1 |
199 |
simons |
/*
|
2 |
|
|
* File Name:
|
3 |
|
|
* defxx.c
|
4 |
|
|
*
|
5 |
|
|
* Copyright Information:
|
6 |
|
|
* Copyright Digital Equipment Corporation 1996.
|
7 |
|
|
*
|
8 |
|
|
* This software may be used and distributed according to the terms of
|
9 |
|
|
* the GNU Public License, incorporated herein by reference.
|
10 |
|
|
*
|
11 |
|
|
* Abstract:
|
12 |
|
|
* A Linux device driver supporting the Digital Equipment Corporation
|
13 |
|
|
* FDDI EISA and PCI controller families. Supported adapters include:
|
14 |
|
|
*
|
15 |
|
|
* DEC FDDIcontroller/EISA (DEFEA)
|
16 |
|
|
* DEC FDDIcontroller/PCI (DEFPA)
|
17 |
|
|
*
|
18 |
|
|
* Maintainers:
|
19 |
|
|
* LVS Lawrence V. Stefani
|
20 |
|
|
*
|
21 |
|
|
* Contact:
|
22 |
|
|
* The author may be reached at:
|
23 |
|
|
*
|
24 |
|
|
* Inet: stefani@lkg.dec.com
|
25 |
|
|
* Mail: Digital Equipment Corporation
|
26 |
|
|
* 550 King Street
|
27 |
|
|
* M/S: LKG1-3/M07
|
28 |
|
|
* Littleton, MA 01460
|
29 |
|
|
*
|
30 |
|
|
* Credits:
|
31 |
|
|
* I'd like to thank Patricia Cross for helping me get started with
|
32 |
|
|
* Linux, David Davies for a lot of help upgrading and configuring
|
33 |
|
|
* my development system and for answering many OS and driver
|
34 |
|
|
* development questions, and Alan Cox for recommendations and
|
35 |
|
|
* integration help on getting FDDI support into Linux. LVS
|
36 |
|
|
*
|
37 |
|
|
* Driver Architecture:
|
38 |
|
|
* The driver architecture is largely based on previous driver work
|
39 |
|
|
* for other operating systems. The upper edge interface and
|
40 |
|
|
* functions were largely taken from existing Linux device drivers
|
41 |
|
|
* such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
|
42 |
|
|
* driver.
|
43 |
|
|
*
|
44 |
|
|
* Adapter Probe -
|
45 |
|
|
* The driver scans for supported EISA adapters by reading the
|
46 |
|
|
* SLOT ID register for each EISA slot and making a match
|
47 |
|
|
* against the expected value. The supported PCI adapters are
|
48 |
|
|
* discovered using successive calls to pcibios_find_device.
|
49 |
|
|
* The first time the probe routine is called, all supported
|
50 |
|
|
* devices are discovered and initialized. The adapters aren't
|
51 |
|
|
* brought up to an operational state until the open routine is
|
52 |
|
|
* called.
|
53 |
|
|
*
|
54 |
|
|
* Bus-Specific Initialization -
|
55 |
|
|
* This driver currently supports both EISA and PCI controller
|
56 |
|
|
* families. While the custom DMA chip and FDDI logic is similar
|
57 |
|
|
* or identical, the bus logic is very different. After
|
58 |
|
|
* initialization, the only bus-specific differences is in how the
|
59 |
|
|
* driver enables and disables interrupts. Other than that, the
|
60 |
|
|
* run-time critical code behaves the same on both families.
|
61 |
|
|
* It's important to note that both adapter families are configured
|
62 |
|
|
* to I/O map, rather than memory map, the adapter registers.
|
63 |
|
|
*
|
64 |
|
|
* Driver Open/Close -
|
65 |
|
|
* In the driver open routine, the driver ISR (interrupt service
|
66 |
|
|
* routine) is registered and the adapter is brought to an
|
67 |
|
|
* operational state. In the driver close routine, the opposite
|
68 |
|
|
* occurs; the driver ISR is deregistered and the adapter is
|
69 |
|
|
* brought to a safe, but closed state. Users may use consecutive
|
70 |
|
|
* commands to bring the adapter up and down as in the following
|
71 |
|
|
* example:
|
72 |
|
|
* ifconfig fddi0 up
|
73 |
|
|
* ifconfig fddi0 down
|
74 |
|
|
* ifconfig fddi0 up
|
75 |
|
|
*
|
76 |
|
|
* Driver Shutdown -
|
77 |
|
|
* Apparently, there is no shutdown or halt routine support under
|
78 |
|
|
* Linux. This routine would be called during "reboot" or
|
79 |
|
|
* "shutdown" to allow the driver to place the adapter in a safe
|
80 |
|
|
* state before a warm reboot occurs. To be really safe, the user
|
81 |
|
|
* should close the adapter before shutdown (eg. ifconfig fddi0 down)
|
82 |
|
|
* to ensure that the adapter DMA engine is taken off-line. However,
|
83 |
|
|
* the current driver code anticipates this problem and always issues
|
84 |
|
|
* a soft reset of the adapter at the beginning of driver initialization.
|
85 |
|
|
* A future driver enhancement in this area may occur in 2.1.X where
|
86 |
|
|
* Alan indicated that a shutdown handler may be implemented.
|
87 |
|
|
*
|
88 |
|
|
* Interrupt Service Routine -
|
89 |
|
|
* The driver supports shared interrupts, so the ISR is registered for
|
90 |
|
|
* each board with the appropriate flag and the pointer to that board's
|
91 |
|
|
* device structure. This provides the context during interrupt
|
92 |
|
|
* processing to support shared interrupts and multiple boards.
|
93 |
|
|
*
|
94 |
|
|
* Interrupt enabling/disabling can occur at many levels. At the host
|
95 |
|
|
* end, you can disable system interrupts, or disable interrupts at the
|
96 |
|
|
* PIC (on Intel systems). Across the bus, both EISA and PCI adapters
|
97 |
|
|
* have a bus-logic chip interrupt enable/disable as well as a DMA
|
98 |
|
|
* controller interrupt enable/disable.
|
99 |
|
|
*
|
100 |
|
|
* The driver currently enables and disables adapter interrupts at the
|
101 |
|
|
* bus-logic chip and assumes that Linux will take care of clearing or
|
102 |
|
|
* acknowledging any host-based interrupt chips.
|
103 |
|
|
*
|
104 |
|
|
* Control Functions -
|
105 |
|
|
* Control functions are those used to support functions such as adding
|
106 |
|
|
* or deleting multicast addresses, enabling or disabling packet
|
107 |
|
|
* reception filters, or other custom/proprietary commands. Presently,
|
108 |
|
|
* the driver supports the "get statistics", "set multicast list", and
|
109 |
|
|
* "set mac address" functions defined by Linux. A list of possible
|
110 |
|
|
* enhancements include:
|
111 |
|
|
*
|
112 |
|
|
* - Custom ioctl interface for executing port interface commands
|
113 |
|
|
* - Custom ioctl interface for adding unicast addresses to
|
114 |
|
|
* adapter CAM (to support bridge functions).
|
115 |
|
|
* - Custom ioctl interface for supporting firmware upgrades.
|
116 |
|
|
*
|
117 |
|
|
* Hardware (port interface) Support Routines -
|
118 |
|
|
* The driver function names that start with "dfx_hw_" represent
|
119 |
|
|
* low-level port interface routines that are called frequently. They
|
120 |
|
|
* include issuing a DMA or port control command to the adapter,
|
121 |
|
|
* resetting the adapter, or reading the adapter state. Since the
|
122 |
|
|
* driver initialization and run-time code must make calls into the
|
123 |
|
|
* port interface, these routines were written to be as generic and
|
124 |
|
|
* usable as possible.
|
125 |
|
|
*
|
126 |
|
|
* Receive Path -
|
127 |
|
|
* The adapter DMA engine supports a 256 entry receive descriptor block
|
128 |
|
|
* of which up to 255 entries can be used at any given time. The
|
129 |
|
|
* architecture is a standard producer, consumer, completion model in
|
130 |
|
|
* which the driver "produces" receive buffers to the adapter, the
|
131 |
|
|
* adapter "consumes" the receive buffers by DMAing incoming packet data,
|
132 |
|
|
* and the driver "completes" the receive buffers by servicing the
|
133 |
|
|
* incoming packet, then "produces" a new buffer and starts the cycle
|
134 |
|
|
* again. Receive buffers can be fragmented in up to 16 fragments
|
135 |
|
|
* (descriptor entries). For simplicity, this driver posts
|
136 |
|
|
* single-fragment receive buffers of 4608 bytes, then allocates a
|
137 |
|
|
* sk_buff, copies the data, then reposts the buffer. To reduce CPU
|
138 |
|
|
* utilization, a better approach would be to pass up the receive
|
139 |
|
|
* buffer (no extra copy) then allocate and post a replacement buffer.
|
140 |
|
|
* This is a performance enhancement that should be looked into at
|
141 |
|
|
* some point.
|
142 |
|
|
*
|
143 |
|
|
* Transmit Path -
|
144 |
|
|
* Like the receive path, the adapter DMA engine supports a 256 entry
|
145 |
|
|
* transmit descriptor block of which up to 255 entries can be used at
|
146 |
|
|
* any given time. Transmit buffers can be fragmented in up to 255
|
147 |
|
|
* fragments (descriptor entries). This driver always posts one
|
148 |
|
|
* fragment per transmit packet request.
|
149 |
|
|
*
|
150 |
|
|
* The fragment contains the entire packet from FC to end of data.
|
151 |
|
|
* Before posting the buffer to the adapter, the driver sets a three-byte
|
152 |
|
|
* packet request header (PRH) which is required by the Motorola MAC chip
|
153 |
|
|
* used on the adapters. The PRH tells the MAC the type of token to
|
154 |
|
|
* receive/send, whether or not to generate and append the CRC, whether
|
155 |
|
|
* synchronous or asynchronous framing is used, etc. Since the PRH
|
156 |
|
|
* definition is not necessarily consistent across all FDDI chipsets,
|
157 |
|
|
* the driver, rather than the common FDDI packet handler routines,
|
158 |
|
|
* sets these bytes.
|
159 |
|
|
*
|
160 |
|
|
* To reduce the amount of descriptor fetches needed per transmit request,
|
161 |
|
|
* the driver takes advantage of the fact that there are at least three
|
162 |
|
|
* bytes available before the skb->data field on the outgoing transmit
|
163 |
|
|
* request. This is guaranteed by having fddi_setup() in net_init.c set
|
164 |
|
|
* dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest
|
165 |
|
|
* header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad"
|
166 |
|
|
* bytes which we'll use to store the PRH.
|
167 |
|
|
*
|
168 |
|
|
* There's a subtle advantage to adding these pad bytes to the
|
169 |
|
|
* hard_header_len, it ensures that the data portion of the packet for
|
170 |
|
|
* an 802.2 SNAP frame is longword aligned. Other FDDI driver
|
171 |
|
|
* implementations may not need the extra padding and can start copying
|
172 |
|
|
* or DMAing directly from the FC byte which starts at skb->data. Should
|
173 |
|
|
* another driver implementation need ADDITIONAL padding, the net_init.c
|
174 |
|
|
* module should be updated and dev->hard_header_len should be increased.
|
175 |
|
|
* NOTE: To maintain the alignment on the data portion of the packet,
|
176 |
|
|
* dev->hard_header_len should always be evenly divisible by 4 and at
|
177 |
|
|
* least 24 bytes in size.
|
178 |
|
|
*
|
179 |
|
|
* Modification History:
|
180 |
|
|
* Date Name Description
|
181 |
|
|
* 16-Aug-96 LVS Created.
|
182 |
|
|
* 20-Aug-96 LVS Updated dfx_probe so that version information
|
183 |
|
|
* string is only displayed if 1 or more cards are
|
184 |
|
|
* found. Changed dfx_rcv_queue_process to copy
|
185 |
|
|
* 3 NULL bytes before FC to ensure that data is
|
186 |
|
|
* longword aligned in receive buffer.
|
187 |
|
|
* 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable
|
188 |
|
|
* LLC group promiscuous mode if multicast list
|
189 |
|
|
* is too large. LLC individual/group promiscuous
|
190 |
|
|
* mode is now disabled if IFF_PROMISC flag not set.
|
191 |
|
|
* dfx_xmt_queue_pkt no longer checks for NULL skb
|
192 |
|
|
* on Alan Cox recommendation. Added node address
|
193 |
|
|
* override support.
|
194 |
|
|
* 12-Sep-96 LVS Reset current address to factory address during
|
195 |
|
|
* device open. Updated transmit path to post a
|
196 |
|
|
* single fragment which includes PRH->end of data.
|
197 |
|
|
*/
|
198 |
|
|
|
199 |
|
|
/* Version information string - should be updated prior to each new release!!! */
|
200 |
|
|
|
201 |
|
|
static const char *version = "defxx.c:v1.04 09/16/96 Lawrence V. Stefani (stefani@lkg.dec.com)\n";
|
202 |
|
|
|
203 |
|
|
/* Include files */
|
204 |
|
|
|
205 |
|
|
#include <linux/module.h>
|
206 |
|
|
|
207 |
|
|
#include <linux/kernel.h>
|
208 |
|
|
#include <linux/sched.h>
|
209 |
|
|
#include <linux/string.h>
|
210 |
|
|
#include <linux/ptrace.h>
|
211 |
|
|
#include <linux/errno.h>
|
212 |
|
|
#include <linux/ioport.h>
|
213 |
|
|
#include <linux/malloc.h>
|
214 |
|
|
#include <linux/interrupt.h>
|
215 |
|
|
#include <linux/pci.h>
|
216 |
|
|
#include <linux/bios32.h>
|
217 |
|
|
#include <linux/delay.h>
|
218 |
|
|
#include <asm/byteorder.h>
|
219 |
|
|
#include <asm/bitops.h>
|
220 |
|
|
#include <asm/io.h>
|
221 |
|
|
|
222 |
|
|
#include <linux/netdevice.h>
|
223 |
|
|
#include <linux/fddidevice.h>
|
224 |
|
|
#include <linux/skbuff.h>
|
225 |
|
|
|
226 |
|
|
#include "defxx.h"
|
227 |
|
|
|
228 |
|
|
/* Define global routines */
|
229 |
|
|
|
230 |
|
|
int dfx_probe(struct device *dev);
|
231 |
|
|
|
232 |
|
|
/* Define module-wide (static) routines */
|
233 |
|
|
|
234 |
|
|
static struct device *dfx_alloc_device(struct device *dev, u16 iobase);
|
235 |
|
|
|
236 |
|
|
static void dfx_bus_init(struct device *dev);
|
237 |
|
|
static void dfx_bus_config_check(DFX_board_t *bp);
|
238 |
|
|
|
239 |
|
|
static int dfx_driver_init(struct device *dev);
|
240 |
|
|
static int dfx_adap_init(DFX_board_t *bp);
|
241 |
|
|
|
242 |
|
|
static int dfx_open(struct device *dev);
|
243 |
|
|
static int dfx_close(struct device *dev);
|
244 |
|
|
|
245 |
|
|
static void dfx_int_pr_halt_id(DFX_board_t *bp);
|
246 |
|
|
static void dfx_int_type_0_process(DFX_board_t *bp);
|
247 |
|
|
static void dfx_int_common(DFX_board_t *bp);
|
248 |
|
|
static void dfx_interrupt(int irq, void *dev_id, struct pt_regs *regs);
|
249 |
|
|
|
250 |
|
|
static struct enet_statistics *dfx_ctl_get_stats(struct device *dev);
|
251 |
|
|
static void dfx_ctl_set_multicast_list(struct device *dev);
|
252 |
|
|
static int dfx_ctl_set_mac_address(struct device *dev, void *addr);
|
253 |
|
|
static int dfx_ctl_update_cam(DFX_board_t *bp);
|
254 |
|
|
static int dfx_ctl_update_filters(DFX_board_t *bp);
|
255 |
|
|
|
256 |
|
|
static int dfx_hw_dma_cmd_req(DFX_board_t *bp);
|
257 |
|
|
static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
|
258 |
|
|
static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
|
259 |
|
|
static int dfx_hw_adap_state_rd(DFX_board_t *bp);
|
260 |
|
|
static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
|
261 |
|
|
|
262 |
|
|
static void dfx_rcv_init(DFX_board_t *bp);
|
263 |
|
|
static void dfx_rcv_queue_process(DFX_board_t *bp);
|
264 |
|
|
|
265 |
|
|
static int dfx_xmt_queue_pkt(struct sk_buff *skb, struct device *dev);
|
266 |
|
|
static void dfx_xmt_done(DFX_board_t *bp);
|
267 |
|
|
static void dfx_xmt_flush(DFX_board_t *bp);
|
268 |
|
|
|
269 |
|
|
/* Define module-wide (static) variables */
|
270 |
|
|
|
271 |
|
|
static int num_boards = 0; /* total number of adapters configured */
|
272 |
|
|
static int already_probed = 0; /* have we already entered dfx_probe? */
|
273 |
|
|
|
274 |
|
|
|
275 |
|
|
/*
|
276 |
|
|
* =======================
|
277 |
|
|
* = dfx_port_write_byte =
|
278 |
|
|
* = dfx_port_read_byte =
|
279 |
|
|
* = dfx_port_write_long =
|
280 |
|
|
* = dfx_port_read_long =
|
281 |
|
|
* =======================
|
282 |
|
|
*
|
283 |
|
|
* Overview:
|
284 |
|
|
* Routines for reading and writing values from/to adapter
|
285 |
|
|
*
|
286 |
|
|
* Returns:
|
287 |
|
|
* None
|
288 |
|
|
*
|
289 |
|
|
* Arguments:
|
290 |
|
|
* bp - pointer to board information
|
291 |
|
|
* offset - register offset from base I/O address
|
292 |
|
|
* data - for dfx_port_write_byte and dfx_port_write_long, this
|
293 |
|
|
* is a value to write.
|
294 |
|
|
* for dfx_port_read_byte and dfx_port_read_byte, this
|
295 |
|
|
* is a pointer to store the read value.
|
296 |
|
|
*
|
297 |
|
|
* Functional Description:
|
298 |
|
|
* These routines perform the correct operation to read or write
|
299 |
|
|
* the adapter register.
|
300 |
|
|
*
|
301 |
|
|
* EISA port block base addresses are based on the slot number in which the
|
302 |
|
|
* controller is installed. For example, if the EISA controller is installed
|
303 |
|
|
* in slot 4, the port block base address is 0x4000. If the controller is
|
304 |
|
|
* installed in slot 2, the port block base address is 0x2000, and so on.
|
305 |
|
|
* This port block can be used to access PDQ, ESIC, and DEFEA on-board
|
306 |
|
|
* registers using the register offsets defined in DEFXX.H.
|
307 |
|
|
*
|
308 |
|
|
* PCI port block base addresses are assigned by the PCI BIOS or system
|
309 |
|
|
* firmware. There is one 128 byte port block which can be accessed. It
|
310 |
|
|
* allows for I/O mapping of both PDQ and PFI registers using the register
|
311 |
|
|
* offsets defined in DEFXX.H.
|
312 |
|
|
*
|
313 |
|
|
* Return Codes:
|
314 |
|
|
* None
|
315 |
|
|
*
|
316 |
|
|
* Assumptions:
|
317 |
|
|
* bp->base_addr is a valid base I/O address for this adapter.
|
318 |
|
|
* offset is a valid register offset for this adapter.
|
319 |
|
|
*
|
320 |
|
|
* Side Effects:
|
321 |
|
|
* Rather than produce macros for these functions, these routines
|
322 |
|
|
* are defined using "inline" to ensure that the compiler will
|
323 |
|
|
* generate inline code and not waste a procedure call and return.
|
324 |
|
|
* This provides all the benefits of macros, but with the
|
325 |
|
|
* advantage of strict data type checking.
|
326 |
|
|
*/
|
327 |
|
|
|
328 |
|
|
static inline void dfx_port_write_byte(
|
329 |
|
|
DFX_board_t *bp,
|
330 |
|
|
int offset,
|
331 |
|
|
u8 data
|
332 |
|
|
)
|
333 |
|
|
|
334 |
|
|
{
|
335 |
|
|
u16 port = bp->base_addr + offset;
|
336 |
|
|
|
337 |
|
|
outb(data, port);
|
338 |
|
|
return;
|
339 |
|
|
}
|
340 |
|
|
|
341 |
|
|
static inline void dfx_port_read_byte(
|
342 |
|
|
DFX_board_t *bp,
|
343 |
|
|
int offset,
|
344 |
|
|
u8 *data
|
345 |
|
|
)
|
346 |
|
|
|
347 |
|
|
{
|
348 |
|
|
u16 port = bp->base_addr + offset;
|
349 |
|
|
|
350 |
|
|
*data = inb(port);
|
351 |
|
|
return;
|
352 |
|
|
}
|
353 |
|
|
|
354 |
|
|
static inline void dfx_port_write_long(
|
355 |
|
|
DFX_board_t *bp,
|
356 |
|
|
int offset,
|
357 |
|
|
u32 data
|
358 |
|
|
)
|
359 |
|
|
|
360 |
|
|
{
|
361 |
|
|
u16 port = bp->base_addr + offset;
|
362 |
|
|
|
363 |
|
|
outl(data, port);
|
364 |
|
|
return;
|
365 |
|
|
}
|
366 |
|
|
|
367 |
|
|
static inline void dfx_port_read_long(
|
368 |
|
|
DFX_board_t *bp,
|
369 |
|
|
int offset,
|
370 |
|
|
u32 *data
|
371 |
|
|
)
|
372 |
|
|
|
373 |
|
|
{
|
374 |
|
|
u16 port = bp->base_addr + offset;
|
375 |
|
|
|
376 |
|
|
*data = inl(port);
|
377 |
|
|
return;
|
378 |
|
|
}
|
379 |
|
|
|
380 |
|
|
|
381 |
|
|
/*
|
382 |
|
|
* =============
|
383 |
|
|
* = dfx_probe =
|
384 |
|
|
* =============
|
385 |
|
|
*
|
386 |
|
|
* Overview:
|
387 |
|
|
* Probes for supported FDDI EISA and PCI controllers
|
388 |
|
|
*
|
389 |
|
|
* Returns:
|
390 |
|
|
* Condition code
|
391 |
|
|
*
|
392 |
|
|
* Arguments:
|
393 |
|
|
* dev - pointer to device information
|
394 |
|
|
*
|
395 |
|
|
* Functional Description:
|
396 |
|
|
* This routine is called by the OS for each FDDI device name (fddi0,
|
397 |
|
|
* fddi1,...,fddi6, fddi7) specified in drivers/net/Space.c. Since
|
398 |
|
|
* the DEFXX.C driver currently does not support being loaded as a
|
399 |
|
|
* module, dfx_probe() will initialize all devices the first time
|
400 |
|
|
* it is called.
