exactly 10^LEN, decrement ILOG and divide
612
|      the mantissa by 10.  The calculation of 10^LEN cannot
613
|      be inexact, since all powers of ten upto 10^27 are exact
614
|      in extended precision, so the use of a previous power-of-ten
615
|      table will introduce no error.
616
|
617
|
618
| Register usage:
619
|       Input/Output
620
|       d0: FPCR with size set to ext/scratch final = 0
621
|       d2: x/x
622
|       d3: x/scratch final = x
623
|       d4: LEN/LEN adjusted
624
|       d5: ICTR:LAMBDA/LAMBDA:ICTR
625
|       d6: ILOG/ILOG adjusted
626
|       d7: k-factor/Unchanged
627
|       a0: pointer into memory for packed bcd string formation
628
|       a1: ptr to PTENxx array/Unchanged
629
|       a2: ptr to FP_SCR2(a6)/Unchanged
630
|       fp0: int portion of Y/abs(YINT) adjusted
631
|       fp1: 10^ISCALE/Unchanged
632
|       fp2: x/10^LEN
633
|       F_SCR1:x/x
634
|       F_SCR2:Y with original exponent/Unchanged
635
|       L_SCR1:original USER_FPCR/Unchanged
636
|       L_SCR2:first word of X packed/Unchanged
637
 
638
A13_st:
639
        swap    %d5             |put ICTR in lower word of d5
640
        tstw    %d5             |check if ICTR = 0
641
        bne     not_zr          |if non-zero, go to second test
642
|
643
| Compute 10^(LEN-1)
644
|
645
        fmoves  FONE,%fp2       |init fp2 to 1.0
646
        movel   %d4,%d0         |put LEN in d0
647
        subql   #1,%d0          |d0 = LEN -1
648
        clrl    %d3             |clr table index
649
l_loop:
650
        lsrl    #1,%d0          |shift next bit into carry
651
        bccs    l_next          |if zero, skip the mul
652
        fmulx   (%a1,%d3),%fp2  |mul by 10**(d3_bit_no)
653
l_next:
654
        addl    #12,%d3         |inc d3 to next pwrten table entry
655
        tstl    %d0             |test if LEN is zero
656
        bnes    l_loop          |if not, loop
657
|
658
| 10^LEN-1 is computed for this test and A14.  If the input was
659
| denormalized, check only the case in which YINT > 10^LEN.
660
|
661
        tstb    BINDEC_FLG(%a6) |check if input was norm
662
        beqs    A13_con         |if norm, continue with checking
663
        fabsx   %fp0            |take abs of YINT
664
        bra     test_2
665
|
666
| Compare abs(YINT) to 10^(LEN-1) and 10^LEN
667
|
668
A13_con:
669
        fabsx   %fp0            |take abs of YINT
670
        fcmpx   %fp2,%fp0               |compare abs(YINT) with 10^(LEN-1)
671
        fbge    test_2          |if greater, do next test
672
        subql   #1,%d6          |subtract 1 from ILOG
673
        movew   #1,%d5          |set ICTR
674
        fmovel  #rm_mode,%FPCR  |set rmode to RM
675
        fmuls   FTEN,%fp2       |compute 10^LEN
676
        bra     A6_str          |return to A6 and recompute YINT
677
test_2:
678
        fmuls   FTEN,%fp2       |compute 10^LEN
679
        fcmpx   %fp2,%fp0               |compare abs(YINT) with 10^LEN
680
        fblt    A14_st          |if less, all is ok, go to A14
681
        fbgt    fix_ex          |if greater, fix and redo
682
        fdivs   FTEN,%fp0       |if equal, divide by 10
683
        addql   #1,%d6          | and inc ILOG
684
        bras    A14_st          | and continue elsewhere
685
fix_ex:
686
        addql   #1,%d6          |increment ILOG by 1
687
        movew   #1,%d5          |set ICTR
688
        fmovel  #rm_mode,%FPCR  |set rmode to RM
689
        bra     A6_str          |return to A6 and recompute YINT
690
|
691
| Since ICTR <> 0, we have already been through one adjustment,
692
| and shouldn't have another; this is to check if abs(YINT) = 10^LEN
693
| 10^LEN is again computed using whatever table is in a1 since the
694
| value calculated cannot be inexact.
695
|
696
not_zr:
697
        fmoves  FONE,%fp2       |init fp2 to 1.0
698
        movel   %d4,%d0         |put LEN in d0
699
        clrl    %d3             |clr table index
700
z_loop:
701
        lsrl    #1,%d0          |shift next bit into carry
702
        bccs    z_next          |if zero, skip the mul
703
        fmulx   (%a1,%d3),%fp2  |mul by 10**(d3_bit_no)
704
z_next:
705
        addl    #12,%d3         |inc d3 to next pwrten table entry
706
        tstl    %d0             |test if LEN is zero
707
        bnes    z_loop          |if not, loop
708
        fabsx   %fp0            |get abs(YINT)
709
        fcmpx   %fp2,%fp0               |check if abs(YINT) = 10^LEN
710
        fbne    A14_st          |if not, skip this
711
        fdivs   FTEN,%fp0       |divide abs(YINT) by 10
712
        addql   #1,%d6          |and inc ILOG by 1
713
        addql   #1,%d4          | and inc LEN
714
        fmuls   FTEN,%fp2       | if LEN++, the get 10^^LEN
715
 