|
401 |
|
|
*
|
402 |
|
|
* Let's say that dfx_probe() is getting called to initialize fddi0.
|
403 |
|
|
* Furthermore, let's say there are three supported controllers in the
|
404 |
|
|
* system. Before dfx_probe() leaves, devices fddi0, fddi1, and fddi2
|
405 |
|
|
* will be initialized and a global flag will be set to indicate that
|
406 |
|
|
* dfx_probe() has already been called.
|
407 |
|
|
*
|
408 |
|
|
* However...the OS doesn't know that we've already initialized
|
409 |
|
|
* devices fddi1 and fddi2 so dfx_probe() gets called again and again
|
410 |
|
|
* until it reaches the end of the device list for FDDI (presently,
|
411 |
|
|
* fddi7). It's important that the driver "pretend" to probe for
|
412 |
|
|
* devices fddi1 and fddi2 and return success. Devices fddi3
|
413 |
|
|
* through fddi7 will return failure since they weren't initialized.
|
414 |
|
|
*
|
415 |
|
|
* This algorithm seems to work for the time being. As other FDDI
|
416 |
|
|
* drivers are written for Linux, a more generic approach (perhaps
|
417 |
|
|
* similar to the Ethernet card approach) may need to be implemented.
|
418 |
|
|
*
|
419 |
|
|
* Return Codes:
|
420 |
|
|
* 0 - This device (fddi0, fddi1, etc) configured successfully
|
421 |
|
|
* -ENODEV - No devices present, or no Digital FDDI EISA or PCI device
|
422 |
|
|
* present for this device name
|
423 |
|
|
*
|
424 |
|
|
* Assumptions:
|
425 |
|
|
* For the time being, DEFXX.C is the only FDDI driver under Linux.
|
426 |
|
|
* As this assumption changes, this routine will likely be impacted.
|
427 |
|
|
* Also, it is assumed that no more than eight (8) FDDI controllers
|
428 |
|
|
* will be configured in the system (fddi0 through fddi7). This
|
429 |
|
|
* routine will not allocate new device structures. If more than
|
430 |
|
|
* eight FDDI controllers need to be configured, drivers/net/Space.c
|
431 |
|
|
* should be updated as well as the DFX_MAX_NUM_BOARDS constant in
|
432 |
|
|
* DEFXX.H.
|
433 |
|
|
*
|
434 |
|
|
* Side Effects:
|
435 |
|
|
* Device structures for FDDI adapters (fddi0, fddi1, etc) are
|
436 |
|
|
* initialized and the board resources are read and stored in
|
437 |
|
|
* the device structure.
|
438 |
|
|
*/
|
439 |
|
|
|
440 |
|
|
int dfx_probe(
|
441 |
|
|
struct device *dev
|
442 |
|
|
)
|
443 |
|
|
|
444 |
|
|
{
|
445 |
|
|
int i; /* used in for loops */
|
446 |
|
|
int version_disp; /* was version info string already displayed? */
|
447 |
|
|
int port_len; /* length of port address range (in bytes) */
|
448 |
|
|
u8 pci_bus; /* PCI bus number (0-255) */
|
449 |
|
|
u8 pci_dev_fun; /* PCI device and function numbers (0-255) */
|
450 |
|
|
u16 port; /* temporary I/O (port) address */
|
451 |
|
|
u16 command; /* PCI Configuration space Command register val */
|
452 |
|
|
u32 slot_id; /* EISA hardware (slot) ID read from adapter */
|
453 |
|
|
DFX_board_t *bp; /* board pointer */
|
454 |
|
|
|
455 |
|
|
DBG_printk("In dfx_probe...\n");
|
456 |
|
|
|
457 |
|
|
/*
|
458 |
|
|
* Verify whether we're going through dfx_probe() again
|
459 |
|
|
*
|
460 |
|
|
* If so, see if we're going through for a subsequent fddi device that
|
461 |
|
|
* we've already initialized. If we are, return success (0). If not,
|
462 |
|
|
* return failure (-ENODEV).
|
463 |
|
|
*/
|
464 |
|
|
|
465 |
|
|
version_disp = 0; /* default to version string not displayed */
|
466 |
|
|
if (already_probed)
|
467 |
|
|
{
|
468 |
|
|
DBG_printk("Already entered dfx_probe\n");
|
469 |
|
|
if (dev != NULL)
|
470 |
|
|
if ((strncmp(dev->name, "fddi", 4) == 0) && (dev->base_addr != 0))
|
471 |
|
|
{
|
472 |
|
|
DBG_printk("In dfx_probe for fddi adapter (%s) we've already initialized it, so return success\n", dev->name);
|
473 |
|
|
return(0);
|
474 |
|
|
}
|
475 |
|
|
return(-ENODEV);
|
476 |
|
|
}
|
477 |
|
|
already_probed = 1; /* set global flag */
|
478 |
|
|
|
479 |
|
|
/* Scan for FDDI EISA controllers */
|
480 |
|
|
|
481 |
|
|
for (i=0; i < DFX_MAX_EISA_SLOTS; i++) /* only scan for up to 16 EISA slots */
|
482 |
|
|
{
|
483 |
|
|
port = (i << 12) + PI_ESIC_K_SLOT_ID; /* port = I/O address for reading slot ID */
|
484 |
|
|
slot_id = inl(port); /* read EISA HW (slot) ID */
|
485 |
|
|
if ((slot_id & 0xF0FFFFFF) == DEFEA_PRODUCT_ID)
|
486 |
|
|
{
|
487 |
|
|
if (!version_disp) /* display version info if adapter is found */
|
488 |
|
|
{
|
489 |
|
|
version_disp = 1; /* set display flag to TRUE so that */
|
490 |
|
|
printk(version); /* we only display this string ONCE */
|
491 |
|
|
}
|
492 |
|
|
|
493 |
|
|
port = (i << 12); /* recalc base addr */
|
494 |
|
|
|
495 |
|
|
/* Verify port address range is not already being used */
|
496 |
|
|
|
497 |
|
|
port_len = PI_ESIC_K_CSR_IO_LEN;
|
498 |
|
|
if (check_region(port, port_len) == 0)
|
499 |
|
|
{
|
500 |
|
|
/* Allocate a new device structure for this adapter */
|
501 |
|
|
|
502 |
|
|
dev = dfx_alloc_device(dev, port);
|
503 |
|
|
if (dev != NULL)
|
504 |
|
|
{
|
505 |
|
|
/* Initialize board structure with bus-specific info */
|
506 |
|
|
|
507 |
|
|
bp = (DFX_board_t *) dev->priv;
|
508 |
|
|
bp->dev = dev;
|
509 |
|
|
bp->bus_type = DFX_BUS_TYPE_EISA;
|
510 |
|
|
if (dfx_driver_init(dev) == DFX_K_SUCCESS)
|
511 |
|
|
num_boards++; /* only increment global board count on success */
|
512 |
|
|
else
|
513 |
|
|
dev->base_addr = 0; /* clear port address field in device structure on failure */
|
514 |
|
|
}
|
515 |
|
|
}
|
516 |
|
|
else
|
517 |
|
|
printk("I/O range allocated to adapter (0x%X-0x%X) is already being used!\n", port, (port + port_len-1));
|
518 |
|
|
}
|
519 |
|
|
}
|
520 |
|
|
|
521 |
|
|
/* Scan for FDDI PCI controllers */
|
522 |
|
|
|
523 |
|
|
if (pcibios_present()) /* is PCI BIOS even present? */
|
524 |
|
|
for (i=0; i < DFX_MAX_NUM_BOARDS; i++) /* scan for up to 8 PCI cards */
|
525 |
|
|
if (pcibios_find_device(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI, i, &pci_bus, &pci_dev_fun) == 0)
|
526 |
|
|
{
|
527 |
|
|
if (!version_disp) /* display version info if adapter is found */
|
528 |
|
|
{
|
529 |
|
|
version_disp = 1; /* set display flag to TRUE so that */
|
530 |
|
|
printk(version); /* we only display this string ONCE */
|
531 |
|
|
}
|
532 |
|
|
|
533 |
|
|
/* Verify that I/O enable bit is set (PCI slot is enabled) */
|
534 |
|
|
|
535 |
|
|
pcibios_read_config_word(pci_bus, pci_dev_fun, PCI_COMMAND, &command);
|
536 |
|
|
if ((command & PCI_COMMAND_IO) == 0)
|
537 |
|
|
printk("I/O enable bit not set! Verify that slot is enabled\n");
|
538 |
|
|
else
|
539 |
|
|
{
|
540 |
|
|
/* Turn off memory mapped space and enable mastering */
|
541 |
|
|
|
542 |
|
|
command |= PCI_COMMAND_MASTER;
|
543 |
|
|
command &= ~PCI_COMMAND_MEMORY;
|
544 |
|
|
pcibios_write_config_word(pci_bus, pci_dev_fun, PCI_COMMAND, command);
|
545 |
|
|
|
546 |
|
|
/* Read I/O base address from PCI Configuration Space */
|
547 |
|
|
|
548 |
|
|
pcibios_read_config_word(pci_bus, pci_dev_fun, PCI_BASE_ADDRESS_1, &port);
|
549 |
|
|
port &= PCI_BASE_ADDRESS_IO_MASK; /* clear I/O bit (bit 0) */
|
550 |
|
|
|
551 |
|
|
/* Verify port address range is not already being used */
|
552 |
|
|
|
553 |
|
|
port_len = PFI_K_CSR_IO_LEN;
|
554 |
|
|
if (check_region(port, port_len) == 0)
|
555 |
|
|
{
|
556 |
|
|
/* Allocate a new device structure for this adapter */
|
557 |
|
|
|
558 |
|
|
dev = dfx_alloc_device(dev, port);
|
559 |
|
|
if (dev != NULL)
|
560 |
|
|
{
|
561 |
|
|
/* Initialize board structure with bus-specific info */
|
562 |
|
|
|
563 |
|
|
bp = (DFX_board_t *) dev->priv;
|
564 |
|
|
bp->dev = dev;
|
565 |
|
|
bp->bus_type = DFX_BUS_TYPE_PCI;
|
566 |
|
|
bp->pci_bus = pci_bus;
|
567 |
|
|
bp->pci_dev_fun = pci_dev_fun;
|
568 |
|
|
if (dfx_driver_init(dev) == DFX_K_SUCCESS)
|
569 |
|
|
num_boards++; /* only increment global board count on success */
|
570 |
|
|
else
|
571 |
|
|
dev->base_addr = 0; /* clear port address field in device structure on failure */
|
572 |
|
|
}
|
573 |
|
|
}
|
574 |
|
|
else
|
575 |
|
|
printk("I/O range allocated to adapter (0x%X-0x%X) is already being used!\n", port, (port + port_len-1));
|
576 |
|
|
}
|
577 |
|
|
}
|
578 |
|
|
|
579 |
|
|
/*
|
580 |
|
|
* If we're at this point we're going through dfx_probe() for the first
|
581 |
|
|
* time. Return success (0) if we've initialized 1 or more boards.
|
582 |
|
|
* Otherwise, return failure (-ENODEV).
|
583 |
|
|
*/
|
584 |
|
|
|
585 |
|
|
if (num_boards > 0)
|
586 |
|
|
return(0);
|
587 |
|
|
else
|
588 |
|
|
return(-ENODEV);
|
589 |
|
|
}
|
590 |
|
|
|
591 |
|
|
|
592 |
|
|
/*
|
593 |
|
|
* ====================
|
594 |
|
|
* = dfx_alloc_device =
|
595 |
|
|
* ====================
|
596 |
|
|
*
|
597 |
|
|
* Overview:
|
598 |
|
|
* Allocate new device structure for adapter
|
599 |
|
|
*
|
600 |
|
|
* Returns:
|
601 |
|
|
* Pointer to device structure for this adapter or NULL if
|
602 |
|
|
* none are available or could not allocate memory for
|
603 |
|
|
* private board structure.
|
604 |
|
|
*
|
605 |
|
|
* Arguments:
|
606 |
|
|
* dev - pointer to device information for last device
|
607 |
|
|
* iobase - base I/O address of new adapter
|
608 |
|
|
*
|
609 |
|
|
* Functional Description:
|
610 |
|
|
* The algorithm for allocating a new device structure is
|
611 |
|
|
* fairly simple. Since we're presently the only FDDI driver
|
612 |
|
|
* under Linux, we'll find the first device structure with an
|
613 |
|
|
* "fddi*" device name that's free. If we run out of devices,
|
614 |
|
|
* we'll fail on error. This is simpler than trying to
|
615 |
|
|
* allocate the memory for a new device structure, determine
|
616 |
|
|
* the next free number (beyond 7) and link it into the chain
|
617 |
|
|
* of devices. A user can always modify drivers/net/Space.c
|
618 |
|
|
* to add new FDDI device structures if necessary.
|
619 |
|
|
*
|
620 |
|
|
* Beyond finding a free FDDI device structure, this routine
|
621 |
|
|
* initializes most of the fields, resource tags, and dispatch
|
622 |
|
|
* pointers in the device structure and calls the common
|
623 |
|
|
* fddi_setup() routine to perform the rest of the device
|
624 |
|
|
* structure initialization.
|
625 |
|
|
*
|
626 |
|
|
* Return Codes:
|
627 |
|
|
* None
|
628 |
|
|
*
|
629 |
|
|
* Assumptions:
|
630 |
|
|
* If additional FDDI drivers are integrated into Linux,
|
631 |
|
|
* we'll likely need to use a different approach to
|
632 |
|
|
* allocate a device structure. Perhaps one that is
|
633 |
|
|
* similar to what the Ethernet drivers use.
|
634 |
|
|
*
|
635 |
|
|
* Side Effects:
|
636 |
|
|
* None
|
637 |
|
|
*/
|
638 |
|
|
|
639 |
|
|
struct device *dfx_alloc_device(
|
640 |
|
|
struct device *dev,
|
641 |
|
|
u16 iobase
|
642 |
|
|
)
|
643 |
|
|
|
644 |
|
|
{
|
645 |
|
|
struct device *tmp_dev; /* pointer to a device structure */
|
646 |
|
|
|
647 |
|
|
DBG_printk("In dfx_alloc_device...\n");
|
648 |
|
|
|
649 |
|
|
/* Find next free fddi entry */
|
650 |
|
|
|
651 |
|
|
for (tmp_dev = dev; tmp_dev != NULL; tmp_dev = tmp_dev->next)
|
652 |
|
|
if ((strncmp(tmp_dev->name, "fddi", 4) == 0) && (tmp_dev->base_addr == 0))
|
653 |
|
|
break;
|
654 |
|
|
if (tmp_dev == NULL)
|
655 |
|
|
{
|
656 |
|
|
printk("Could not find free FDDI device structure for this adapter!\n");
|
657 |
|
|
return(NULL);
|
658 |
|
|
}
|
659 |
|
|
DBG_printk("Device entry free, device name = %s\n", tmp_dev->name);
|
660 |
|
|
|
661 |
|
|
/* Allocate space for private board structure */
|
662 |
|
|
|
663 |
|
|
tmp_dev->priv = (void *) kmalloc(sizeof(DFX_board_t), GFP_KERNEL);
|
664 |
|
|
if (tmp_dev->priv == NULL)
|
665 |
|
|
{
|
666 |
|
|
printk("Could not allocate memory for private board structure!\n");
|
667 |
|
|
return(NULL);
|
668 |
|
|
}
|
669 |
|
|
memset(tmp_dev->priv, 0, sizeof(DFX_board_t)); /* clear structure */
|
670 |
|
|
|
671 |
|
|
/* Initialize new device structure */
|
672 |
|
|
|
673 |
|
|
tmp_dev->rmem_end = 0; /* shared memory isn't used */
|
674 |
|
|
tmp_dev->rmem_start = 0; /* shared memory isn't used */
|
675 |
|
|
tmp_dev->mem_end = 0; /* shared memory isn't used */
|
676 |
|
|
tmp_dev->mem_start = 0; /* shared memory isn't used */
|
677 |
|
|
tmp_dev->base_addr = iobase; /* save port (I/O) base address */
|
678 |
|
|
tmp_dev->irq = 0; /* set in dfx_bus_init() */
|
679 |
|
|
tmp_dev->if_port = 0; /* not applicable to FDDI adapters */
|
680 |
|
|
tmp_dev->dma = 0; /* Bus Master DMA doesn't require channel */
|
681 |
|
|
|
682 |
|
|
tmp_dev->get_stats = &dfx_ctl_get_stats;
|
683 |
|
|
tmp_dev->open = &dfx_open;
|
684 |
|
|
tmp_dev->stop = &dfx_close;
|
685 |
|
|
tmp_dev->hard_start_xmit = &dfx_xmt_queue_pkt;
|
686 |
|
|
tmp_dev->hard_header = NULL; /* set in fddi_setup() */
|
687 |
|
|
tmp_dev->rebuild_header = NULL; /* set in fddi_setup() */
|
688 |
|
|
tmp_dev->set_multicast_list = &dfx_ctl_set_multicast_list;
|
689 |
|
|
tmp_dev->set_mac_address = &dfx_ctl_set_mac_address;
|
690 |
|
|
tmp_dev->do_ioctl = NULL; /* not supported for now &&& */
|
691 |
|
|
tmp_dev->set_config = NULL; /* not supported for now &&& */
|
692 |
|
|
tmp_dev->header_cache_bind = NULL; /* not supported */
|
693 |
|
|
tmp_dev->header_cache_update = NULL; /* not supported */
|
694 |
|
|
tmp_dev->change_mtu = NULL; /* set in fddi_setup() */
|
695 |
|
|
|
696 |
|
|
/* Initialize remaining device structure information */
|
697 |
|
|
|
698 |
|
|
fddi_setup(tmp_dev);
|
699 |
|
|
return(tmp_dev);
|
700 |
|
|
}
|
701 |
|
|
|
702 |
|
|
|
703 |
|
|
/*
|
704 |
|
|
* ================
|
705 |
|
|
* = dfx_bus_init =
|
706 |
|
|
* ================
|
707 |
|
|
*
|
708 |
|
|
* Overview:
|
709 |
|
|
* Initializes EISA and PCI controller bus-specific logic.
|
710 |
|
|
*
|
711 |
|
|
* Returns:
|
712 |
|
|
* None
|
713 |
|
|
*
|
714 |
|
|
* Arguments:
|
715 |
|
|
* dev - pointer to device information
|
716 |
|
|
*
|
717 |
|
|
* Functional Description:
|
718 |
|
|
* Determine and save adapter IRQ in device table,
|
719 |
|
|
* then perform bus-specific logic initialization.
|
720 |
|
|
*
|
721 |
|
|
* Return Codes:
|
722 |
|
|
* None
|
723 |
|
|
*
|
724 |
|
|
* Assumptions:
|
725 |
|
|
* dev->base_addr has already been set with the proper
|
726 |
|
|
* base I/O address for this device.
|
727 |
|
|
*
|
728 |
|
|
* Side Effects:
|
729 |
|
|
* Interrupts are enabled at the adapter bus-specific logic.
|
730 |
|
|
* Note: Interrupts at the DMA engine (PDQ chip) are not
|
731 |
|
|
* enabled yet.
|
732 |
|
|
*/
|
733 |
|
|
|
734 |
|
|
void dfx_bus_init(
|
735 |
|
|
struct device *dev
|
736 |
|
|
)
|
737 |
|
|
|
738 |
|
|
{
|
739 |
|
|
DFX_board_t *bp = (DFX_board_t *)dev->priv;
|
740 |
|
|
u8 val; /* used for I/O read/writes */
|
741 |
|
|
|
742 |
|
|
DBG_printk("In dfx_bus_init...\n");
|
743 |
|
|
|
744 |
|
|
/*
|
745 |
|
|
* Initialize base I/O address field in bp structure
|
746 |
|
|
*
|
747 |
|
|
* Note: bp->base_addr is the same as dev->base_addr.
|
748 |
|
|
* It's useful because often we'll need to read
|
749 |
|
|
* or write registers where we already have the
|
750 |
|
|
* bp pointer instead of the dev pointer. Having
|
751 |
|
|
* the base address in the bp structure will
|
752 |
|
|
* save a pointer dereference.
|
753 |
|
|
*
|
754 |
|
|
* IMPORTANT!! This field must be defined before
|
755 |
|
|
* any of the dfx_port_* inline functions are
|
756 |
|
|
* called.
|
757 |
|
|
*/
|
758 |
|
|
|
759 |
|
|
bp->base_addr = dev->base_addr;
|
760 |
|
|
|
761 |
|
|
/* Initialize adapter based on bus type */
|
762 |
|
|
|
763 |
|
|
if (bp->bus_type == DFX_BUS_TYPE_EISA)
|
764 |
|
|
{
|
765 |
|
|
/* Get the interrupt level from the ESIC chip */
|
766 |
|
|
|
767 |
|
|
dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &val);
|
768 |
|
|
switch ((val & PI_CONFIG_STAT_0_M_IRQ) >> PI_CONFIG_STAT_0_V_IRQ)
|
769 |
|
|
{
|
770 |
|
|
case PI_CONFIG_STAT_0_IRQ_K_9:
|
771 |
|
|
dev->irq = 9;
|
772 |
|
|
break;
|
773 |
|
|
|
774 |
|
|
case PI_CONFIG_STAT_0_IRQ_K_10:
|
775 |
|
|
dev->irq = 10;
|
776 |
|
|
break;
|
777 |
|
|
|
778 |
|
|
case PI_CONFIG_STAT_0_IRQ_K_11:
|
779 |
|
|
dev->irq = 11;
|
780 |
|
|
break;
|
781 |
|
|
|
782 |
|
|
case PI_CONFIG_STAT_0_IRQ_K_15:
|
783 |
|
|
dev->irq = 15;
|
784 |
|
|
break;
|
785 |
|
|
}
|
786 |
|
|
|
787 |
|
|
/* Enable access to I/O on the board by writing 0x03 to Function Control Register */
|
788 |
|
|
|
789 |
|
|
dfx_port_write_byte(bp, PI_ESIC_K_FUNCTION_CNTRL, PI_ESIC_K_FUNCTION_CNTRL_IO_ENB);
|
790 |
|
|
|
791 |
|
|
/* Set the I/O decode range of the board */
|
792 |
|
|
|
793 |
|
|
val = ((dev->base_addr >> 12) << PI_IO_CMP_V_SLOT);
|
794 |
|
|
dfx_port_write_byte(bp, PI_ESIC_K_IO_CMP_0_1, val);
|
795 |
|
|
dfx_port_write_byte(bp, PI_ESIC_K_IO_CMP_1_1, val);
|
796 |
|
|
|
797 |
|
|
/* Enable access to rest of module (including PDQ and packet memory) */
|
798 |
|
|
|
799 |
|
|
dfx_port_write_byte(bp, PI_ESIC_K_SLOT_CNTRL, PI_SLOT_CNTRL_M_ENB);
|
800 |
|
|
|
801 |
|
|
/*
|
802 |
|
|
* Map PDQ registers into I/O space. This is done by clearing a bit
|
803 |
|
|
* in Burst Holdoff register.
|
804 |
|
|
*/
|
805 |
|
|
|
806 |
|
|
dfx_port_read_byte(bp, PI_ESIC_K_BURST_HOLDOFF, &val);
|
807 |
|
|
dfx_port_write_byte(bp, PI_ESIC_K_BURST_HOLDOFF, (val & ~PI_BURST_HOLDOFF_M_MEM_MAP));
|
808 |
|
|
|
809 |
|
|
/* Enable interrupts at EISA bus interface chip (ESIC) */
|
810 |
|
|
|
811 |
|
|
dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &val);
|
812 |
|
|
dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, (val | PI_CONFIG_STAT_0_M_INT_ENB));
|
813 |
|
|
}
|
814 |
|
|
else
|
815 |
|
|
{
|
816 |
|
|
/* Get the interrupt level from the PCI Configuration Table */
|
817 |
|
|
|
818 |
|
|
pcibios_read_config_byte(bp->pci_bus, bp->pci_dev_fun, PCI_INTERRUPT_LINE, &val);
|
819 |
|
|
dev->irq = val; /* save IRQ value in device table */
|
820 |
|
|
|
821 |
|
|
/* Check Latency Timer and set if less than minimal */
|
822 |
|
|
|
823 |
|
|
pcibios_read_config_byte(bp->pci_bus, bp->pci_dev_fun, PCI_LATENCY_TIMER, &val);
|
824 |
|
|
if (val < PFI_K_LAT_TIMER_MIN) /* if less than min, override with default */
|
825 |
|
|
{
|
826 |
|
|
val = PFI_K_LAT_TIMER_DEF;
|
827 |
|
|
pcibios_write_config_byte(bp->pci_bus, bp->pci_dev_fun, PCI_LATENCY_TIMER, val);
|
828 |
|
|
}
|
829 |
|
|
|
830 |
|
|
/* Enable interrupts at PCI bus interface chip (PFI) */
|
831 |
|
|
|
832 |
|
|
dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, (PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB));
|
833 |
|
|
}
|
834 |
|
|
return;
|
835 |
|
|
}
|
836 |
|
|
|
837 |
|
|
|
838 |
|
|
/*
|
839 |
|
|
* ========================
|
840 |
|
|
* = dfx_bus_config_check =
|
841 |
|
|
* ========================
|
842 |
|
|
*
|
843 |
|
|
* Overview:
|
844 |
|
|
* Checks the configuration (burst size, full-duplex, etc.) If any parameters
|
845 |
|
|
* are illegal, then this routine will set new defaults.
|
846 |
|
|
*
|
847 |
|
|
* Returns:
|
848 |
|
|
* None
|
849 |
|
|
*
|
850 |
|
|
* Arguments:
|
851 |
|
|
* bp - pointer to board information
|
852 |
|
|
*
|
853 |
|
|
* Functional Description:
|
854 |
|
|
* For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
|
855 |
|
|
* PDQ, and all FDDI PCI controllers, all values are legal.
|
856 |
|
|
*
|
857 |
|
|
* Return Codes:
|
858 |
|
|
* None
|
859 |
|
|
*
|
860 |
|
|
* Assumptions:
|
861 |
|
|
* dfx_adap_init has NOT been called yet so burst size and other items have
|
862 |
|
|
* not been set.
|
863 |
|
|
*
|
864 |
|
|
* Side Effects:
|
865 |
|
|
* None
|
866 |
|
|
*/
|
867 |
|
|
|
868 |
|
|
void dfx_bus_config_check(
|
869 |
|
|
DFX_board_t *bp
|
870 |
|
|
)
|
871 |
|
|
|
872 |
|
|
{
|
873 |
|
|
int status; /* return code from adapter port control call */
|
874 |
|
|
u32 slot_id; /* EISA-bus hardware id (DEC3001, DEC3002,...) */
|
875 |
|
|
u32 host_data; /* LW data returned from port control call */
|
876 |
|
|
|
877 |
|
|
DBG_printk("In dfx_bus_config_check...\n");
|
878 |
|
|
|
879 |
|
|
/* Configuration check only valid for EISA adapter */
|
880 |
|
|
|
881 |
|
|
if (bp->bus_type == DFX_BUS_TYPE_EISA)
|
882 |
|
|
{
|
883 |
|
|
dfx_port_read_long(bp, PI_ESIC_K_SLOT_ID, &slot_id);
|
884 |
|
|
|
885 |
|
|
/*
|
886 |
|
|
* First check if revision 2 EISA controller. Rev. 1 cards used
|
887 |
|
|
* PDQ revision B, so no workaround needed in this case. Rev. 3
|
888 |
|
|
* cards used PDQ revision E, so no workaround needed in this
|
889 |
|
|
* case, either. Only Rev. 2 cards used either Rev. D or E
|
890 |
|
|
* chips, so we must verify the chip revision on Rev. 2 cards.
|
891 |
|
|
*/
|
892 |
|
|
|
893 |
|
|
if (slot_id == DEFEA_PROD_ID_2)
|
894 |
|
|
{
|
895 |
|
|
/*
|
896 |
|
|
* Revision 2 FDDI EISA controller found, so let's check PDQ
|
897 |
|
|
* revision of adapter.
|
898 |
|
|
*/
|
899 |
|
|
|
900 |
|
|
status = dfx_hw_port_ctrl_req(bp,
|
901 |
|
|
PI_PCTRL_M_SUB_CMD,
|
902 |
|
|
PI_SUB_CMD_K_PDQ_REV_GET,
|
903 |
|
|
0,
|
904 |
|
|
&host_data);
|
905 |
|
|
if ((status != DFX_K_SUCCESS) || (host_data == 2))
|
906 |
|
|
{
|
907 |
|
|
/*
|
908 |
|
|
* Either we couldn't determine the PDQ revision, or
|
909 |
|
|
* we determined that it is at revision D. In either case,
|
910 |
|
|
* we need to implement the workaround.
|
911 |
|
|
*/
|
912 |
|
|
|
913 |
|
|
/* Ensure that the burst size is set to 8 longwords or less */
|
914 |
|
|
|
915 |
|
|
switch (bp->burst_size)
|
916 |
|
|
{
|
917 |
|
|
case PI_PDATA_B_DMA_BURST_SIZE_32:
|
918 |
|
|
case PI_PDATA_B_DMA_BURST_SIZE_16:
|
919 |
|
|
bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
|
920 |
|
|
break;
|
921 |
|
|
|
922 |
|
|
default:
|
923 |
|
|
break;
|
924 |
|
|
}
|
925 |
|
|
|
926 |
|
|
/* Ensure that full-duplex mode is not enabled */
|
927 |
|
|
|
928 |
|
|
bp->full_duplex_enb = PI_SNMP_K_FALSE;
|
929 |
|
|
}
|
930 |
|
|
}
|
931 |
|
|
}
|
932 |
|
|
return;
|
933 |
|
|
}
|
934 |
|
|
|
935 |
|
|
|
936 |
|
|
/*
|
937 |
|
|
* ===================
|
938 |
|
|
* = dfx_driver_init =
|
939 |
|
|
* ===================
|
940 |
|
|
*
|
941 |
|
|
* Overview:
|
942 |
|
|
* Initializes remaining adapter board structure information
|
943 |
|
|
* and makes sure adapter is in a safe state prior to dfx_open().
|
944 |
|
|
*
|
945 |
|
|
* Returns:
|
946 |
|
|
* Condition code
|
947 |
|
|
*
|
948 |
|
|
* Arguments:
|
949 |
|
|
* dev - pointer to device information
|
950 |
|
|
*
|
951 |
|
|
* Functional Description:
|
952 |
|
|
* This function allocates additional resources such as the host memory
|
953 |
|
|
* blocks needed by the adapter (eg. descriptor and consumer blocks).
|
954 |
|
|
* Remaining bus initialization steps are also completed. The adapter
|
955 |
|
|
* is also reset so that it is in the DMA_UNAVAILABLE state. The OS
|
956 |
|
|
* must call dfx_open() to open the adapter and bring it on-line.
|
957 |
|
|
*
|
958 |
|
|
* Return Codes:
|
959 |
|
|
* DFX_K_SUCCESS - initialization succeeded
|
960 |
|
|
* DFX_K_FAILURE - initialization failed - could not allocate memory
|
961 |
|
|
* or read adapter MAC address
|
962 |
|
|
*
|
963 |
|
|
* Assumptions:
|
964 |
|
|
* Memory allocated from kmalloc() call is physically contiguous, locked
|
965 |
|
|
* memory whose physical address equals its virtual address.
|
966 |
|
|
*
|
967 |
|
|
* Side Effects:
|
968 |
|
|
* Adapter is reset and should be in DMA_UNAVAILABLE state before
|
969 |
|
|
* returning from this routine.
|
970 |
|
|
*/
|
971 |
|
|
|
972 |
|
|
int dfx_driver_init(
|
973 |
|
|
struct device *dev
|
974 |
|
|
)
|
975 |
|
|
|
976 |
|
|
{
|
977 |
|
|
DFX_board_t *bp = (DFX_board_t *)dev->priv;
|
978 |
|
|
int alloc_size; /* total buffer size needed */
|
979 |
|
|
char *top_v, *curr_v; /* virtual addrs into memory block */
|
980 |
|
|
u32 top_p, curr_p; /* physical addrs into memory block */
|
981 |
|
|
u32 data; /* host data register value */
|
982 |
|
|
|
983 |
|
|
DBG_printk("In dfx_driver_init...\n");
|
984 |
|
|
|
985 |
|
|
/* Initialize bus-specific hardware registers */
|
986 |
|
|
|
987 |
|
|
dfx_bus_init(dev);
|
988 |
|
|
|
989 |
|
|
/*
|
990 |
|
|
* Initialize default values for configurable parameters
|
991 |
|
|
*
|
992 |
|
|
* Note: All of these parameters are ones that a user may
|
993 |
|
|
* want to customize. It'd be nice to break these
|
994 |
|
|
* out into Space.c or someplace else that's more
|
995 |
|
|
* accessible/understandable than this file.
|
996 |
|
|
*/
|
997 |
|
|
|
998 |
|
|
bp->full_duplex_enb = PI_SNMP_K_FALSE;
|
999 |
|
|
bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */
|
1000 |
|
|
bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF;
|
1001 |
|
|
bp->rcv_bufs_to_post = RCV_BUFS_DEF;
|
1002 |
|
|
|
1003 |
|
|
/*
|
1004 |
|
|
* Ensure that HW configuration is OK
|
1005 |
|
|
*
|
1006 |
|
|
* Note: Depending on the hardware revision, we may need to modify
|
1007 |
|
|
* some of the configurable parameters to workaround hardware
|
1008 |
|
|
* limitations. We'll perform this configuration check AFTER
|
1009 |
|
|
* setting the parameters to their default values.
|
1010 |
|
|
*/
|
1011 |
|
|
|
1012 |
|
|
dfx_bus_config_check(bp);
|
1013 |
|
|
|
1014 |
|
|
/* Disable PDQ interrupts first */
|
1015 |
|
|
|
1016 |
|
|
dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
|
1017 |
|
|
|
1018 |
|
|
/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
|
1019 |
|
|
|
1020 |
|
|
(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
|
1021 |
|
|
|
1022 |
|
|
/* Read the factory MAC address from the adapter then save it */
|
1023 |
|
|
|
1024 |
|
|
if (dfx_hw_port_ctrl_req(bp,
|
1025 |
|
|
PI_PCTRL_M_MLA,
|
1026 |
|
|
PI_PDATA_A_MLA_K_LO,
|
1027 |
|
|
0,
|
1028 |
|
|
&data) != DFX_K_SUCCESS)
|
1029 |
|
|
{
|
1030 |
|
|
printk("%s: Could not read adapter factory MAC address!\n", dev->name);
|
1031 |
|
|
return(DFX_K_FAILURE);
|
1032 |
|
|
}
|
1033 |
|
|
memcpy(&bp->factory_mac_addr[0], &data, sizeof(u32));
|
1034 |
|
|
|
1035 |
|
|
if (dfx_hw_port_ctrl_req(bp,
|
1036 |
|
|
PI_PCTRL_M_MLA,
|
1037 |
|
|
PI_PDATA_A_MLA_K_HI,
|
1038 |
|
|
0,
|
1039 |
|
|
&data) != DFX_K_SUCCESS)
|
1040 |
|
|
{
|
1041 |
|
|
printk("%s: Could not read adapter factory MAC address!\n", dev->name);
|
1042 |
|
|
return(DFX_K_FAILURE);
|
1043 |
|
|
}
|
1044 |
|
|
memcpy(&bp->factory_mac_addr[4], &data, sizeof(u16));
|
1045 |
|
|
|
1046 |
|
|
/*
|
1047 |
|
|
* Set current address to factory address
|
1048 |
|
|
*
|
1049 |
|
|
* Note: Node address override support is handled through
|
1050 |
|
|
* dfx_ctl_set_mac_address.
|
1051 |
|
|
*/
|
1052 |
|
|
|
1053 |
|
|
memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
|
1054 |
|
|
if (bp->bus_type == DFX_BUS_TYPE_EISA)
|
1055 |
|
|
printk("%s: DEFEA at I/O addr = 0x%lX, IRQ = %d, Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n",
|
1056 |
|
|
dev->name,
|
1057 |
|
|
dev->base_addr,
|
1058 |
|
|
dev->irq,
|
1059 |
|
|
dev->dev_addr[0],
|
1060 |
|
|
dev->dev_addr[1],
|
1061 |
|
|
dev->dev_addr[2],
|
1062 |
|
|
dev->dev_addr[3],
|
1063 |
|
|
dev->dev_addr[4],
|
1064 |
|
|
dev->dev_addr[5]);
|
1065 |
|
|
else
|
1066 |
|
|
printk("%s: DEFPA at I/O addr = 0x%lX, IRQ = %d, Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n",
|
1067 |
|
|
dev->name,
|
1068 |
|
|
dev->base_addr,
|
1069 |
|
|
dev->irq,
|
1070 |
|
|
dev->dev_addr[0],
|
1071 |
|
|
dev->dev_addr[1],
|
1072 |
|
|
dev->dev_addr[2],
|
1073 |
|
|
dev->dev_addr[3],
|
1074 |
|
|
dev->dev_addr[4],
|
1075 |
|
|
dev->dev_addr[5]);
|
1076 |
|
|
|
1077 |
|
|
/*
|
1078 |
|
|
* Get memory for descriptor block, consumer block, and other buffers
|
1079 |
|
|
* that need to be DMA read or written to by the adapter.
|
1080 |
|
|
*/
|
1081 |
|
|
|
1082 |
|
|
alloc_size = sizeof(PI_DESCR_BLOCK) +
|
1083 |
|
|
PI_CMD_REQ_K_SIZE_MAX +
|
1084 |
|
|
PI_CMD_RSP_K_SIZE_MAX +
|
1085 |
|
|
(bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
|
1086 |
|
|
sizeof(PI_CONSUMER_BLOCK) +
|
1087 |
|
|
(PI_ALIGN_K_DESC_BLK - 1);
|
1088 |
|
|
top_v = (char *) kmalloc(alloc_size, GFP_KERNEL);
|
1089 |
|
|
if (top_v == NULL)
|
1090 |
|
|
{
|
1091 |
|
|
printk("%s: Could not allocate memory for host buffers and structures!\n", dev->name);
|
1092 |
|
|
return(DFX_K_FAILURE);
|
1093 |
|
|
}
|
1094 |
|
|
memset(top_v, 0, alloc_size); /* zero out memory before continuing */
|
1095 |
|
|
top_p = virt_to_bus(top_v); /* get physical address of buffer */
|
1096 |
|
|
|
1097 |
|
|
/*
|
1098 |
|
|
* To guarantee the 8K alignment required for the descriptor block, 8K - 1
|
1099 |
|
|
* plus the amount of memory needed was allocated. The physical address
|
1100 |
|
|
* is now 8K aligned. By carving up the memory in a specific order,
|
1101 |
|
|
* we'll guarantee the alignment requirements for all other structures.
|
1102 |
|
|
*
|
1103 |
|
|
* Note: If the assumptions change regarding the non-paged, non-cached,
|
1104 |
|
|
* physically contiguous nature of the memory block or the address
|
1105 |
|
|
* alignments, then we'll need to implement a different algorithm
|
1106 |
|
|
* for allocating the needed memory.
|
1107 |
|
|
*/
|
1108 |
|
|
|
1109 |
|
|
curr_p = (u32) (ALIGN(top_p, PI_ALIGN_K_DESC_BLK));
|
1110 |
|
|
curr_v = top_v + (curr_p - top_p);
|
1111 |
|
|
|
1112 |
|
|
/* Reserve space for descriptor block */
|
1113 |
|
|
|
1114 |
|
|
bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
|
1115 |
|
|
bp->descr_block_phys = curr_p;
|
1116 |
|
|
curr_v += sizeof(PI_DESCR_BLOCK);
|
1117 |
|
|
curr_p += sizeof(PI_DESCR_BLOCK);
|
1118 |
|
|
|
1119 |
|
|
/* Reserve space for command request buffer */
|
1120 |
|
|
|
1121 |
|
|
bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
|
1122 |
|
|
bp->cmd_req_phys = curr_p;
|
1123 |
|
|
curr_v += PI_CMD_REQ_K_SIZE_MAX;
|
1124 |
|
|
curr_p += PI_CMD_REQ_K_SIZE_MAX;
|
1125 |
|
|
|
1126 |
|
|
/* Reserve space for command response buffer */
|
1127 |
|
|
|
1128 |
|
|
bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
|
1129 |
|
|
bp->cmd_rsp_phys = curr_p;
|
1130 |
|
|
curr_v += PI_CMD_RSP_K_SIZE_MAX;
|
1131 |
|
|
curr_p += PI_CMD_RSP_K_SIZE_MAX;
|
1132 |
|
|
|
1133 |
|
|
/* Reserve space for the LLC host receive queue buffers */
|
1134 |
|
|
|
1135 |
|
|
bp->rcv_block_virt = curr_v;
|
1136 |
|
|
bp->rcv_block_phys = curr_p;
|
1137 |
|
|
curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
|
1138 |
|
|
curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
|
1139 |
|
|
|
1140 |
|
|
/* Reserve space for the consumer block */
|
1141 |
|
|
|
1142 |
|
|
bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
|
1143 |
|
|
bp->cons_block_phys = curr_p;
|
1144 |
|
|
|
1145 |
|
|
/* Display virtual and physical addresses if debug driver */
|
1146 |
|
|
|
1147 |
|
|
DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n", dev->name, (long)bp->descr_block_virt, bp->descr_block_phys);
|
1148 |
|
|
DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n", dev->name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
|
1149 |
|
|
DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n", dev->name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
|
1150 |
|
|
DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n", dev->name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
|
1151 |
|
|
DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n", dev->name, (long)bp->cons_block_virt, bp->cons_block_phys);
|
1152 |
|
|
|
1153 |
|
|
return(DFX_K_SUCCESS);
|
1154 |
|
|
}
|
1155 |
|
|
|
1156 |
|
|
|
1157 |
|
|
/*
|
1158 |
|
|
* =================
|
1159 |
|
|
* = dfx_adap_init =
|
1160 |
|
|
* =================
|
1161 |
|
|
*
|
1162 |
|
|
* Overview:
|
1163 |
|
|
* Brings the adapter to the link avail/link unavailable state.