716
 
717
| A14. Convert the mantissa to bcd.
718
|      The binstr routine is used to convert the LEN digit
719
|      mantissa to bcd in memory.  The input to binstr is
720
|      to be a fraction; i.e. (mantissa)/10^LEN and adjusted
721
|      such that the decimal point is to the left of bit 63.
722
|      The bcd digits are stored in the correct position in
723
|      the final string area in memory.
724
|
725
|
726
| Register usage:
727
|       Input/Output
728
|       d0: x/LEN call to binstr - final is 0
729
|       d1: x/0
730
|       d2: x/ms 32-bits of mant of abs(YINT)
731
|       d3: x/ls 32-bits of mant of abs(YINT)
732
|       d4: LEN/Unchanged
733
|       d5: ICTR:LAMBDA/LAMBDA:ICTR
734
|       d6: ILOG
735
|       d7: k-factor/Unchanged
736
|       a0: pointer into memory for packed bcd string formation
737
|           /ptr to first mantissa byte in result string
738
|       a1: ptr to PTENxx array/Unchanged
739
|       a2: ptr to FP_SCR2(a6)/Unchanged
740
|       fp0: int portion of Y/abs(YINT) adjusted
741
|       fp1: 10^ISCALE/Unchanged
742
|       fp2: 10^LEN/Unchanged
743
|       F_SCR1:x/Work area for final result
744
|       F_SCR2:Y with original exponent/Unchanged
745
|       L_SCR1:original USER_FPCR/Unchanged
746
|       L_SCR2:first word of X packed/Unchanged
747
 
748
A14_st:
749
        fmovel  #rz_mode,%FPCR  |force rz for conversion
750
        fdivx   %fp2,%fp0               |divide abs(YINT) by 10^LEN
751
        leal    FP_SCR1(%a6),%a0
752
        fmovex  %fp0,(%a0)      |move abs(YINT)/10^LEN to memory
753
        movel   4(%a0),%d2      |move 2nd word of FP_RES to d2
754
        movel   8(%a0),%d3      |move 3rd word of FP_RES to d3
755
        clrl    4(%a0)          |zero word 2 of FP_RES
756
        clrl    8(%a0)          |zero word 3 of FP_RES
757
        movel   (%a0),%d0               |move exponent to d0
758
        swap    %d0             |put exponent in lower word
759
        beqs    no_sft          |if zero, don't shift
760
        subil   #0x3ffd,%d0     |sub bias less 2 to make fract
761
        tstl    %d0             |check if > 1
762
        bgts    no_sft          |if so, don't shift
763
        negl    %d0             |make exp positive
764
m_loop:
765
        lsrl    #1,%d2          |shift d2:d3 right, add 0s
766
        roxrl   #1,%d3          |the number of places
767
        dbf     %d0,m_loop      |given in d0
768
no_sft:
769
        tstl    %d2             |check for mantissa of zero
770
        bnes    no_zr           |if not, go on
771
        tstl    %d3             |continue zero check
772
        beqs    zer_m           |if zero, go directly to binstr
773
no_zr:
774
        clrl    %d1             |put zero in d1 for addx
775
        addil   #0x00000080,%d3 |inc at bit 7
776
        addxl   %d1,%d2         |continue inc
777
        andil   #0xffffff80,%d3 |strip off lsb not used by 882
778
zer_m:
779
        movel   %d4,%d0         |put LEN in d0 for binstr call
780
        addql   #3,%a0          |a0 points to M16 byte in result
781
        bsr     binstr          |call binstr to convert mant
782
 
783
 
784
| A15. Convert the exponent to bcd.
785
|      As in A14 above, the exp is converted to bcd and the
786
|      digits are stored in the final string.
787
|
788
|      Digits are stored in L_SCR1(a6) on return from BINDEC as:
789
|
790
|        32               16 15                0
791
|       -----------------------------------------
792
|       |  0 | e3 | e2 | e1 | e4 |  X |  X |  X |
793
|       -----------------------------------------
794
|
795
| And are moved into their proper places in FP_SCR1.  If digit e4
796
| is non-zero, OPERR is signaled.  In all cases, all 4 digits are
797
| written as specified in the 881/882 manual for packed decimal.
798
|
799
| Register usage:
800
|       Input/Output
801
|       d0: x/LEN call to binstr - final is 0
802
|       d1: x/scratch (0);shift count for final exponent packing
803
|       d2: x/ms 32-bits of exp fraction/scratch
804
|       d3: x/ls 32-bits of exp fraction
805
|       d4: LEN/Unchanged
806
|       d5: ICTR:LAMBDA/LAMBDA:ICTR
807
|       d6: ILOG
808
|       d7: k-factor/Unchanged
809
|       a0: ptr to result string/ptr to L_SCR1(a6)
810
|       a1: ptr to PTENxx array/Unchanged
811
|       a2: ptr to FP_SCR2(a6)/Unchanged
812
|       fp0: abs(YINT) adjusted/float(ILOG)
813
|       fp1: 10^ISCALE/Unchanged
814
|       fp2: 10^LEN/Unchanged
815
|       F_SCR1:Work area for final result/BCD result
816
|       F_SCR2:Y with original exponent/ILOG/10^4
817
|       L_SCR1:original USER_FPCR/Exponent digits on return from binstr
818
|       L_SCR2:first word of X packed/Unchanged
819
 