|
1164 |
|
|
*
|
1165 |
|
|
* Returns:
|
1166 |
|
|
* Condition code
|
1167 |
|
|
*
|
1168 |
|
|
* Arguments:
|
1169 |
|
|
* bp - pointer to board information
|
1170 |
|
|
*
|
1171 |
|
|
* Functional Description:
|
1172 |
|
|
* Issues the low-level firmware/hardware calls necessary to bring
|
1173 |
|
|
* the adapter up, or to properly reset and restore adapter during
|
1174 |
|
|
* run-time.
|
1175 |
|
|
*
|
1176 |
|
|
* Return Codes:
|
1177 |
|
|
* DFX_K_SUCCESS - Adapter brought up successfully
|
1178 |
|
|
* DFX_K_FAILURE - Adapter initialization failed
|
1179 |
|
|
*
|
1180 |
|
|
* Assumptions:
|
1181 |
|
|
* bp->reset_type should be set to a valid reset type value before
|
1182 |
|
|
* calling this routine.
|
1183 |
|
|
*
|
1184 |
|
|
* Side Effects:
|
1185 |
|
|
* Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
|
1186 |
|
|
* upon a successful return of this routine.
|
1187 |
|
|
*/
|
1188 |
|
|
|
1189 |
|
|
int dfx_adap_init(
|
1190 |
|
|
DFX_board_t *bp
|
1191 |
|
|
)
|
1192 |
|
|
|
1193 |
|
|
{
|
1194 |
|
|
DBG_printk("In dfx_adap_init...\n");
|
1195 |
|
|
|
1196 |
|
|
/* Disable PDQ interrupts first */
|
1197 |
|
|
|
1198 |
|
|
dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
|
1199 |
|
|
|
1200 |
|
|
/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
|
1201 |
|
|
|
1202 |
|
|
if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
|
1203 |
|
|
{
|
1204 |
|
|
printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
|
1205 |
|
|
return(DFX_K_FAILURE);
|
1206 |
|
|
}
|
1207 |
|
|
|
1208 |
|
|
/*
|
1209 |
|
|
* When the PDQ is reset, some false Type 0 interrupts may be pending,
|
1210 |
|
|
* so we'll acknowledge all Type 0 interrupts now before continuing.
|
1211 |
|
|
*/
|
1212 |
|
|
|
1213 |
|
|
dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
|
1214 |
|
|
|
1215 |
|
|
/*
|
1216 |
|
|
* Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
|
1217 |
|
|
*
|
1218 |
|
|
* Note: We only need to clear host copies of these registers. The PDQ reset
|
1219 |
|
|
* takes care of the on-board register values.
|
1220 |
|
|
*/
|
1221 |
|
|
|
1222 |
|
|
bp->cmd_req_reg.lword = 0;
|
1223 |
|
|
bp->cmd_rsp_reg.lword = 0;
|
1224 |
|
|
bp->rcv_xmt_reg.lword = 0;
|
1225 |
|
|
|
1226 |
|
|
/* Clear consumer block before going to DMA_AVAILABLE state */
|
1227 |
|
|
|
1228 |
|
|
memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
|
1229 |
|
|
|
1230 |
|
|
/* Initialize the DMA Burst Size */
|
1231 |
|
|
|
1232 |
|
|
if (dfx_hw_port_ctrl_req(bp,
|
1233 |
|
|
PI_PCTRL_M_SUB_CMD,
|
1234 |
|
|
PI_SUB_CMD_K_BURST_SIZE_SET,
|
1235 |
|
|
bp->burst_size,
|
1236 |
|
|
NULL) != DFX_K_SUCCESS)
|
1237 |
|
|
{
|
1238 |
|
|
printk("%s: Could not set adapter burst size!\n", bp->dev->name);
|
1239 |
|
|
return(DFX_K_FAILURE);
|
1240 |
|
|
}
|
1241 |
|
|
|
1242 |
|
|
/*
|
1243 |
|
|
* Set base address of Consumer Block
|
1244 |
|
|
*
|
1245 |
|
|
* Assumption: 32-bit physical address of consumer block is 64 byte
|
1246 |
|
|
* aligned. That is, bits 0-5 of the address must be zero.
|
1247 |
|
|
*/
|
1248 |
|
|
|
1249 |
|
|
if (dfx_hw_port_ctrl_req(bp,
|
1250 |
|
|
PI_PCTRL_M_CONS_BLOCK,
|
1251 |
|
|
bp->cons_block_phys,
|
1252 |
|
|
0,
|
1253 |
|
|
NULL) != DFX_K_SUCCESS)
|
1254 |
|
|
{
|
1255 |
|
|
printk("%s: Could not set consumer block address!\n", bp->dev->name);
|
1256 |
|
|
return(DFX_K_FAILURE);
|
1257 |
|
|
}
|
1258 |
|
|
|
1259 |
|
|
/*
|
1260 |
|
|
* Set base address of Descriptor Block and bring adapter to DMA_AVAILABLE state
|
1261 |
|
|
*
|
1262 |
|
|
* Note: We also set the literal and data swapping requirements in this
|
1263 |
|
|
* command. Since this driver presently runs on Intel platforms
|
1264 |
|
|
* which are Little Endian, we'll tell the adapter to byte swap
|
1265 |
|
|
* data only. This code will need to change when we support
|
1266 |
|
|
* Big Endian systems (eg. PowerPC).
|
1267 |
|
|
*
|
1268 |
|
|
* Assumption: 32-bit physical address of descriptor block is 8Kbyte
|
1269 |
|
|
* aligned. That is, bits 0-12 of the address must be zero.
|
1270 |
|
|
*/
|
1271 |
|
|
|
1272 |
|
|
if (dfx_hw_port_ctrl_req(bp,
|
1273 |
|
|
PI_PCTRL_M_INIT,
|
1274 |
|
|
(u32) (bp->descr_block_phys | PI_PDATA_A_INIT_M_BSWAP_DATA),
|
1275 |
|
|
0,
|
1276 |
|
|
NULL) != DFX_K_SUCCESS)
|
1277 |
|
|
{
|
1278 |
|
|
printk("%s: Could not set descriptor block address!\n", bp->dev->name);
|
1279 |
|
|
return(DFX_K_FAILURE);
|
1280 |
|
|
}
|
1281 |
|
|
|
1282 |
|
|
/* Set transmit flush timeout value */
|
1283 |
|
|
|
1284 |
|
|
bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
|
1285 |
|
|
bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME;
|
1286 |
|
|
bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */
|
1287 |
|
|
bp->cmd_req_virt->char_set.item[0].item_index = 0;
|
1288 |
|
|
bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL;
|
1289 |
|
|
if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
|
1290 |
|
|
{
|
1291 |
|
|
printk("%s: DMA command request failed!\n", bp->dev->name);
|
1292 |
|
|
return(DFX_K_FAILURE);
|
1293 |
|
|
}
|
1294 |
|
|
|
1295 |
|
|
/* Set the initial values for eFDXEnable and MACTReq MIB objects */
|
1296 |
|
|
|
1297 |
|
|
bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
|
1298 |
|
|
bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS;
|
1299 |
|
|
bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb;
|
1300 |
|
|
bp->cmd_req_virt->snmp_set.item[0].item_index = 0;
|
1301 |
|
|
bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ;
|
1302 |
|
|
bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt;
|
1303 |
|
|
bp->cmd_req_virt->snmp_set.item[1].item_index = 0;
|
1304 |
|
|
bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL;
|
1305 |
|
|
if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
|
1306 |
|
|
{
|
1307 |
|
|
printk("%s: DMA command request failed!\n", bp->dev->name);
|
1308 |
|
|
return(DFX_K_FAILURE);
|
1309 |
|
|
}
|
1310 |
|
|
|
1311 |
|
|
/* Initialize adapter CAM */
|
1312 |
|
|
|
1313 |
|
|
if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
|
1314 |
|
|
{
|
1315 |
|
|
printk("%s: Adapter CAM update failed!\n", bp->dev->name);
|
1316 |
|
|
return(DFX_K_FAILURE);
|
1317 |
|
|
}
|
1318 |
|
|
|
1319 |
|
|
/* Initialize adapter filters */
|
1320 |
|
|
|
1321 |
|
|
if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
|
1322 |
|
|
{
|
1323 |
|
|
printk("%s: Adapter filters update failed!\n", bp->dev->name);
|
1324 |
|
|
return(DFX_K_FAILURE);
|
1325 |
|
|
}
|
1326 |
|
|
|
1327 |
|
|
/* Initialize receive descriptor block and produce buffers */
|
1328 |
|
|
|
1329 |
|
|
dfx_rcv_init(bp);
|
1330 |
|
|
|
1331 |
|
|
/* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
|
1332 |
|
|
|
1333 |
|
|
bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
|
1334 |
|
|
if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
|
1335 |
|
|
{
|
1336 |
|
|
printk("%s: Start command failed\n", bp->dev->name);
|
1337 |
|
|
return(DFX_K_FAILURE);
|
1338 |
|
|
}
|
1339 |
|
|
|
1340 |
|
|
/* Initialization succeeded, reenable PDQ interrupts */
|
1341 |
|
|
|
1342 |
|
|
dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
|
1343 |
|
|
return(DFX_K_SUCCESS);
|
1344 |
|
|
}
|
1345 |
|
|
|
1346 |
|
|
|
1347 |
|
|
/*
|
1348 |
|
|
* ============
|
1349 |
|
|
* = dfx_open =
|
1350 |
|
|
* ============
|
1351 |
|
|
*
|
1352 |
|
|
* Overview:
|
1353 |
|
|
* Opens the adapter
|
1354 |
|
|
*
|
1355 |
|
|
* Returns:
|
1356 |
|
|
* Condition code
|
1357 |
|
|
*
|
1358 |
|
|
* Arguments:
|
1359 |
|
|
* dev - pointer to device information
|
1360 |
|
|
*
|
1361 |
|
|
* Functional Description:
|
1362 |
|
|
* This function brings the adapter to an operational state.
|
1363 |
|
|
*
|
1364 |
|
|
* Return Codes:
|
1365 |
|
|
* 0 - Adapter was successfully opened
|
1366 |
|
|
* -EAGAIN - Could not register IRQ or adapter initialization failed
|
1367 |
|
|
*
|
1368 |
|
|
* Assumptions:
|
1369 |
|
|
* This routine should only be called for a device that was
|
1370 |
|
|
* initialized successfully during the dfx_probe process.
|
1371 |
|
|
*
|
1372 |
|
|
* Side Effects:
|
1373 |
|
|
* Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
|
1374 |
|
|
* if the open is successful.
|
1375 |
|
|
*/
|
1376 |
|
|
|
1377 |
|
|
int dfx_open(
|
1378 |
|
|
struct device *dev
|
1379 |
|
|
)
|
1380 |
|
|
|
1381 |
|
|
{
|
1382 |
|
|
DFX_board_t *bp = (DFX_board_t *)dev->priv;
|
1383 |
|
|
|
1384 |
|
|
DBG_printk("In dfx_open...\n");
|
1385 |
|
|
|
1386 |
|
|
/* Register IRQ - support shared interrupts by passing device ptr */
|
1387 |
|
|
|
1388 |
|
|
if (request_irq(dev->irq, (void *)dfx_interrupt, SA_SHIRQ, dev->name, dev))
|
1389 |
|
|
{
|
1390 |
|
|
printk("%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
|
1391 |
|
|
return(-EAGAIN);
|
1392 |
|
|
}
|
1393 |
|
|
|
1394 |
|
|
/*
|
1395 |
|
|
* Set current address to factory MAC address
|
1396 |
|
|
*
|
1397 |
|
|
* Note: We've already done this step in dfx_driver_init.
|
1398 |
|
|
* However, it's possible that a user has set a node
|
1399 |
|
|
* address override, then closed and reopened the
|
1400 |
|
|
* adapter. Unless we reset the device address field
|
1401 |
|
|
* now, we'll continue to use the existing modified
|
1402 |
|
|
* address.
|
1403 |
|
|
*/
|
1404 |
|
|
|
1405 |
|
|
memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
|
1406 |
|
|
|
1407 |
|
|
/* Clear local unicast/multicast address tables and counts */
|
1408 |
|
|
|
1409 |
|
|
memset(bp->uc_table, 0, sizeof(bp->uc_table));
|
1410 |
|
|
memset(bp->mc_table, 0, sizeof(bp->mc_table));
|
1411 |
|
|
bp->uc_count = 0;
|
1412 |
|
|
bp->mc_count = 0;
|
1413 |
|
|
|
1414 |
|
|
/* Disable promiscuous filter settings */
|
1415 |
|
|
|
1416 |
|
|
bp->ind_group_prom = PI_FSTATE_K_BLOCK;
|
1417 |
|
|
bp->group_prom = PI_FSTATE_K_BLOCK;
|
1418 |
|
|
|
1419 |
|
|
/* Reset and initialize adapter */
|
1420 |
|
|
|
1421 |
|
|
bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */
|
1422 |
|
|
if (dfx_adap_init(bp) != DFX_K_SUCCESS)
|
1423 |
|
|
{
|
1424 |
|
|
printk("%s: Adapter open failed!\n", dev->name);
|
1425 |
|
|
return(-EAGAIN);
|
1426 |
|
|
}
|
1427 |
|
|
|
1428 |
|
|
/* Set device structure info */
|
1429 |
|
|
|
1430 |
|
|
dev->tbusy = 0;
|
1431 |
|
|
dev->interrupt = DFX_UNMASK_INTERRUPTS;
|
1432 |
|
|
dev->start = 1;
|
1433 |
|
|
return(0);
|
1434 |
|
|
}
|
1435 |
|
|
|
1436 |
|
|
|
1437 |
|
|
/*
|
1438 |
|
|
* =============
|
1439 |
|
|
* = dfx_close =
|
1440 |
|
|
* =============
|
1441 |
|
|
*
|
1442 |
|
|
* Overview:
|
1443 |
|
|
* Closes the device/module.
|
1444 |
|
|
*
|
1445 |
|
|
* Returns:
|
1446 |
|
|
* Condition code
|
1447 |
|
|
*
|
1448 |
|
|
* Arguments:
|
1449 |
|
|
* dev - pointer to device information
|
1450 |
|
|
*
|
1451 |
|
|
* Functional Description:
|
1452 |
|
|
* This routine closes the adapter and brings it to a safe state.
|
1453 |
|
|
* The interrupt service routine is deregistered with the OS.
|
1454 |
|
|
* The adapter can be opened again with another call to dfx_open().
|
1455 |
|
|
*
|
1456 |
|
|
* Return Codes:
|
1457 |
|
|
* Always return 0.
|
1458 |
|
|
*
|
1459 |
|
|
* Assumptions:
|
1460 |
|
|
* No further requests for this adapter are made after this routine is
|
1461 |
|
|
* called. dfx_open() can be called to reset and reinitialize the
|
1462 |
|
|
* adapter.
|
1463 |
|
|
*
|
1464 |
|
|
* Side Effects:
|
1465 |
|
|
* Adapter should be in DMA_UNAVAILABLE state upon completion of this
|
1466 |
|
|
* routine.
|
1467 |
|
|
*/
|
1468 |
|
|
|
1469 |
|
|
int dfx_close(
|
1470 |
|
|
struct device *dev
|
1471 |
|
|
)
|
1472 |
|
|
|
1473 |
|
|
{
|
1474 |
|
|
DFX_board_t *bp = (DFX_board_t *)dev->priv;
|
1475 |
|
|
|
1476 |
|
|
DBG_printk("In dfx_close...\n");
|
1477 |
|
|
|
1478 |
|
|
/* Disable PDQ interrupts first */
|
1479 |
|
|
|
1480 |
|
|
dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
|
1481 |
|
|
|
1482 |
|
|
/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
|
1483 |
|
|
|
1484 |
|
|
(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
|
1485 |
|
|
|
1486 |
|
|
/*
|
1487 |
|
|
* Flush any pending transmit buffers
|
1488 |
|
|
*
|
1489 |
|
|
* Note: It's important that we flush the transmit buffers
|
1490 |
|
|
* BEFORE we clear our copy of the Type 2 register.
|
1491 |
|
|
* Otherwise, we'll have no idea how many buffers
|
1492 |
|
|
* we need to free.
|
1493 |
|
|
*/
|
1494 |
|
|
|
1495 |
|
|
dfx_xmt_flush(bp);
|
1496 |
|
|
|
1497 |
|
|
/*
|
1498 |
|
|
* Clear Type 1 and Type 2 registers after adapter reset
|
1499 |
|
|
*
|
1500 |
|
|
* Note: Even though we're closing the adapter, it's
|
1501 |
|
|
* possible that an interrupt will occur after
|
1502 |
|
|
* dfx_close is called. Without some assurance to
|
1503 |
|
|
* the contrary we want to make sure that we don't
|
1504 |
|
|
* process receive and transmit LLC frames and update
|
1505 |
|
|
* the Type 2 register with bad information.
|
1506 |
|
|
*/
|
1507 |
|
|
|
1508 |
|
|
bp->cmd_req_reg.lword = 0;
|
1509 |
|
|
bp->cmd_rsp_reg.lword = 0;
|
1510 |
|
|
bp->rcv_xmt_reg.lword = 0;
|
1511 |
|
|
|
1512 |
|
|
/* Clear consumer block for the same reason given above */
|
1513 |
|
|
|
1514 |
|
|
memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
|
1515 |
|
|
|
1516 |
|
|
/* Clear device structure flags */
|
1517 |
|
|
|
1518 |
|
|
dev->start = 0;
|
1519 |
|
|
dev->tbusy = 1;
|
1520 |
|
|
|
1521 |
|
|
/* Deregister (free) IRQ */
|
1522 |
|
|
|
1523 |
|
|
free_irq(dev->irq, dev);
|
1524 |
|
|
return(0);
|
1525 |
|
|
}
|
1526 |
|
|
|
1527 |
|
|
|
1528 |
|
|
/*
|
1529 |
|
|
* ======================
|
1530 |
|
|
* = dfx_int_pr_halt_id =
|
1531 |
|
|
* ======================
|
1532 |
|
|
*
|
1533 |
|
|
* Overview:
|
1534 |
|
|
* Displays halt id's in string form.
|
1535 |
|
|
*
|
1536 |
|
|
* Returns:
|
1537 |
|
|
* None
|
1538 |
|
|
*
|
1539 |
|
|
* Arguments:
|
1540 |
|
|
* bp - pointer to board information
|
1541 |
|
|
*
|
1542 |
|
|
* Functional Description:
|
1543 |
|
|
* Determine current halt id and display appropriate string.
|
1544 |
|
|
*
|
1545 |
|
|
* Return Codes:
|
1546 |
|
|
* None
|
1547 |
|
|
*
|
1548 |
|
|
* Assumptions:
|
1549 |
|
|
* None
|
1550 |
|
|
*
|
1551 |
|
|
* Side Effects:
|
1552 |
|
|
* None
|
1553 |
|
|
*/
|
1554 |
|
|
|
1555 |
|
|
void dfx_int_pr_halt_id(
|
1556 |
|
|
DFX_board_t *bp
|
1557 |
|
|
)
|
1558 |
|
|
|
1559 |
|
|
{
|
1560 |
|
|
PI_UINT32 port_status; /* PDQ port status register value */
|
1561 |
|
|
PI_UINT32 halt_id; /* PDQ port status halt ID */
|
1562 |
|
|
|
1563 |
|
|
/* Read the latest port status */
|
1564 |
|
|
|
1565 |
|
|
dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
|
1566 |
|
|
|
1567 |
|
|
/* Display halt state transition information */
|
1568 |
|
|
|
1569 |
|
|
halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
|
1570 |
|
|
switch (halt_id)
|
1571 |
|
|
{
|
1572 |
|
|
case PI_HALT_ID_K_SELFTEST_TIMEOUT:
|
1573 |
|
|
printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
|
1574 |
|
|
break;
|
1575 |
|
|
|
1576 |
|
|
case PI_HALT_ID_K_PARITY_ERROR:
|
1577 |
|
|
printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
|
1578 |
|
|
break;
|
1579 |
|
|
|
1580 |
|
|
case PI_HALT_ID_K_HOST_DIR_HALT:
|
1581 |
|
|
printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
|
1582 |
|
|
break;
|
1583 |
|
|
|
1584 |
|
|
case PI_HALT_ID_K_SW_FAULT:
|
1585 |
|
|
printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
|
1586 |
|
|
break;
|
1587 |
|
|
|
1588 |
|
|
case PI_HALT_ID_K_HW_FAULT:
|
1589 |
|
|
printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
|
1590 |
|
|
break;
|
1591 |
|
|
|
1592 |
|
|
case PI_HALT_ID_K_PC_TRACE:
|
1593 |
|
|
printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
|
1594 |
|
|
break;
|
1595 |
|
|
|
1596 |
|
|
case PI_HALT_ID_K_DMA_ERROR:
|
1597 |
|
|
printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
|
1598 |
|
|
break;
|
1599 |
|
|
|
1600 |
|
|
case PI_HALT_ID_K_IMAGE_CRC_ERROR:
|
1601 |
|
|
printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
|
1602 |
|
|
break;
|
1603 |
|
|
|
1604 |
|
|
case PI_HALT_ID_K_BUS_EXCEPTION:
|
1605 |
|
|
printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
|
1606 |
|
|
break;
|
1607 |
|
|
|
1608 |
|
|
default:
|
1609 |
|
|
printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
|
1610 |
|
|
break;
|
1611 |
|
|
}
|
1612 |
|
|
return;
|
1613 |
|
|
}
|
1614 |
|
|
|
1615 |
|
|
|
1616 |
|
|
/*
|
1617 |
|
|
* ==========================
|
1618 |
|
|
* = dfx_int_type_0_process =
|
1619 |
|
|
* ==========================
|
1620 |
|
|
*
|
1621 |
|
|
* Overview:
|
1622 |
|
|
* Processes Type 0 interrupts.
|
1623 |
|
|
*
|
1624 |
|
|
* Returns:
|
1625 |
|
|
* None
|
1626 |
|
|
*
|
1627 |
|
|
* Arguments:
|
1628 |
|
|
* bp - pointer to board information
|
1629 |
|
|
*
|
1630 |
|
|
* Functional Description:
|
1631 |
|
|
* Processes all enabled Type 0 interrupts. If the reason for the interrupt
|
1632 |
|
|
* is a serious fault on the adapter, then an error message is displayed
|
1633 |
|
|
* and the adapter is reset.
|
1634 |
|
|
*
|
1635 |
|
|
* One tricky potential timing window is the rapid succession of "link avail"
|
1636 |
|
|
* "link unavail" state change interrupts. The acknowledgement of the Type 0
|
1637 |
|
|
* interrupt must be done before reading the state from the Port Status
|
1638 |
|
|
* register. This is true because a state change could occur after reading
|
1639 |
|
|
* the data, but before acknowledging the interrupt. If this state change
|
1640 |
|
|
* does happen, it would be lost because the driver is using the old state,
|
1641 |
|
|
* and it will never know about the new state because it subsequently
|
1642 |
|
|
* acknowledges the state change interrupt.
|
1643 |
|
|
*
|
1644 |
|
|
* INCORRECT CORRECT
|
1645 |
|
|
* read type 0 int reasons read type 0 int reasons
|
1646 |
|
|
* read adapter state ack type 0 interrupts
|
1647 |
|
|
* ack type 0 interrupts read adapter state
|
1648 |
|
|
* ... process interrupt ... ... process interrupt ...
|
1649 |
|
|
*
|
1650 |
|
|
* Return Codes:
|
1651 |
|
|
* None
|
1652 |
|
|
*
|
1653 |
|
|
* Assumptions:
|
1654 |
|
|
* None
|
1655 |
|
|
*
|
1656 |
|
|
* Side Effects:
|
1657 |
|
|
* An adapter reset may occur if the adapter has any Type 0 error interrupts
|
1658 |
|
|
* or if the port status indicates that the adapter is halted. The driver
|
1659 |
|
|
* is responsible for reinitializing the adapter with the current CAM
|
1660 |
|
|
* contents and adapter filter settings.
|
1661 |
|
|
*/
|
1662 |
|
|
|
1663 |
|
|
void dfx_int_type_0_process(
|
1664 |
|
|
DFX_board_t *bp
|
1665 |
|
|
)
|
1666 |
|
|
|
1667 |
|
|
{
|
1668 |
|
|
PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */
|
1669 |
|
|
PI_UINT32 state; /* current adap state (from port status) */
|
1670 |
|
|
|
1671 |
|
|
/*
|
1672 |
|
|
* Read host interrupt Type 0 register to determine which Type 0
|
1673 |
|
|
* interrupts are pending. Immediately write it back out to clear
|
1674 |
|
|
* those interrupts.
|
1675 |
|
|
*/
|
1676 |
|
|
|
1677 |
|
|
dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
|
1678 |
|
|
dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
|
1679 |
|
|
|
1680 |
|
|
/* Check for Type 0 error interrupts */
|
1681 |
|
|
|
1682 |
|
|
if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
|
1683 |
|
|
PI_TYPE_0_STAT_M_PM_PAR_ERR |
|
1684 |
|
|
PI_TYPE_0_STAT_M_BUS_PAR_ERR))
|
1685 |
|
|
{
|
1686 |
|
|
/* Check for Non-Existent Memory error */
|
1687 |
|
|
|
1688 |
|
|
if (type_0_status & PI_TYPE_0_STAT_M_NXM)
|
1689 |
|
|
printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
|
1690 |
|
|
|
1691 |
|
|
/* Check for Packet Memory Parity error */
|
1692 |
|
|
|
1693 |
|
|
if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
|
1694 |
|
|
printk("%s: Packet Memory Parity Error\n", bp->dev->name);
|
1695 |
|
|
|
1696 |
|
|
/* Check for Host Bus Parity error */
|
1697 |
|
|
|
1698 |
|
|
if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
|
1699 |
|
|
printk("%s: Host Bus Parity Error\n", bp->dev->name);
|
1700 |
|
|
|
1701 |
|
|
/* Reset adapter and bring it back on-line */
|
1702 |
|
|
|
1703 |
|
|
bp->link_available = PI_K_FALSE; /* link is no longer available */
|
1704 |
|
|
bp->reset_type = 0; /* rerun on-board diagnostics */
|
1705 |
|
|
printk("%s: Resetting adapter...\n", bp->dev->name);
|
1706 |
|
|
if (dfx_adap_init(bp) != DFX_K_SUCCESS)
|
1707 |
|
|
{
|
1708 |
|
|
printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
|
1709 |
|
|
dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
|
1710 |
|
|
return;
|
1711 |
|
|
}
|
1712 |
|
|
printk("%s: Adapter reset successful!\n", bp->dev->name);
|
1713 |
|
|
return;
|
1714 |
|
|
}
|
1715 |
|
|
|
1716 |
|
|
/* Check for transmit flush interrupt */
|
1717 |
|
|
|
1718 |
|
|
if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
|
1719 |
|
|
{
|
1720 |
|
|
/* Flush any pending xmt's and acknowledge the flush interrupt */
|
1721 |
|
|
|
1722 |
|
|
bp->link_available = PI_K_FALSE; /* link is no longer available */
|
1723 |
|
|
dfx_xmt_flush(bp); /* flush any outstanding packets */
|
1724 |
|
|
(void) dfx_hw_port_ctrl_req(bp,
|
1725 |
|
|
PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
|
1726 |
|
|
0,
|
1727 |
|
|
0,
|
1728 |
|
|
NULL);
|
1729 |
|
|
}
|
1730 |
|
|
|
1731 |
|
|
/* Check for adapter state change */
|
1732 |
|
|
|
1733 |
|
|
if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
|
1734 |
|
|
{
|
1735 |
|
|
/* Get latest adapter state */
|
1736 |
|
|
|
1737 |
|
|
state = dfx_hw_adap_state_rd(bp); /* get adapter state */
|
1738 |
|
|
if (state == PI_STATE_K_HALTED)
|
1739 |
|
|
{
|
1740 |
|
|
/*
|
1741 |
|
|
* Adapter has transitioned to HALTED state, try to reset
|
1742 |
|
|
* adapter to bring it back on-line. If reset fails,
|
1743 |
|
|
* leave the adapter in the broken state.
|
1744 |
|
|
*/
|
1745 |
|
|
|
1746 |
|
|
printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
|
1747 |
|
|
dfx_int_pr_halt_id(bp); /* display halt id as string */
|
1748 |
|
|
|
1749 |
|
|
/* Reset adapter and bring it back on-line */
|
1750 |
|
|
|
1751 |
|
|
bp->link_available = PI_K_FALSE; /* link is no longer available */
|
1752 |
|
|
bp->reset_type = 0; /* rerun on-board diagnostics */
|
1753 |
|
|
printk("%s: Resetting adapter...\n", bp->dev->name);
|
1754 |
|
|
if (dfx_adap_init(bp) != DFX_K_SUCCESS)
|
1755 |
|
|
{
|
1756 |
|
|
printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
|
1757 |
|
|
dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
|
1758 |
|
|
return;
|
1759 |
|
|
}
|
1760 |
|
|
printk("%s: Adapter reset successful!\n", bp->dev->name);
|
1761 |
|
|
}
|
1762 |
|
|
else if (state == PI_STATE_K_LINK_AVAIL)
|
1763 |
|
|
{
|
1764 |
|
|
bp->link_available = PI_K_TRUE; /* set link available flag */
|
1765 |
|
|
}
|
1766 |
|
|
}
|
1767 |
|
|
return;
|
1768 |
|
|
}
|
1769 |
|
|
|
1770 |
|
|
|
1771 |
|
|
/*
|
1772 |
|
|
* ==================
|
1773 |
|
|
* = dfx_int_common =
|
1774 |
|
|
* ==================
|
1775 |
|
|
*
|
1776 |
|
|
* Overview:
|
1777 |
|
|
* Interrupt service routine (ISR)
|
1778 |
|
|
*
|
1779 |
|
|
* Returns:
|
1780 |
|
|
* None
|
1781 |
|
|
*
|
1782 |
|
|
* Arguments:
|
1783 |
|
|
* bp - pointer to board information
|
1784 |
|
|
*
|
1785 |
|
|
* Functional Description:
|
1786 |
|
|
* This is the ISR which processes incoming adapter interrupts.
|
1787 |
|
|
*
|
1788 |
|
|
* Return Codes:
|
1789 |
|
|
* None
|
1790 |
|
|
*
|
1791 |
|
|
* Assumptions:
|
1792 |
|
|
* This routine assumes PDQ interrupts have not been disabled.
|
1793 |
|
|
* When interrupts are disabled at the PDQ, the Port Status register
|
1794 |
|
|
* is automatically cleared. This routine uses the Port Status
|
1795 |
|
|
* register value to determine whether a Type 0 interrupt occurred,
|
1796 |
|
|
* so it's important that adapter interrupts are not normally
|
1797 |
|
|
* enabled/disabled at the PDQ.
|
1798 |
|
|
*
|
1799 |
|
|
* It's vital that this routine is NOT reentered for the
|
1800 |
|
|
* same board and that the OS is not in another section of
|
1801 |
|
|
* code (eg. dfx_xmt_queue_pkt) for the same board on a
|
1802 |
|
|
* different thread.
|
1803 |
|
|
*
|
1804 |
|
|
* Side Effects:
|
1805 |
|
|
* Pending interrupts are serviced. Depending on the type of
|
1806 |
|
|
* interrupt, acknowledging and clearing the interrupt at the
|
1807 |
|
|
* PDQ involves writing a register to clear the interrupt bit
|
1808 |
|
|
* or updating completion indices.
|
1809 |
|
|
*/
|
1810 |
|
|
|
1811 |
|
|
void dfx_int_common(
|
1812 |
|
|
DFX_board_t *bp
|
1813 |
|
|
)
|
1814 |
|
|
|
1815 |
|
|
{
|
1816 |
|
|
PI_UINT32 port_status; /* Port Status register */
|
1817 |
|
|
|
1818 |
|
|
/* Process xmt interrupts - frequent case, so always call this routine */
|
1819 |
|
|
|
1820 |
|
|
dfx_xmt_done(bp); /* free consumed xmt packets */
|
1821 |
|
|
|
1822 |
|
|
/* Process rcv interrupts - frequent case, so always call this routine */
|
1823 |
|
|
|
1824 |
|
|
dfx_rcv_queue_process(bp); /* service received LLC frames */
|
1825 |
|
|
|
1826 |
|
|
/*
|
1827 |
|
|
* Transmit and receive producer and completion indices are updated on the
|
1828 |
|
|
* adapter by writing to the Type 2 Producer register. Since the frequent
|
1829 |
|
|
* case is that we'll be processing either LLC transmit or receive buffers,
|
1830 |
|
|
* we'll optimize I/O writes by doing a single register write here.
|
1831 |
|
|
*/
|
1832 |
|
|
|
1833 |
|
|
dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
|
1834 |
|
|
|
1835 |
|
|
/* Read PDQ Port Status register to find out which interrupts need processing */
|
1836 |
|
|
|
1837 |
|
|
dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
|
1838 |
|
|
|
1839 |
|
|
/* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
|
1840 |
|
|
|
1841 |
|
|
if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
|
1842 |
|
|
dfx_int_type_0_process(bp); /* process Type 0 interrupts */
|
1843 |
|
|
return;
|
1844 |
|
|
}
|
1845 |
|
|
|
1846 |
|
|
|
1847 |
|
|
/*
|
1848 |
|
|
* =================
|
1849 |
|
|
* = dfx_interrupt =
|
1850 |
|
|
* =================
|
1851 |
|
|
*
|
1852 |
|
|
* Overview:
|
1853 |
|
|
* Interrupt processing routine
|
1854 |
|
|
*
|
1855 |
|
|
* Returns:
|
1856 |
|
|
* None
|
1857 |
|
|
*
|
1858 |
|
|
* Arguments:
|
1859 |
|
|
* irq - interrupt vector
|
1860 |
|
|
* dev_id - pointer to device information
|
1861 |
|
|
* regs - pointer to registers structure
|
1862 |
|
|
*
|
1863 |
|
|
* Functional Description:
|
1864 |
|
|
* This routine calls the interrupt processing routine for this adapter. It
|
1865 |
|
|
* disables and reenables adapter interrupts, as appropriate. We can support
|
1866 |
|
|
* shared interrupts since the incoming dev_id pointer provides our device
|
1867 |
|
|
* structure context.
|
1868 |
|
|
*
|
1869 |
|
|
* Return Codes:
|
1870 |
|
|
* None
|
1871 |
|
|
*
|
1872 |
|
|
* Assumptions:
|
1873 |
|
|
* The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
|
1874 |
|
|
* on Intel-based systems) is done by the operating system outside this
|
1875 |
|
|
* routine.
|
1876 |
|
|
*
|
1877 |
|
|
* System interrupts are enabled through this call.
|
1878 |
|
|
*
|
1879 |
|
|
* Side Effects:
|
1880 |
|
|
* Interrupts are disabled, then reenabled at the adapter.
|
1881 |
|
|
*/
|
1882 |
|
|
|
1883 |
|
|
void dfx_interrupt(
|
1884 |
|
|
int irq,
|
1885 |
|
|
void *dev_id,
|
1886 |
|
|
struct pt_regs *regs
|
1887 |
|
|
)
|
1888 |
|
|
|
1889 |
|
|
{
|
1890 |
|
|
struct device *dev = (struct device *) dev_id;
|
1891 |
|
|
DFX_board_t *bp; /* private board structure pointer */
|
1892 |
|
|
u8 tmp; /* used for disabling/enabling ints */
|
1893 |
|
|
|
1894 |
|
|
/* Get board pointer only if device structure is valid */
|
1895 |
|
|
|
1896 |
|
|
if (dev == NULL)
|
1897 |
|
|
{
|
1898 |
|
|
printk("dfx_interrupt(): irq %d for unknown device!\n", irq);
|
1899 |
|
|
return;
|
1900 |
|
|
}
|
1901 |
|
|
bp = (DFX_board_t *) dev->priv;
|
1902 |
|
|
|
1903 |
|
|
/* See if we're already servicing an interrupt */
|
1904 |
|
|
|
1905 |
|
|
if (dev->interrupt)
|
1906 |
|
|
printk("%s: Re-entering the interrupt handler!\n", dev->name);
|
1907 |
|
|
dev->interrupt = DFX_MASK_INTERRUPTS; /* ensure non reentrancy */
|
1908 |
|
|
|
1909 |
|
|
/* Service adapter interrupts */
|
1910 |
|
|
|
1911 |
|
|
if (bp->bus_type == DFX_BUS_TYPE_PCI)
|
1912 |
|
|
{
|
1913 |
|
|
/* Disable PDQ-PFI interrupts at PFI */
|
1914 |
|
|
|
1915 |
|
|
dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, PFI_MODE_M_DMA_ENB);
|
1916 |
|
|
|
1917 |
|
|
/* Call interrupt service routine for this adapter */
|
1918 |
|
|
|
1919 |
|
|
dfx_int_common(bp);
|
1920 |
|
|
|
1921 |
|
|
/* Clear PDQ interrupt status bit and reenable interrupts */
|
1922 |
|
|
|
1923 |
|
|
dfx_port_write_long(bp, PFI_K_REG_STATUS, PFI_STATUS_M_PDQ_INT);
|
1924 |
|
|
dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
|
1925 |
|
|
(PFI_MODE_M_PDQ_INT_ENB + PFI_MODE_M_DMA_ENB));
|
1926 |
|
|
}
|
1927 |
|
|
else
|
1928 |
|
|
{
|
1929 |
|
|
/* Disable interrupts at the ESIC */
|
1930 |
|
|
|
1931 |
|
|
dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &tmp);
|
1932 |
|
|
tmp &= ~PI_CONFIG_STAT_0_M_INT_ENB;
|
1933 |
|
|
dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, tmp);
|
1934 |
|
|
|
1935 |
|
|
/* Call interrupt service routine for this adapter */
|
1936 |
|
|
|
1937 |
|
|
dfx_int_common(bp);
|
1938 |
|
|
|
1939 |
|
|
/* Reenable interrupts at the ESIC */
|
1940 |
|
|
|
1941 |
|
|
dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &tmp);
|
1942 |
|
|
tmp |= PI_CONFIG_STAT_0_M_INT_ENB;
|
1943 |
|
|
dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, tmp);
|
1944 |
|
|
}
|
1945 |
|
|
|
1946 |
|
|
dev->interrupt = DFX_UNMASK_INTERRUPTS;
|
1947 |
|
|
return;
|
1948 |
|
|
}
|
1949 |
|
|
|
1950 |
|
|
|
1951 |
|
|
/*
|
1952 |
|
|
* =====================
|
1953 |
|
|
* = dfx_ctl_get_stats =
|
1954 |
|
|
* =====================
|
1955 |
|
|
*
|
1956 |
|
|
* Overview:
|
1957 |
|
|
* Get statistics for FDDI adapter
|
1958 |
|
|
*
|
1959 |
|
|
* Returns:
|
1960 |
|
|
* Pointer to FDDI statistics structure
|
1961 |
|
|
*
|
1962 |
|
|
* Arguments:
|
1963 |
|
|
* dev - pointer to device information
|
1964 |
|
|
*
|
1965 |
|
|
* Functional Description:
|
1966 |
|
|
* Gets current MIB objects from adapter, then
|
1967 |
|
|
* returns FDDI statistics structure as defined
|
1968 |
|
|
* in if_fddi.h.
|
1969 |
|
|
*
|
1970 |
|
|
* Note: Since the FDDI statistics structure is
|
1971 |
|
|
* still new and the device structure doesn't
|
1972 |
|
|
* have an FDDI-specific get statistics handler,
|
1973 |
|
|
* we'll return the FDDI statistics structure as
|
1974 |
|
|
* a pointer to an Ethernet statistics structure.
|
1975 |
|
|
* That way, at least the first part of the statistics
|
1976 |
|
|
* structure can be decoded properly, and it allows
|
1977 |
|
|
* "smart" applications to perform a second cast to
|
1978 |
|
|
* decode the FDDI-specific statistics.
|
1979 |
|
|
*
|
1980 |
|
|
* We'll have to pay attention to this routine as the
|
1981 |
|
|
* device structure becomes more mature and LAN media
|
1982 |
|
|
* independent.