820
A15_st:
821
        tstb    BINDEC_FLG(%a6) |check for denorm
822
        beqs    not_denorm
823
        ftstx   %fp0            |test for zero
824
        fbeq    den_zero        |if zero, use k-factor or 4933
825
        fmovel  %d6,%fp0                |float ILOG
826
        fabsx   %fp0            |get abs of ILOG
827
        bras    convrt
828
den_zero:
829
        tstl    %d7             |check sign of the k-factor
830
        blts    use_ilog        |if negative, use ILOG
831
        fmoves  F4933,%fp0      |force exponent to 4933
832
        bras    convrt          |do it
833
use_ilog:
834
        fmovel  %d6,%fp0                |float ILOG
835
        fabsx   %fp0            |get abs of ILOG
836
        bras    convrt
837
not_denorm:
838
        ftstx   %fp0            |test for zero
839
        fbne    not_zero        |if zero, force exponent
840
        fmoves  FONE,%fp0       |force exponent to 1
841
        bras    convrt          |do it
842
not_zero:
843
        fmovel  %d6,%fp0                |float ILOG
844
        fabsx   %fp0            |get abs of ILOG
845
convrt:
846
        fdivx   24(%a1),%fp0    |compute ILOG/10^4
847
        fmovex  %fp0,FP_SCR2(%a6)       |store fp0 in memory
848
        movel   4(%a2),%d2      |move word 2 to d2
849
        movel   8(%a2),%d3      |move word 3 to d3
850
        movew   (%a2),%d0               |move exp to d0
851
        beqs    x_loop_fin      |if zero, skip the shift
852
        subiw   #0x3ffd,%d0     |subtract off bias
853
        negw    %d0             |make exp positive
854
x_loop:
855
        lsrl    #1,%d2          |shift d2:d3 right
856
        roxrl   #1,%d3          |the number of places
857
        dbf     %d0,x_loop      |given in d0
858
x_loop_fin:
859
        clrl    %d1             |put zero in d1 for addx
860
        addil   #0x00000080,%d3 |inc at bit 6
861
        addxl   %d1,%d2         |continue inc
862
        andil   #0xffffff80,%d3 |strip off lsb not used by 882
863
        movel   #4,%d0          |put 4 in d0 for binstr call
864
        leal    L_SCR1(%a6),%a0 |a0 is ptr to L_SCR1 for exp digits
865
        bsr     binstr          |call binstr to convert exp
866
        movel   L_SCR1(%a6),%d0 |load L_SCR1 lword to d0
867
        movel   #12,%d1         |use d1 for shift count
868
        lsrl    %d1,%d0         |shift d0 right by 12
869
        bfins   %d0,FP_SCR1(%a6){#4:#12} |put e3:e2:e1 in FP_SCR1
870
        lsrl    %d1,%d0         |shift d0 right by 12
871
        bfins   %d0,FP_SCR1(%a6){#16:#4} |put e4 in FP_SCR1
872
        tstb    %d0             |check if e4 is zero
873
        beqs    A16_st          |if zero, skip rest
874
        orl     #opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR
875
 
876
 
877
| A16. Write sign bits to final string.
878
|          Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG).
879
|
880
| Register usage:
881
|       Input/Output
882
|       d0: x/scratch - final is x
883
|       d2: x/x
884
|       d3: x/x
885
|       d4: LEN/Unchanged
886
|       d5: ICTR:LAMBDA/LAMBDA:ICTR
887
|       d6: ILOG/ILOG adjusted
888
|       d7: k-factor/Unchanged
889
|       a0: ptr to L_SCR1(a6)/Unchanged
890
|       a1: ptr to PTENxx array/Unchanged
891
|       a2: ptr to FP_SCR2(a6)/Unchanged
892
|       fp0: float(ILOG)/Unchanged
893
|       fp1: 10^ISCALE/Unchanged
894
|       fp2: 10^LEN/Unchanged
895
|       F_SCR1:BCD result with correct signs
896
|       F_SCR2:ILOG/10^4
897
|       L_SCR1:Exponent digits on return from binstr
898
|       L_SCR2:first word of X packed/Unchanged
899
 
900
A16_st:
901
        clrl    %d0             |clr d0 for collection of signs
902
        andib   #0x0f,FP_SCR1(%a6) |clear first nibble of FP_SCR1
903
        tstl    L_SCR2(%a6)     |check sign of original mantissa
904
        bges    mant_p          |if pos, don't set SM
905
        moveql  #2,%d0          |move 2 in to d0 for SM
906
mant_p:
907
        tstl    %d6             |check sign of ILOG
908
        bges    wr_sgn          |if pos, don't set SE
909
        addql   #1,%d0          |set bit 0 in d0 for SE
910
wr_sgn:
911
        bfins   %d0,FP_SCR1(%a6){#0:#2} |insert SM and SE into FP_SCR1
912
 
913
| Clean up and restore all registers used.
914
 
915
        fmovel  #0,%FPSR                |clear possible inex2/ainex bits
916
        fmovemx (%a7)+,%fp0-%fp2
917
        moveml  (%a7)+,%d2-%d7/%a2
918
        rts
919
 
920
        |end

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.