|
1983 |
|
|
*
|
1984 |
|
|
* Return Codes:
|
1985 |
|
|
* None
|
1986 |
|
|
*
|
1987 |
|
|
* Assumptions:
|
1988 |
|
|
* None
|
1989 |
|
|
*
|
1990 |
|
|
* Side Effects:
|
1991 |
|
|
* None
|
1992 |
|
|
*/
|
1993 |
|
|
|
1994 |
|
|
struct enet_statistics *dfx_ctl_get_stats(
|
1995 |
|
|
struct device *dev
|
1996 |
|
|
)
|
1997 |
|
|
|
1998 |
|
|
{
|
1999 |
|
|
DFX_board_t *bp = (DFX_board_t *)dev->priv;
|
2000 |
|
|
|
2001 |
|
|
/* Fill the bp->stats structure with driver-maintained counters */
|
2002 |
|
|
|
2003 |
|
|
bp->stats.rx_packets = bp->rcv_total_frames;
|
2004 |
|
|
bp->stats.tx_packets = bp->xmt_total_frames;
|
2005 |
|
|
bp->stats.rx_errors = (u32)(bp->rcv_crc_errors + bp->rcv_frame_status_errors + bp->rcv_length_errors);
|
2006 |
|
|
bp->stats.tx_errors = bp->xmt_length_errors;
|
2007 |
|
|
bp->stats.rx_dropped = bp->rcv_discards;
|
2008 |
|
|
bp->stats.tx_dropped = bp->xmt_discards;
|
2009 |
|
|
bp->stats.multicast = bp->rcv_multicast_frames;
|
2010 |
|
|
bp->stats.transmit_collision = 0; /* always zero (0) for FDDI */
|
2011 |
|
|
|
2012 |
|
|
/* Get FDDI SMT MIB objects */
|
2013 |
|
|
|
2014 |
|
|
bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
|
2015 |
|
|
if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
|
2016 |
|
|
return((struct enet_statistics *) &bp->stats);
|
2017 |
|
|
|
2018 |
|
|
/* Fill the bp->stats structure with the SMT MIB object values */
|
2019 |
|
|
|
2020 |
|
|
memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
|
2021 |
|
|
bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
|
2022 |
|
|
bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
|
2023 |
|
|
bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
|
2024 |
|
|
memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
|
2025 |
|
|
bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
|
2026 |
|
|
bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
|
2027 |
|
|
bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
|
2028 |
|
|
bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
|
2029 |
|
|
bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
|
2030 |
|
|
bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
|
2031 |
|
|
bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
|
2032 |
|
|
bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
|
2033 |
|
|
bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
|
2034 |
|
|
bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
|
2035 |
|
|
bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
|
2036 |
|
|
bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
|
2037 |
|
|
bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
|
2038 |
|
|
bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
|
2039 |
|
|
bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
|
2040 |
|
|
bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
|
2041 |
|
|
bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
|
2042 |
|
|
bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
|
2043 |
|
|
bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
|
2044 |
|
|
bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
|
2045 |
|
|
bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
|
2046 |
|
|
bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
|
2047 |
|
|
bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
|
2048 |
|
|
bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
|
2049 |
|
|
memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
|
2050 |
|
|
memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
|
2051 |
|
|
memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
|
2052 |
|
|
memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
|
2053 |
|
|
bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
|
2054 |
|
|
bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
|
2055 |
|
|
bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
|
2056 |
|
|
memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
|
2057 |
|
|
bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
|
2058 |
|
|
bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
|
2059 |
|
|
bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
|
2060 |
|
|
bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
|
2061 |
|
|
bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
|
2062 |
|
|
bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
|
2063 |
|
|
bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
|
2064 |
|
|
bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
|
2065 |
|
|
bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
|
2066 |
|
|
bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
|
2067 |
|
|
bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
|
2068 |
|
|
bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
|
2069 |
|
|
bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
|
2070 |
|
|
bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
|
2071 |
|
|
bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
|
2072 |
|
|
bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
|
2073 |
|
|
memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
|
2074 |
|
|
bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
|
2075 |
|
|
bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
|
2076 |
|
|
bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
|
2077 |
|
|
bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
|
2078 |
|
|
bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
|
2079 |
|
|
bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
|
2080 |
|
|
bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
|
2081 |
|
|
bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
|
2082 |
|
|
bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
|
2083 |
|
|
bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
|
2084 |
|
|
memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
|
2085 |
|
|
memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
|
2086 |
|
|
bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
|
2087 |
|
|
bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
|
2088 |
|
|
bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
|
2089 |
|
|
bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
|
2090 |
|
|
bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
|
2091 |
|
|
bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
|
2092 |
|
|
bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
|
2093 |
|
|
bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
|
2094 |
|
|
bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
|
2095 |
|
|
bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
|
2096 |
|
|
bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
|
2097 |
|
|
bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
|
2098 |
|
|
bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
|
2099 |
|
|
bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
|
2100 |
|
|
bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
|
2101 |
|
|
bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
|
2102 |
|
|
bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
|
2103 |
|
|
bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
|
2104 |
|
|
bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
|
2105 |
|
|
bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
|
2106 |
|
|
bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
|
2107 |
|
|
bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
|
2108 |
|
|
bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
|
2109 |
|
|
bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
|
2110 |
|
|
bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
|
2111 |
|
|
bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
|
2112 |
|
|
|
2113 |
|
|
/* Get FDDI counters */
|
2114 |
|
|
|
2115 |
|
|
bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
|
2116 |
|
|
if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
|
2117 |
|
|
return((struct enet_statistics *) &bp->stats);
|
2118 |
|
|
|
2119 |
|
|
/* Fill the bp->stats structure with the FDDI counter values */
|
2120 |
|
|
|
2121 |
|
|
bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
|
2122 |
|
|
bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
|
2123 |
|
|
bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
|
2124 |
|
|
bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
|
2125 |
|
|
bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
|
2126 |
|
|
bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
|
2127 |
|
|
bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
|
2128 |
|
|
bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
|
2129 |
|
|
bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
|
2130 |
|
|
bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
|
2131 |
|
|
bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
|
2132 |
|
|
|
2133 |
|
|
return((struct enet_statistics *) &bp->stats);
|
2134 |
|
|
}
|
2135 |
|
|
|
2136 |
|
|
|
2137 |
|
|
/*
|
2138 |
|
|
* ==============================
|
2139 |
|
|
* = dfx_ctl_set_multicast_list =
|
2140 |
|
|
* ==============================
|
2141 |
|
|
*
|
2142 |
|
|
* Overview:
|
2143 |
|
|
* Enable/Disable LLC frame promiscuous mode reception
|
2144 |
|
|
* on the adapter and/or update multicast address table.
|
2145 |
|
|
*
|
2146 |
|
|
* Returns:
|
2147 |
|
|
* None
|
2148 |
|
|
*
|
2149 |
|
|
* Arguments:
|
2150 |
|
|
* dev - pointer to device information
|
2151 |
|
|
*
|
2152 |
|
|
* Functional Description:
|
2153 |
|
|
* This routine follows a fairly simple algorithm for setting the
|
2154 |
|
|
* adapter filters and CAM:
|
2155 |
|
|
*
|
2156 |
|
|
* if IFF_PROMISC flag is set
|
2157 |
|
|
* enable LLC individual/group promiscuous mode
|
2158 |
|
|
* else
|
2159 |
|
|
* disable LLC individual/group promiscuous mode
|
2160 |
|
|
* if number of incoming multicast addresses >
|
2161 |
|
|
* (CAM max size - number of unicast addresses in CAM)
|
2162 |
|
|
* enable LLC group promiscuous mode
|
2163 |
|
|
* set driver-maintained multicast address count to zero
|
2164 |
|
|
* else
|
2165 |
|
|
* disable LLC group promiscuous mode
|
2166 |
|
|
* set driver-maintained multicast address count to incoming count
|
2167 |
|
|
* update adapter CAM
|
2168 |
|
|
* update adapter filters
|
2169 |
|
|
*
|
2170 |
|
|
* Return Codes:
|
2171 |
|
|
* None
|
2172 |
|
|
*
|
2173 |
|
|
* Assumptions:
|
2174 |
|
|
* Multicast addresses are presented in canonical (LSB) format.
|
2175 |
|
|
*
|
2176 |
|
|
* Side Effects:
|
2177 |
|
|
* On-board adapter CAM and filters are updated.
|
2178 |
|
|
*/
|
2179 |
|
|
|
2180 |
|
|
void dfx_ctl_set_multicast_list(
|
2181 |
|
|
struct device *dev
|
2182 |
|
|
)
|
2183 |
|
|
|
2184 |
|
|
{
|
2185 |
|
|
DFX_board_t *bp = (DFX_board_t *)dev->priv;
|
2186 |
|
|
int i; /* used as index in for loop */
|
2187 |
|
|
struct dev_mc_list *dmi; /* ptr to multicast addr entry */
|
2188 |
|
|
|
2189 |
|
|
/* Enable LLC frame promiscuous mode, if necessary */
|
2190 |
|
|
|
2191 |
|
|
if (dev->flags & IFF_PROMISC)
|
2192 |
|
|
bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */
|
2193 |
|
|
|
2194 |
|
|
/* Else, update multicast address table */
|
2195 |
|
|
|
2196 |
|
|
else
|
2197 |
|
|
{
|
2198 |
|
|
bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */
|
2199 |
|
|
/*
|
2200 |
|
|
* Check whether incoming multicast address count exceeds table size
|
2201 |
|
|
*
|
2202 |
|
|
* Note: The adapters utilize an on-board 64 entry CAM for
|
2203 |
|
|
* supporting perfect filtering of multicast packets
|
2204 |
|
|
* and bridge functions when adding unicast addresses.
|
2205 |
|
|
* There is no hash function available. To support
|
2206 |
|
|
* additional multicast addresses, the all multicast
|
2207 |
|
|
* filter (LLC group promiscuous mode) must be enabled.
|
2208 |
|
|
*
|
2209 |
|
|
* The firmware reserves two CAM entries for SMT-related
|
2210 |
|
|
* multicast addresses, which leaves 62 entries available.
|
2211 |
|
|
* The following code ensures that we're not being asked
|
2212 |
|
|
* to add more than 62 addresses to the CAM. If we are,
|
2213 |
|
|
* the driver will enable the all multicast filter.
|
2214 |
|
|
* Should the number of multicast addresses drop below
|
2215 |
|
|
* the high water mark, the filter will be disabled and
|
2216 |
|
|
* perfect filtering will be used.
|
2217 |
|
|
*/
|
2218 |
|
|
|
2219 |
|
|
if (dev->mc_count > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
|
2220 |
|
|
{
|
2221 |
|
|
bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
|
2222 |
|
|
bp->mc_count = 0; /* Don't add mc addrs to CAM */
|
2223 |
|
|
}
|
2224 |
|
|
else
|
2225 |
|
|
{
|
2226 |
|
|
bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */
|
2227 |
|
|
bp->mc_count = dev->mc_count; /* Add mc addrs to CAM */
|
2228 |
|
|
}
|
2229 |
|
|
|
2230 |
|
|
/* Copy addresses to multicast address table, then update adapter CAM */
|
2231 |
|
|
|
2232 |
|
|
dmi = dev->mc_list; /* point to first multicast addr */
|
2233 |
|
|
for (i=0; i < bp->mc_count; i++)
|
2234 |
|
|
{
|
2235 |
|
|
memcpy(&bp->mc_table[i*FDDI_K_ALEN], dmi->dmi_addr, FDDI_K_ALEN);
|
2236 |
|
|
dmi = dmi->next; /* point to next multicast addr */
|
2237 |
|
|
}
|
2238 |
|
|
if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
|
2239 |
|
|
{
|
2240 |
|
|
DBG_printk("%s: Could not update multicast address table!\n", dev->name);
|
2241 |
|
|
}
|
2242 |
|
|
else
|
2243 |
|
|
{
|
2244 |
|
|
DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count);
|
2245 |
|
|
}
|
2246 |
|
|
}
|
2247 |
|
|
|
2248 |
|
|
/* Update adapter filters */
|
2249 |
|
|
|
2250 |
|
|
if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
|
2251 |
|
|
{
|
2252 |
|
|
DBG_printk("%s: Could not update adapter filters!\n", dev->name);
|
2253 |
|
|
}
|
2254 |
|
|
else
|
2255 |
|
|
{
|
2256 |
|
|
DBG_printk("%s: Adapter filters updated!\n", dev->name);
|
2257 |
|
|
}
|
2258 |
|
|
return;
|
2259 |
|
|
}
|
2260 |
|
|
|
2261 |
|
|
|
2262 |
|
|
/*
|
2263 |
|
|
* ===========================
|
2264 |
|
|
* = dfx_ctl_set_mac_address =
|
2265 |
|
|
* ===========================
|
2266 |
|
|
*
|
2267 |
|
|
* Overview:
|
2268 |
|
|
* Add node address override (unicast address) to adapter
|
2269 |
|
|
* CAM and update dev_addr field in device table.
|
2270 |
|
|
*
|
2271 |
|
|
* Returns:
|
2272 |
|
|
* None
|
2273 |
|
|
*
|
2274 |
|
|
* Arguments:
|
2275 |
|
|
* dev - pointer to device information
|
2276 |
|
|
* addr - pointer to sockaddr structure containing unicast address to add
|
2277 |
|
|
*
|
2278 |
|
|
* Functional Description:
|
2279 |
|
|
* The adapter supports node address overrides by adding one or more
|
2280 |
|
|
* unicast addresses to the adapter CAM. This is similar to adding
|
2281 |
|
|
* multicast addresses. In this routine we'll update the driver and
|
2282 |
|
|
* device structures with the new address, then update the adapter CAM
|
2283 |
|
|
* to ensure that the adapter will copy and strip frames destined and
|
2284 |
|
|
* sourced by that address.
|
2285 |
|
|
*
|
2286 |
|
|
* Return Codes:
|
2287 |
|
|
* Always returns zero.
|
2288 |
|
|
*
|
2289 |
|
|
* Assumptions:
|
2290 |
|
|
* The address pointed to by addr->sa_data is a valid unicast
|
2291 |
|
|
* address and is presented in canonical (LSB) format.
|
2292 |
|
|
*
|
2293 |
|
|
* Side Effects:
|
2294 |
|
|
* On-board adapter CAM is updated. On-board adapter filters
|
2295 |
|
|
* may be updated.
|
2296 |
|
|
*/
|
2297 |
|
|
|
2298 |
|
|
int dfx_ctl_set_mac_address(
|
2299 |
|
|
struct device *dev,
|
2300 |
|
|
void *addr
|
2301 |
|
|
)
|
2302 |
|
|
|
2303 |
|
|
{
|
2304 |
|
|
DFX_board_t *bp = (DFX_board_t *)dev->priv;
|
2305 |
|
|
struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
|
2306 |
|
|
|
2307 |
|
|
/* Copy unicast address to driver-maintained structs and update count */
|
2308 |
|
|
|
2309 |
|
|
memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); /* update device struct */
|
2310 |
|
|
memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */
|
2311 |
|
|
bp->uc_count = 1;
|
2312 |
|
|
|
2313 |
|
|
/*
|
2314 |
|
|
* Verify we're not exceeding the CAM size by adding unicast address
|
2315 |
|
|
*
|
2316 |
|
|
* Note: It's possible that before entering this routine we've
|
2317 |
|
|
* already filled the CAM with 62 multicast addresses.
|
2318 |
|
|
* Since we need to place the node address override into
|
2319 |
|
|
* the CAM, we have to check to see that we're not
|
2320 |
|
|
* exceeding the CAM size. If we are, we have to enable
|
2321 |
|
|
* the LLC group (multicast) promiscuous mode filter as
|
2322 |
|
|
* in dfx_ctl_set_multicast_list.
|
2323 |
|
|
*/
|
2324 |
|
|
|
2325 |
|
|
if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
|
2326 |
|
|
{
|
2327 |
|
|
bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
|
2328 |
|
|
bp->mc_count = 0; /* Don't add mc addrs to CAM */
|
2329 |
|
|
|
2330 |
|
|
/* Update adapter filters */
|
2331 |
|
|
|
2332 |
|
|
if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
|
2333 |
|
|
{
|
2334 |
|
|
DBG_printk("%s: Could not update adapter filters!\n", dev->name);
|
2335 |
|
|
}
|
2336 |
|
|
else
|
2337 |
|
|
{
|
2338 |
|
|
DBG_printk("%s: Adapter filters updated!\n", dev->name);
|
2339 |
|
|
}
|
2340 |
|
|
}
|
2341 |
|
|
|
2342 |
|
|
/* Update adapter CAM with new unicast address */
|
2343 |
|
|
|
2344 |
|
|
if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
|
2345 |
|
|
{
|
2346 |
|
|
DBG_printk("%s: Could not set new MAC address!\n", dev->name);
|
2347 |
|
|
}
|
2348 |
|
|
else
|
2349 |
|
|
{
|
2350 |
|
|
DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
|
2351 |
|
|
}
|
2352 |
|
|
return(0); /* always return zero */
|
2353 |
|
|
}
|
2354 |
|
|
|
2355 |
|
|
|
2356 |
|
|
/*
|
2357 |
|
|
* ======================
|
2358 |
|
|
* = dfx_ctl_update_cam =
|
2359 |
|
|
* ======================
|
2360 |
|
|
*
|
2361 |
|
|
* Overview:
|
2362 |
|
|
* Procedure to update adapter CAM (Content Addressable Memory)
|
2363 |
|
|
* with desired unicast and multicast address entries.
|
2364 |
|
|
*
|
2365 |
|
|
* Returns:
|
2366 |
|
|
* Condition code
|
2367 |
|
|
*
|
2368 |
|
|
* Arguments:
|
2369 |
|
|
* bp - pointer to board information
|
2370 |
|
|
*
|
2371 |
|
|
* Functional Description:
|
2372 |
|
|
* Updates adapter CAM with current contents of board structure
|
2373 |
|
|
* unicast and multicast address tables. Since there are only 62
|
2374 |
|
|
* free entries in CAM, this routine ensures that the command
|
2375 |
|
|
* request buffer is not overrun.
|
2376 |
|
|
*
|
2377 |
|
|
* Return Codes:
|
2378 |
|
|
* DFX_K_SUCCESS - Request succeeded
|
2379 |
|
|
* DFX_K_FAILURE - Request failed
|
2380 |
|
|
*
|
2381 |
|
|
* Assumptions:
|
2382 |
|
|
* All addresses being added (unicast and multicast) are in canonical
|
2383 |
|
|
* order.
|
2384 |
|
|
*
|
2385 |
|
|
* Side Effects:
|
2386 |
|
|
* On-board adapter CAM is updated.
|
2387 |
|
|
*/
|
2388 |
|
|
|
2389 |
|
|
int dfx_ctl_update_cam(
|
2390 |
|
|
DFX_board_t *bp
|
2391 |
|
|
)
|
2392 |
|
|
|
2393 |
|
|
{
|
2394 |
|
|
int i; /* used as index */
|
2395 |
|
|
PI_LAN_ADDR *p_addr; /* pointer to CAM entry */
|
2396 |
|
|
|
2397 |
|
|
/*
|
2398 |
|
|
* Fill in command request information
|
2399 |
|
|
*
|
2400 |
|
|
* Note: Even though both the unicast and multicast address
|
2401 |
|
|
* table entries are stored as contiguous 6 byte entries,
|
2402 |
|
|
* the firmware address filter set command expects each
|
2403 |
|
|
* entry to be two longwords (8 bytes total). We must be
|
2404 |
|
|
* careful to only copy the six bytes of each unicast and
|
2405 |
|
|
* multicast table entry into each command entry. This
|
2406 |
|
|
* is also why we must first clear the entire command
|
2407 |
|
|
* request buffer.
|
2408 |
|
|
*/
|
2409 |
|
|
|
2410 |
|
|
memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */
|
2411 |
|
|
bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
|
2412 |
|
|
p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
|
2413 |
|
|
|
2414 |
|
|
/* Now add unicast addresses to command request buffer, if any */
|
2415 |
|
|
|
2416 |
|
|
for (i=0; i < (int)bp->uc_count; i++)
|
2417 |
|
|
{
|
2418 |
|
|
if (i < PI_CMD_ADDR_FILTER_K_SIZE)
|
2419 |
|
|
{
|
2420 |
|
|
memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
|
2421 |
|
|
p_addr++; /* point to next command entry */
|
2422 |
|
|
}
|
2423 |
|
|
}
|
2424 |
|
|
|
2425 |
|
|
/* Now add multicast addresses to command request buffer, if any */
|
2426 |
|
|
|
2427 |
|
|
for (i=0; i < (int)bp->mc_count; i++)
|
2428 |
|
|
{
|
2429 |
|
|
if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
|
2430 |
|
|
{
|
2431 |
|
|
memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
|
2432 |
|
|
p_addr++; /* point to next command entry */
|
2433 |
|
|
}
|
2434 |
|
|
}
|
2435 |
|
|
|
2436 |
|
|
/* Issue command to update adapter CAM, then return */
|
2437 |
|
|
|
2438 |
|
|
if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
|
2439 |
|
|
return(DFX_K_FAILURE);
|
2440 |
|
|
return(DFX_K_SUCCESS);
|
2441 |
|
|
}
|
2442 |
|
|
|
2443 |
|
|
|
2444 |
|
|
/*
|
2445 |
|
|
* ==========================
|
2446 |
|
|
* = dfx_ctl_update_filters =
|
2447 |
|
|
* ==========================
|
2448 |
|
|
*
|
2449 |
|
|
* Overview:
|
2450 |
|
|
* Procedure to update adapter filters with desired
|
2451 |
|
|
* filter settings.
|
2452 |
|
|
*
|
2453 |
|
|
* Returns:
|
2454 |
|
|
* Condition code
|
2455 |
|
|
*
|
2456 |
|
|
* Arguments:
|
2457 |
|
|
* bp - pointer to board information
|
2458 |
|
|
*
|
2459 |
|
|
* Functional Description:
|
2460 |
|
|
* Enables or disables filter using current filter settings.
|
2461 |
|
|
*
|
2462 |
|
|
* Return Codes:
|
2463 |
|
|
* DFX_K_SUCCESS - Request succeeded.
|
2464 |
|
|
* DFX_K_FAILURE - Request failed.
|
2465 |
|
|
*
|
2466 |
|
|
* Assumptions:
|
2467 |
|
|
* We must always pass up packets destined to the broadcast
|
2468 |
|
|
* address (FF-FF-FF-FF-FF-FF), so we'll always keep the
|
2469 |
|
|
* broadcast filter enabled.
|
2470 |
|
|
*
|
2471 |
|
|
* Side Effects:
|
2472 |
|
|
* On-board adapter filters are updated.
|
2473 |
|
|
*/
|
2474 |
|
|
|
2475 |
|
|
int dfx_ctl_update_filters(
|
2476 |
|
|
DFX_board_t *bp
|
2477 |
|
|
)
|
2478 |
|
|
|
2479 |
|
|
{
|
2480 |
|
|
int i = 0; /* used as index */
|
2481 |
|
|
|
2482 |
|
|
/* Fill in command request information */
|
2483 |
|
|
|
2484 |
|
|
bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
|
2485 |
|
|
|
2486 |
|
|
/* Initialize Broadcast filter - * ALWAYS ENABLED * */
|
2487 |
|
|
|
2488 |
|
|
bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST;
|
2489 |
|
|
bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS;
|
2490 |
|
|
|
2491 |
|
|
/* Initialize LLC Individual/Group Promiscuous filter */
|
2492 |
|
|
|
2493 |
|
|
bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM;
|
2494 |
|
|
bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom;
|
2495 |
|
|
|
2496 |
|
|
/* Initialize LLC Group Promiscuous filter */
|
2497 |
|
|
|
2498 |
|
|
bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM;
|
2499 |
|
|
bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom;
|
2500 |
|
|
|
2501 |
|
|
/* Terminate the item code list */
|
2502 |
|
|
|
2503 |
|
|
bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL;
|
2504 |
|
|
|
2505 |
|
|
/* Issue command to update adapter filters, then return */
|
2506 |
|
|
|
2507 |
|
|
if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
|
2508 |
|
|
return(DFX_K_FAILURE);
|
2509 |
|
|
return(DFX_K_SUCCESS);
|
2510 |
|
|
}
|
2511 |
|
|
|
2512 |
|
|
|
2513 |
|
|
/*
|
2514 |
|
|
* ======================
|
2515 |
|
|
* = dfx_hw_dma_cmd_req =
|
2516 |
|
|
* ======================
|
2517 |
|
|
*
|
2518 |
|
|
* Overview:
|
2519 |
|
|
* Sends PDQ DMA command to adapter firmware
|
2520 |
|
|
*
|
2521 |
|
|
* Returns:
|
2522 |
|
|
* Condition code
|
2523 |
|
|
*
|
2524 |
|
|
* Arguments:
|
2525 |
|
|
* bp - pointer to board information
|
2526 |
|
|
*
|
2527 |
|
|
* Functional Description:
|
2528 |
|
|
* The command request and response buffers are posted to the adapter in the manner
|
2529 |
|
|
* described in the PDQ Port Specification:
|
2530 |
|
|
*
|
2531 |
|
|
* 1. Command Response Buffer is posted to adapter.
|
2532 |
|
|
* 2. Command Request Buffer is posted to adapter.
|
2533 |
|
|
* 3. Command Request consumer index is polled until it indicates that request
|
2534 |
|
|
* buffer has been DMA'd to adapter.
|
2535 |
|
|
* 4. Command Response consumer index is polled until it indicates that response
|
2536 |
|
|
* buffer has been DMA'd from adapter.
|
2537 |
|
|
*
|
2538 |
|
|
* This ordering ensures that a response buffer is already available for the firmware
|
2539 |
|
|
* to use once it's done processing the request buffer.
|
2540 |
|
|
*
|
2541 |
|
|
* Return Codes:
|
2542 |
|
|
* DFX_K_SUCCESS - DMA command succeeded
|
2543 |
|
|
* DFX_K_OUTSTATE - Adapter is NOT in proper state
|
2544 |
|
|
* DFX_K_HW_TIMEOUT - DMA command timed out
|
2545 |
|
|
*
|
2546 |
|
|
* Assumptions:
|
2547 |
|
|
* Command request buffer has already been filled with desired DMA command.
|
2548 |
|
|
*
|
2549 |
|
|
* Side Effects:
|
2550 |
|
|
* None
|
2551 |
|
|
*/
|
2552 |
|
|
|
2553 |
|
|
int dfx_hw_dma_cmd_req(
|
2554 |
|
|
DFX_board_t *bp
|
2555 |
|
|
)
|
2556 |
|
|
|
2557 |
|
|
{
|
2558 |
|
|
int status; /* adapter status */
|
2559 |
|
|
int timeout_cnt; /* used in for loops */
|
2560 |
|
|
|
2561 |
|
|
/* Make sure the adapter is in a state that we can issue the DMA command in */
|
2562 |
|
|
|
2563 |
|
|
status = dfx_hw_adap_state_rd(bp);
|
2564 |
|
|
if ((status == PI_STATE_K_RESET) ||
|
2565 |
|
|
(status == PI_STATE_K_HALTED) ||
|
2566 |
|
|
(status == PI_STATE_K_DMA_UNAVAIL) ||
|
2567 |
|
|
(status == PI_STATE_K_UPGRADE))
|
2568 |
|
|
return(DFX_K_OUTSTATE);
|
2569 |
|
|
|
2570 |
|
|
/* Put response buffer on the command response queue */
|
2571 |
|
|
|
2572 |
|
|
bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
|
2573 |
|
|
((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
|
2574 |
|
|
bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
|
2575 |
|
|
|
2576 |
|
|
/* Bump (and wrap) the producer index and write out to register */
|
2577 |
|
|
|
2578 |
|
|
bp->cmd_rsp_reg.index.prod += 1;
|
2579 |
|
|
bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
|
2580 |
|
|
dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
|
2581 |
|
|
|
2582 |
|
|
/* Put request buffer on the command request queue */
|
2583 |
|
|
|
2584 |
|
|
bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
|
2585 |
|
|
PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
|
2586 |
|
|
bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
|
2587 |
|
|
|
2588 |
|
|
/* Bump (and wrap) the producer index and write out to register */
|
2589 |
|
|
|
2590 |
|
|
bp->cmd_req_reg.index.prod += 1;
|
2591 |
|
|
bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
|
2592 |
|
|
dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
|
2593 |
|
|
|
2594 |
|
|
/*
|
2595 |
|
|
* Here we wait for the command request consumer index to be equal
|
2596 |
|
|
* to the producer, indicating that the adapter has DMAed the request.
|
2597 |
|
|
*/
|
2598 |
|
|
|
2599 |
|
|
for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
|
2600 |
|
|
{
|
2601 |
|
|
if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
|
2602 |
|
|
break;
|
2603 |
|
|
udelay(100); /* wait for 100 microseconds */
|
2604 |
|
|
}
|
2605 |
|
|
if (timeout_cnt == 0)
|
2606 |
|
|
return(DFX_K_HW_TIMEOUT);
|
2607 |
|
|
|
2608 |
|
|
/* Bump (and wrap) the completion index and write out to register */
|
2609 |
|
|
|
2610 |
|
|
bp->cmd_req_reg.index.comp += 1;
|
2611 |
|
|
bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
|
2612 |
|
|
dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
|
2613 |
|
|
|
2614 |
|
|
/*
|
2615 |
|
|
* Here we wait for the command response consumer index to be equal
|
2616 |
|
|
* to the producer, indicating that the adapter has DMAed the response.
|
2617 |
|
|
*/
|
2618 |
|
|
|
2619 |
|
|
for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
|
2620 |
|
|
{
|
2621 |
|
|
if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
|
2622 |
|
|
break;
|
2623 |
|
|
udelay(100); /* wait for 100 microseconds */
|
2624 |
|
|
}
|
2625 |
|
|
if (timeout_cnt == 0)
|
2626 |
|
|
return(DFX_K_HW_TIMEOUT);
|
2627 |
|
|
|
2628 |
|
|
/* Bump (and wrap) the completion index and write out to register */
|
2629 |
|
|
|
2630 |
|
|
bp->cmd_rsp_reg.index.comp += 1;
|
2631 |
|
|
bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
|
2632 |
|
|
dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
|
2633 |
|
|
return(DFX_K_SUCCESS);
|
2634 |
|
|
}
|
2635 |
|
|
|
2636 |
|
|
|
2637 |
|
|
/*
|
2638 |
|
|
* ========================
|
2639 |
|
|
* = dfx_hw_port_ctrl_req =
|
2640 |
|
|
* ========================
|
2641 |
|
|
*
|
2642 |
|
|
* Overview:
|
2643 |
|
|
* Sends PDQ port control command to adapter firmware
|
2644 |
|
|
*
|
2645 |
|
|
* Returns:
|
2646 |
|
|
* Host data register value in host_data if ptr is not NULL
|
2647 |
|
|
*
|
2648 |
|
|
* Arguments:
|
2649 |
|
|
* bp - pointer to board information
|
2650 |
|
|
* command - port control command
|
2651 |
|
|
* data_a - port data A register value
|
2652 |
|
|
* data_b - port data B register value
|
2653 |
|
|
* host_data - ptr to host data register value
|
2654 |
|
|
*
|
2655 |
|
|
* Functional Description:
|
2656 |
|
|
* Send generic port control command to adapter by writing
|
2657 |
|
|
* to various PDQ port registers, then polling for completion.
|
2658 |
|
|
*
|
2659 |
|
|
* Return Codes:
|
2660 |
|
|
* DFX_K_SUCCESS - port control command succeeded
|
2661 |
|
|
* DFX_K_HW_TIMEOUT - port control command timed out
|
2662 |
|
|
*
|
2663 |
|
|
* Assumptions:
|
2664 |
|
|
* None
|
2665 |
|
|
*
|
2666 |
|
|
* Side Effects:
|
2667 |
|
|
* None
|
2668 |
|
|
*/
|
2669 |
|
|
|
2670 |
|
|
int dfx_hw_port_ctrl_req(
|
2671 |
|
|
DFX_board_t *bp,
|
2672 |
|
|
PI_UINT32 command,
|
2673 |
|
|
PI_UINT32 data_a,
|
2674 |
|
|
PI_UINT32 data_b,
|
2675 |
|
|
PI_UINT32 *host_data
|
2676 |
|
|
)
|
2677 |
|
|
|
2678 |
|
|
{
|
2679 |
|
|
PI_UINT32 port_cmd; /* Port Control command register value */
|
2680 |
|
|
int timeout_cnt; /* used in for loops */
|
2681 |
|
|
|
2682 |
|
|
/* Set Command Error bit in command longword */
|
2683 |
|
|
|
2684 |
|
|
port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
|
2685 |
|
|
|
2686 |
|
|
/* Issue port command to the adapter */
|
2687 |
|
|
|
2688 |
|
|
dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
|
2689 |
|
|
dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
|
2690 |
|
|
dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
|
2691 |
|
|
|
2692 |
|
|
/* Now wait for command to complete */
|
2693 |
|
|
|
2694 |
|
|
if (command == PI_PCTRL_M_BLAST_FLASH)
|
2695 |
|
|
timeout_cnt = 600000; /* set command timeout count to 60 seconds */
|
2696 |
|
|
else
|
2697 |
|
|
timeout_cnt = 20000; /* set command timeout count to 2 seconds */
|
2698 |
|
|
|
2699 |
|
|
for (; timeout_cnt > 0; timeout_cnt--)
|
2700 |
|
|
{
|
2701 |
|
|
dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
|
2702 |
|
|
if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
|
2703 |
|
|
break;
|
2704 |
|
|
udelay(100); /* wait for 100 microseconds */
|
2705 |
|
|
}
|
2706 |
|
|
if (timeout_cnt == 0)
|
2707 |
|
|
return(DFX_K_HW_TIMEOUT);
|
2708 |
|
|
|
2709 |
|
|
/*
|
2710 |
|
|
* If the address of host_data is non-zero, assume caller has supplied a
|
2711 |
|
|
* non NULL pointer, and return the contents of the HOST_DATA register in
|
2712 |
|
|
* it.
|
2713 |
|
|
*/
|
2714 |
|
|
|
2715 |
|
|
if (host_data != NULL)
|
2716 |
|
|
dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
|
2717 |
|
|
return(DFX_K_SUCCESS);
|
2718 |
|
|
}
|
2719 |
|
|
|
2720 |
|
|
|
2721 |
|
|
/*
|
2722 |
|
|
* =====================
|
2723 |
|
|
* = dfx_hw_adap_reset =
|
2724 |
|
|
* =====================
|
2725 |
|
|
*
|
2726 |
|
|
* Overview:
|
2727 |
|
|
* Resets adapter
|
2728 |
|
|
*
|
2729 |
|
|
* Returns:
|
2730 |
|
|
* None
|
2731 |
|
|
*
|
2732 |
|
|
* Arguments:
|
2733 |
|
|
* bp - pointer to board information
|
2734 |
|
|
* type - type of reset to perform
|
2735 |
|
|
*
|
2736 |
|
|
* Functional Description:
|
2737 |
|
|
* Issue soft reset to adapter by writing to PDQ Port Reset
|
2738 |
|
|
* register. Use incoming reset type to tell adapter what
|
2739 |
|
|
* kind of reset operation to perform.
|
2740 |
|
|
*
|
2741 |
|
|
* Return Codes:
|
2742 |
|
|
* None
|
2743 |
|
|
*
|
2744 |
|
|
* Assumptions:
|
2745 |
|
|
* This routine merely issues a soft reset to the adapter.
|
2746 |
|
|
* It is expected that after this routine returns, the caller
|
2747 |
|
|
* will appropriately poll the Port Status register for the
|
2748 |
|
|
* adapter to enter the proper state.
|
2749 |
|
|
*
|
2750 |
|
|
* Side Effects:
|
2751 |
|
|
* Internal adapter registers are cleared.
|
2752 |
|
|
*/
|
2753 |
|
|
|
2754 |
|
|
void dfx_hw_adap_reset(
|
2755 |
|
|
DFX_board_t *bp,
|
2756 |
|
|
PI_UINT32 type
|
2757 |
|
|
)
|
2758 |
|
|
|
2759 |
|
|
{
|
2760 |
|
|
/* Set Reset type and assert reset */
|
2761 |
|
|
|
2762 |
|
|
dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */
|
2763 |
|
|
dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
|
2764 |
|
|
|
2765 |
|
|
/* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
|
2766 |
|
|
|
2767 |
|
|
udelay(20);
|
2768 |
|
|
|
2769 |
|
|
/* Deassert reset */
|
2770 |
|
|
|
2771 |
|
|
dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
|
2772 |
|
|
return;
|
2773 |
|
|
}
|
2774 |
|
|
|
2775 |
|
|
|
2776 |
|
|
/*
|
2777 |
|
|
* ========================
|
2778 |
|
|
* = dfx_hw_adap_state_rd =
|
2779 |
|
|
* ========================
|
2780 |
|
|
*
|
2781 |
|
|
* Overview:
|
2782 |
|
|
* Returns current adapter state
|
2783 |
|
|
*
|
2784 |
|
|
* Returns:
|
2785 |
|
|
* Adapter state per PDQ Port Specification
|
2786 |
|
|
*
|
2787 |
|
|
* Arguments:
|
2788 |
|
|
* bp - pointer to board information
|
2789 |
|
|
*
|
2790 |
|
|
* Functional Description:
|
2791 |
|
|
* Reads PDQ Port Status register and returns adapter state.
|
2792 |
|
|
*
|
2793 |
|
|
* Return Codes:
|
2794 |
|
|
* None
|
2795 |
|
|
*
|
2796 |
|
|
* Assumptions:
|
2797 |
|
|
* None
|
2798 |
|
|
*
|
2799 |
|
|
* Side Effects:
|
2800 |
|
|
* None
|
2801 |
|
|
*/
|
2802 |
|
|
|
2803 |
|
|
int dfx_hw_adap_state_rd(
|
2804 |
|
|
DFX_board_t *bp
|
2805 |
|
|
)
|
2806 |
|
|
|
2807 |
|
|
{
|
2808 |
|
|
PI_UINT32 port_status; /* Port Status register value */
|
2809 |
|
|
|
2810 |
|
|
dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
|
2811 |
|
|
return((port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE);
|
2812 |
|
|
}
|
2813 |
|
|
|
2814 |
|
|
|
2815 |
|
|
/*
|
2816 |
|
|
* =====================
|
2817 |
|
|
* = dfx_hw_dma_uninit =
|
2818 |
|
|
* =====================
|
2819 |
|
|
*
|
2820 |
|
|
* Overview:
|
2821 |
|
|
* Brings adapter to DMA_UNAVAILABLE state
|
2822 |
|
|
*
|
2823 |
|
|
* Returns:
|
2824 |
|
|
* Condition code
|
2825 |
|
|
*
|
2826 |
|
|
* Arguments:
|
2827 |
|
|
* bp - pointer to board information
|
2828 |
|
|
* type - type of reset to perform
|
2829 |
|
|
*
|
2830 |
|
|
* Functional Description:
|
2831 |
|
|
* Bring adapter to DMA_UNAVAILABLE state by performing the following:
|
2832 |
|
|
* 1. Set reset type bit in Port Data A Register then reset adapter.
|
2833 |
|
|
* 2. Check that adapter is in DMA_UNAVAILABLE state.
|
2834 |
|
|
*
|
2835 |
|
|
* Return Codes:
|
2836 |
|
|
* DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state
|
2837 |
|
|
* DFX_K_HW_TIMEOUT - adapter did not reset properly
|
2838 |
|
|
*
|
2839 |
|
|
* Assumptions:
|
2840 |
|
|
* None
|
2841 |
|
|
*
|
2842 |
|
|
* Side Effects:
|
2843 |
|
|
* Internal adapter registers are cleared.
|
2844 |
|
|
*/
|
2845 |
|
|
|
2846 |
|
|
int dfx_hw_dma_uninit(
|
2847 |
|
|
DFX_board_t *bp,
|
2848 |
|
|
PI_UINT32 type
|
2849 |
|
|
)
|
2850 |
|
|
|
2851 |
|
|
{
|
2852 |
|
|
int timeout_cnt; /* used in for loops */
|
2853 |
|
|
|
2854 |
|
|
/* Set reset type bit and reset adapter */
|
2855 |
|
|
|
2856 |
|
|
dfx_hw_adap_reset(bp, type);
|
2857 |
|
|
|
2858 |
|
|
/* Now wait for adapter to enter DMA_UNAVAILABLE state */
|
2859 |
|
|
|
2860 |
|
|
for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
|
2861 |
|
|
{
|
2862 |
|
|
if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
|
2863 |
|
|
break;
|
2864 |
|
|
udelay(100); /* wait for 100 microseconds */
|
2865 |
|
|
}
|
2866 |
|
|
if (timeout_cnt == 0)
|
2867 |
|
|
return(DFX_K_HW_TIMEOUT);
|
2868 |
|
|
return(DFX_K_SUCCESS);
|
2869 |
|
|
}
|
2870 |
|
|
|
2871 |
|
|
|
2872 |
|
|
/*
|
2873 |
|
|
* ================
|
2874 |
|
|
* = dfx_rcv_init =
|
2875 |
|
|
* ================
|
2876 |
|
|
*
|
2877 |
|
|
* Overview:
|
2878 |
|
|
* Produces buffers to adapter LLC Host receive descriptor block
|
2879 |
|
|
*
|
2880 |
|
|
* Returns:
|
2881 |
|
|
* None
|
2882 |
|
|
*
|
2883 |
|
|
* Arguments:
|
2884 |
|
|
* bp - pointer to board information
|
2885 |
|
|
*
|
2886 |
|
|
* Functional Description:
|
2887 |
|
|
* This routine can be called during dfx_adap_init() or during an adapter
|
2888 |
|
|
* reset. It initializes the descriptor block and produces all allocated
|
2889 |
|
|
* LLC Host queue receive buffers.
|
2890 |
|
|
*
|
2891 |
|
|
* Return Codes:
|
2892 |
|
|
* None
|
2893 |
|
|
*
|
2894 |
|
|
* Assumptions:
|
2895 |
|
|
* The PDQ has been reset and the adapter and driver maintained Type 2
|
2896 |
|
|
* register indices are cleared.
|
2897 |
|
|
*
|
2898 |
|
|
* Side Effects:
|
2899 |
|
|
* Receive buffers are posted to the adapter LLC queue and the adapter
|
2900 |
|
|
* is notified.
|
2901 |
|
|
*/
|
2902 |
|
|
|
2903 |
|
|
void dfx_rcv_init(
|
2904 |
|
|
DFX_board_t *bp
|
2905 |
|
|
)
|
2906 |
|
|
|
2907 |
|
|
{
|
2908 |
|
|
int i, j; /* used in for loop */
|
2909 |
|
|
|
2910 |
|
|
/*
|
2911 |
|
|
* Since each receive buffer is a single fragment of same length, initialize
|
2912 |
|
|
* first longword in each receive descriptor for entire LLC Host descriptor
|
2913 |
|
|
* block. Also initialize second longword in each receive descriptor with
|
2914 |
|
|
* physical address of receive buffer. We'll always allocate receive
|
2915 |
|
|
* buffers in powers of 2 so that we can easily fill the 256 entry descriptor
|
2916 |
|
|
* block and produce new receive buffers by simply updating the receive
|
2917 |
|
|
* producer index.
|
2918 |
|
|
*
|
2919 |
|
|
* Assumptions:
|
2920 |
|
|
* To support all shipping versions of PDQ, the receive buffer size
|
2921 |
|
|
* must be mod 128 in length and the physical address must be 128 byte
|
2922 |
|
|
* aligned. In other words, bits 0-6 of the length and address must
|
2923 |
|
|
* be zero for the following descriptor field entries to be correct on
|
2924 |
|
|
* all PDQ-based boards. We guaranteed both requirements during
|
2925 |
|
|
* driver initialization when we allocated memory for the receive buffers.
|
2926 |
|
|
*/
|
2927 |
|
|
|
2928 |
|
|
for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
|
2929 |
|
|
for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
|
2930 |
|
|
{
|
2931 |
|
|
bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
|
2932 |
|
|
((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
|
2933 |
|
|
bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
|
2934 |
|
|
bp->p_rcv_buff_va[i+j] = (char *) (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
|
2935 |
|
|
}
|
2936 |
|
|
|
2937 |
|
|
/* Update receive producer and Type 2 register */
|
2938 |
|
|
|
2939 |
|
|
bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
|
2940 |
|
|
dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
|
2941 |
|
|
return;
|
2942 |
|
|
}
|
2943 |
|
|
|
2944 |
|
|
|
2945 |
|
|
/*
|
2946 |
|
|
* =========================
|
2947 |
|
|
* = dfx_rcv_queue_process =
|
2948 |
|
|
* =========================
|
2949 |
|
|
*
|
2950 |
|
|
* Overview:
|
2951 |
|
|
* Process received LLC frames.
|
2952 |
|
|
*
|
2953 |
|
|
* Returns:
|
2954 |
|
|
* None
|
2955 |
|
|
*
|
2956 |
|
|
* Arguments:
|
2957 |
|
|
* bp - pointer to board information
|
2958 |
|
|
*
|
2959 |
|
|
* Functional Description:
|
2960 |
|
|
* Received LLC frames are processed until there are no more consumed frames.
|
2961 |
|
|
* Once all frames are processed, the receive buffers are returned to the
|
2962 |
|
|
* adapter. Note that this algorithm fixes the length of time that can be spent
|
2963 |
|
|
* in this routine, because there are a fixed number of receive buffers to
|
2964 |
|
|
* process and buffers are not produced until this routine exits and returns
|
2965 |
|
|
* to the ISR.
|
2966 |
|
|
*
|
2967 |
|
|
* Return Codes:
|
2968 |
|
|
* None
|
2969 |
|
|
*
|
2970 |
|
|
* Assumptions:
|
2971 |
|
|
* None
|
2972 |
|
|
*
|
2973 |
|
|
* Side Effects:
|
2974 |
|
|
* None
|
2975 |
|
|
*/
|
2976 |
|
|
|
2977 |
|
|
void dfx_rcv_queue_process(
|
2978 |
|
|
DFX_board_t *bp
|
2979 |
|
|
)
|
2980 |
|
|
|
2981 |
|
|
{
|
2982 |
|
|
PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
|
2983 |
|
|
char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */
|
2984 |
|
|
u32 descr, pkt_len; /* FMC descriptor field and packet length */
|
2985 |
|
|
struct sk_buff *skb; /* pointer to a sk_buff to hold incoming packet data */
|
2986 |
|
|
|
2987 |
|
|
/* Service all consumed LLC receive frames */
|
2988 |
|
|
|
2989 |
|
|
p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
|
2990 |
|
|
while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
|
2991 |
|
|
{
|
2992 |
|
|
/* Process any errors */
|
2993 |
|
|
|
2994 |
|
|
p_buff = (char *) bp->p_rcv_buff_va[bp->rcv_xmt_reg.index.rcv_comp];
|
2995 |
|
|
memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
|
2996 |
|
|
|
2997 |
|
|
if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
|
2998 |
|
|
{
|
2999 |
|
|
if (descr & PI_FMC_DESCR_M_RCC_CRC)
|
3000 |
|
|
bp->rcv_crc_errors++;
|
3001 |
|
|
else
|
3002 |
|
|
bp->rcv_frame_status_errors++;
|
3003 |
|
|
}
|
3004 |
|
|
else
|
3005 |
|
|
{
|
3006 |
|
|
/* The frame was received without errors - verify packet length */
|
3007 |
|
|
|
3008 |
|
|
pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
|
3009 |
|
|
pkt_len -= 4; /* subtract 4 byte CRC */
|
3010 |
|
|
if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
|
3011 |
|
|
bp->rcv_length_errors++;
|
3012 |
|
|
else
|
3013 |
|
|
{
|
3014 |
|
|
skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */
|
3015 |
|
|
if (skb == NULL)
|
3016 |
|
|
{
|
3017 |
|
|
printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name);
|
3018 |
|
|
bp->rcv_discards++;
|
3019 |
|
|
}
|
3020 |
|
|
else
|
3021 |
|
|
{
|
3022 |
|
|
/* Receive buffer allocated, pass receive packet up */
|
3023 |
|
|
|
3024 |
|
|
memcpy(skb->data, p_buff + RCV_BUFF_K_PADDING, pkt_len+3);
|
3025 |
|
|
skb->data += 3; /* adjust data field so that it points to FC byte */
|
3026 |
|
|
skb->len = pkt_len; /* pass up packet length, NOT including CRC */
|
3027 |
|
|
skb->dev = bp->dev; /* pass up device pointer */
|
3028 |
|
|
skb->protocol = fddi_type_trans(skb, bp->dev);
|
3029 |
|
|
netif_rx(skb);
|
3030 |
|
|
|
3031 |
|
|
/* Update the rcv counters */
|
3032 |
|
|
|
3033 |
|
|
bp->rcv_total_frames++;
|
3034 |
|
|
if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
|
3035 |
|
|
bp->rcv_multicast_frames++;
|
3036 |
|
|
}
|
3037 |
|
|
}
|
3038 |
|
|
}
|
3039 |
|
|
|
3040 |
|
|
/*
|
3041 |
|
|
* Advance the producer (for recycling) and advance the completion
|
3042 |
|
|
* (for servicing received frames). Note that it is okay to
|
3043 |
|
|
* advance the producer without checking that it passes the
|
3044 |
|
|
* completion index because they are both advanced at the same
|
3045 |
|
|
* rate.
|
3046 |
|
|
*/
|
3047 |
|
|
|
3048 |
|
|
bp->rcv_xmt_reg.index.rcv_prod += 1;
|
3049 |
|
|
bp->rcv_xmt_reg.index.rcv_comp += 1;
|
3050 |
|
|
}
|
3051 |
|
|
return;
|
3052 |
|
|
}
|
3053 |
|
|
|
3054 |
|
|
|
3055 |
|
|
/*
|
3056 |
|
|
* =====================
|
3057 |
|
|
* = dfx_xmt_queue_pkt =
|
3058 |
|
|
* =====================
|
3059 |
|
|
*
|
3060 |
|
|
* Overview:
|
3061 |
|
|
* Queues packets for transmission
|
3062 |
|
|
*
|
3063 |
|
|
* Returns:
|
3064 |
|
|
* Condition code
|
3065 |
|
|
*
|
3066 |
|
|
* Arguments:
|
3067 |
|
|
* skb - pointer to sk_buff to queue for transmission
|
3068 |
|
|
* dev - pointer to device information
|
3069 |
|
|
*
|
3070 |
|
|
* Functional Description:
|
3071 |
|
|
* Here we assume that an incoming skb transmit request
|
3072 |
|
|
* is contained in a single physically contiguous buffer
|
3073 |
|
|
* in which the virtual address of the start of packet
|
3074 |
|
|
* (skb->data) can be converted to a physical address
|
3075 |
|
|
* by using virt_to_bus().
|
3076 |
|
|
*
|
3077 |
|
|
* Since the adapter architecture requires a three byte
|
3078 |
|
|
* packet request header to prepend the start of packet,
|
3079 |
|
|
* we'll write the three byte field immediately prior to
|
3080 |
|
|
* the FC byte. This assumption is valid because we've
|
3081 |
|
|
* ensured that dev->hard_header_len includes three pad
|
3082 |
|
|
* bytes. By posting a single fragment to the adapter,
|
3083 |
|
|
* we'll reduce the number of descriptor fetches and
|
3084 |
|
|
* bus traffic needed to send the request.
|
3085 |
|
|
*
|
3086 |
|
|
* Also, we can't free the skb until after it's been DMA'd
|
3087 |
|
|
* out by the adapter, so we'll queue it in the driver and
|
3088 |
|
|
* return it in dfx_xmt_done.
|
3089 |
|
|
*
|
3090 |
|
|
* Return Codes:
|
3091 |
|
|
* 0 - driver queued packet, link is unavailable, or skbuff was bad
|
3092 |
|
|
* 1 - caller should requeue the sk_buff for later transmission
|
3093 |
|
|
*
|
3094 |
|
|
* Assumptions:
|
3095 |
|
|
* First and foremost, we assume the incoming skb pointer
|
3096 |
|
|
* is NOT NULL and is pointing to a valid sk_buff structure.
|
3097 |
|
|
*
|
3098 |
|
|
* The outgoing packet is complete, starting with the
|
3099 |
|
|
* frame control byte including the last byte of data,
|
3100 |
|
|
* but NOT including the 4 byte CRC. We'll let the
|
3101 |
|
|
* adapter hardware generate and append the CRC.
|
3102 |
|
|
*
|
3103 |
|
|
* The entire packet is stored in one physically
|
3104 |
|
|
* contiguous buffer which is not cached and whose
|
3105 |
|
|
* 32-bit physical address can be determined.
|
3106 |
|
|
*
|
3107 |
|
|
* It's vital that this routine is NOT reentered for the
|
3108 |
|
|
* same board and that the OS is not in another section of
|
3109 |
|
|
* code (eg. dfx_int_common) for the same board on a
|
3110 |
|
|
* different thread.
|
3111 |
|
|
*
|
3112 |
|
|
* Side Effects:
|
3113 |
|
|
* None
|
3114 |
|
|
*/
|
3115 |
|
|
|
3116 |
|
|
int dfx_xmt_queue_pkt(
|
3117 |
|
|
struct sk_buff *skb,
|
3118 |
|
|
struct device *dev
|
3119 |
|
|
)
|
3120 |
|
|
|
3121 |
|
|
{
|
3122 |
|
|
DFX_board_t *bp = (DFX_board_t *) dev->priv;
|
3123 |
|
|
u8 prod; /* local transmit producer index */
|
3124 |
|
|
PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */
|
3125 |
|
|
XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
|
3126 |
|
|
|
3127 |
|
|
/*
|
3128 |
|
|
* Verify that incoming transmit request is OK
|
3129 |
|
|
*
|
3130 |
|
|
* Note: The packet size check is consistent with other
|
3131 |
|
|
* Linux device drivers, although the correct packet
|
3132 |
|
|
* size should be verified before calling the
|
3133 |
|
|
* transmit routine.
|
3134 |
|
|
*/
|
3135 |
|
|
|
3136 |
|
|
if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
|
3137 |
|
|
{
|
3138 |
|
|
printk("%s: Invalid packet length - %lu bytes\n", dev->name, skb->len);
|
3139 |
|
|
bp->xmt_length_errors++; /* bump error counter */
|
3140 |
|
|
dev_tint(dev); /* dequeue packets from xmt queue and send them */
|
3141 |
|
|
dev_kfree_skb(skb, FREE_WRITE);
|
3142 |
|
|
return(0); /* return "success" */
|
3143 |
|
|
}
|
3144 |
|
|
|
3145 |
|
|
/*
|
3146 |
|
|
* See if adapter link is available, if not, free buffer
|
3147 |
|
|
*
|
3148 |
|
|
* Note: If the link isn't available, free buffer and return 0
|
3149 |
|
|
* rather than tell the upper layer to requeue the packet.
|
3150 |
|
|
* The methodology here is that by the time the link
|
3151 |
|
|
* becomes available, the packet to be sent will be
|
3152 |
|
|
* fairly stale. By simply dropping the packet, the
|
3153 |
|
|
* higher layer protocols will eventually time out
|
3154 |
|
|
* waiting for response packets which it won't receive.
|
3155 |
|
|
*/
|
3156 |
|
|
|
3157 |
|
|
if (bp->link_available == PI_K_FALSE)
|
3158 |
|
|
{
|
3159 |
|
|
if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */
|
3160 |
|
|
bp->link_available = PI_K_TRUE; /* if so, set flag and continue */
|
3161 |
|
|
else
|
3162 |
|
|
{
|
3163 |
|
|
bp->xmt_discards++; /* bump error counter */
|
3164 |
|
|
dev_kfree_skb(skb, FREE_WRITE); /* free sk_buff now */
|
3165 |
|
|
return(0); /* return "success" */
|
3166 |
|
|
}
|
3167 |
|
|
}
|
3168 |
|
|
|
3169 |
|
|
/* Get the current producer and the next free xmt data descriptor */
|
3170 |
|
|
|
3171 |
|
|
prod = bp->rcv_xmt_reg.index.xmt_prod;
|
3172 |
|
|
p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
|
3173 |
|
|
|
3174 |
|
|
/*
|
3175 |
|
|
* Get pointer to auxiliary queue entry to contain information for this packet.
|
3176 |
|
|
*
|
3177 |
|
|
* Note: The current xmt producer index will become the current xmt completion
|
3178 |
|
|
* index when we complete this packet later on. So, we'll get the
|
3179 |
|
|
* pointer to the next auxiliary queue entry now before we bump the
|
3180 |
|
|
* producer index.
|
3181 |
|
|
*/
|
3182 |
|
|
|
3183 |
|
|
p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */
|
3184 |
|
|
|
3185 |
|
|
/* Write the three PRH bytes immediately before the FC byte */
|
3186 |
|
|
|
3187 |
|
|
*((char *)skb->data - 3) = DFX_PRH0_BYTE; /* these byte values are defined */
|
3188 |
|
|
*((char *)skb->data - 2) = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */
|
3189 |
|
|
*((char *)skb->data - 1) = DFX_PRH2_BYTE; /* specification */
|
3190 |
|
|
|
3191 |
|
|
/*
|
3192 |
|
|
* Write the descriptor with buffer info and bump producer
|
3193 |
|
|
*
|
3194 |
|
|
* Note: Since we need to start DMA from the packet request
|
3195 |
|
|
* header, we'll add 3 bytes to the DMA buffer length,
|
3196 |
|
|
* and we'll determine the physical address of the
|
3197 |
|
|
* buffer from the PRH, not skb->data.
|
3198 |
|
|
*
|
3199 |
|
|
* Assumptions:
|
3200 |
|
|
* 1. Packet starts with the frame control (FC) byte
|
3201 |
|
|
* at skb->data.
|
3202 |
|
|
* 2. The 4-byte CRC is not appended to the buffer or
|
3203 |
|
|
* included in the length.
|
3204 |
|
|
* 3. Packet length (skb->len) is from FC to end of
|
3205 |
|
|
* data, inclusive.
|
3206 |
|
|
* 4. The packet length does not exceed the maximum
|
3207 |
|
|
* FDDI LLC frame length of 4491 bytes.
|
3208 |
|
|
* 5. The entire packet is contained in a physically
|
3209 |
|
|
* contiguous, non-cached, locked memory space
|
3210 |
|
|
* comprised of a single buffer pointed to by
|
3211 |
|
|
* skb->data.
|
3212 |
|
|
* 6. The physical address of the start of packet
|
3213 |
|
|
* can be determined from the virtual address
|
3214 |
|
|
* by using virt_to_bus() and is only 32-bits
|
3215 |
|
|
* wide.
|
3216 |
|
|
*/
|
3217 |
|
|
|
3218 |
|
|
p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len + 3) << PI_XMT_DESCR_V_SEG_LEN));
|
3219 |
|
|
p_xmt_descr->long_1 = (u32) virt_to_bus(skb->data - 3);
|
3220 |
|
|
|
3221 |
|
|
/*
|
3222 |
|
|
* Verify that descriptor is actually available
|
3223 |
|
|
*
|
3224 |
|
|
* Note: If descriptor isn't available, return 1 which tells
|
3225 |
|
|
* the upper layer to requeue the packet for later
|
3226 |
|
|
* transmission.
|
3227 |
|
|
*
|
3228 |
|
|
* We need to ensure that the producer never reaches the
|
3229 |
|
|
* completion, except to indicate that the queue is empty.
|
3230 |
|
|
*/
|
3231 |
|
|
|
3232 |
|
|
if (prod == bp->rcv_xmt_reg.index.xmt_comp)
|
3233 |
|
|
return(1); /* requeue packet for later */
|
3234 |
|
|
|
3235 |
|
|
/*
|
3236 |
|
|
* Save info for this packet for xmt done indication routine
|
3237 |
|
|
*
|
3238 |
|
|
* Normally, we'd save the producer index in the p_xmt_drv_descr
|
3239 |
|
|
* structure so that we'd have it handy when we complete this
|
3240 |
|
|
* packet later (in dfx_xmt_done). However, since the current
|
3241 |
|
|
* transmit architecture guarantees a single fragment for the
|
3242 |
|
|
* entire packet, we can simply bump the completion index by
|
3243 |
|
|
* one (1) for each completed packet.
|
3244 |
|
|
*
|
3245 |
|
|
* Note: If this assumption changes and we're presented with
|
3246 |
|
|
* an inconsistent number of transmit fragments for packet
|
3247 |
|
|
* data, we'll need to modify this code to save the current
|
3248 |
|
|
* transmit producer index.
|
3249 |
|
|
*/
|
3250 |
|
|
|
3251 |
|
|
p_xmt_drv_descr->p_skb = skb;
|
3252 |
|
|
|
3253 |
|
|
/* Update Type 2 register */
|
3254 |
|
|
|
3255 |
|
|
bp->rcv_xmt_reg.index.xmt_prod = prod;
|
3256 |
|
|
dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
|
3257 |
|
|
return(0); /* packet queued to adapter */
|
3258 |
|
|
}
|
3259 |
|
|
|
3260 |
|
|
|
3261 |
|
|
/*
|
3262 |
|
|
* ================
|
3263 |
|
|
* = dfx_xmt_done =
|
3264 |
|
|
* ================
|
3265 |
|
|
*
|
3266 |
|
|
* Overview:
|
3267 |
|
|
* Processes all frames that have been transmitted.
|
3268 |
|
|
*
|
3269 |
|
|
* Returns:
|
3270 |
|
|
* None
|
3271 |
|
|
*
|
3272 |
|
|
* Arguments:
|
3273 |
|
|
* bp - pointer to board information
|
3274 |
|
|
*
|
3275 |
|
|
* Functional Description:
|
3276 |
|
|
* For all consumed transmit descriptors that have not
|
3277 |
|
|
* yet been completed, we'll free the skb we were holding
|
3278 |
|
|
* onto using dev_kfree_skb and bump the appropriate
|
3279 |
|
|
* counters.
|
3280 |
|
|
*
|
3281 |
|
|
* Return Codes:
|
3282 |
|
|
* None
|
3283 |
|
|
*
|
3284 |
|
|
* Assumptions:
|
3285 |
|
|
* The Type 2 register is not updated in this routine. It is
|
3286 |
|
|
* assumed that it will be updated in the ISR when dfx_xmt_done
|
3287 |
|
|
* returns.
|
3288 |
|
|
*
|
3289 |
|
|
* Side Effects:
|
3290 |
|
|
* None
|
3291 |
|
|
*/
|
3292 |
|
|
|
3293 |
|
|
void dfx_xmt_done(
|
3294 |
|
|
DFX_board_t *bp
|
3295 |
|
|
)
|
3296 |
|
|
|
3297 |
|
|
{
|
3298 |
|
|
XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
|
3299 |
|
|
PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
|
3300 |
|
|
|
3301 |
|
|
/* Service all consumed transmit frames */
|
3302 |
|
|
|
3303 |
|
|
p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
|
3304 |
|
|
while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
|
3305 |
|
|
{
|
3306 |
|
|
/* Get pointer to the transmit driver descriptor block information */
|
3307 |
|
|
|
3308 |
|
|
p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
|
3309 |
|
|
|
3310 |
|
|
/* Return skb to operating system */
|
3311 |
|
|
|
3312 |
|
|
dev_kfree_skb(p_xmt_drv_descr->p_skb, FREE_WRITE);
|
3313 |
|
|
|
3314 |
|
|
/* Increment transmit counters */
|
3315 |
|
|
|
3316 |
|
|
bp->xmt_total_frames++;
|
3317 |
|
|
|
3318 |
|
|
/*
|
3319 |
|
|
* Move to start of next packet by updating completion index
|
3320 |
|
|
*
|
3321 |
|
|
* Here we assume that a transmit packet request is always
|
3322 |
|
|
* serviced by posting one fragment. We can therefore
|
3323 |
|
|
* simplify the completion code by incrementing the
|
3324 |
|
|
* completion index by one. This code will need to be
|
3325 |
|
|
* modified if this assumption changes. See comments
|
3326 |
|
|
* in dfx_xmt_queue_pkt for more details.
|
3327 |
|
|
*/
|
3328 |
|
|
|
3329 |
|
|
bp->rcv_xmt_reg.index.xmt_comp += 1;
|
3330 |
|
|
}
|
3331 |
|
|
return;
|
3332 |
|
|
}
|
3333 |
|
|
|
3334 |
|
|
|
3335 |
|
|
/*
|
3336 |
|
|
* =================
|
3337 |
|
|
* = dfx_xmt_flush =
|
3338 |
|
|
* =================
|
3339 |
|
|
*
|
3340 |
|
|
* Overview:
|
3341 |
|
|
* Processes all frames whether they've been transmitted
|
3342 |
|
|
* or not.
|
3343 |
|
|
*
|
3344 |
|
|
* Returns:
|
3345 |
|
|
* None
|
3346 |
|
|
*
|
3347 |
|
|
* Arguments:
|
3348 |
|
|
* bp - pointer to board information
|
3349 |
|
|
*
|
3350 |
|
|
* Functional Description:
|
3351 |
|
|
* For all produced transmit descriptors that have not
|
3352 |
|
|
* yet been completed, we'll free the skb we were holding
|
3353 |
|
|
* onto using dev_kfree_skb and bump the appropriate
|
3354 |
|
|
* counters. Of course, it's possible that some of
|
3355 |
|
|
* these transmit requests actually did go out, but we
|
3356 |
|
|
* won't make that distinction here. Finally, we'll
|
3357 |
|
|
* update the consumer index to match the producer.
|
3358 |
|
|
*
|
3359 |
|
|
* Return Codes:
|
3360 |
|
|
* None
|
3361 |
|
|
*
|
3362 |
|
|
* Assumptions:
|
3363 |
|
|
* This routine does NOT update the Type 2 register. It
|
3364 |
|
|
* is assumed that this routine is being called during a
|
3365 |
|
|
* transmit flush interrupt, or a shutdown or close routine.
|
3366 |
|
|
*
|
3367 |
|
|
* Side Effects:
|
3368 |
|
|
* None
|
3369 |
|
|
*/
|
3370 |
|
|
|
3371 |
|
|
void dfx_xmt_flush(
|
3372 |
|
|
DFX_board_t *bp
|
3373 |
|
|
)
|
3374 |
|
|
|
3375 |
|
|
{
|
3376 |
|
|
u32 prod_cons; /* rcv/xmt consumer block longword */
|
3377 |
|
|
XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
|
3378 |
|
|
|
3379 |
|
|
/* Flush all outstanding transmit frames */
|
3380 |
|
|
|
3381 |
|
|
while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
|
3382 |
|
|
{
|
3383 |
|
|
/* Get pointer to the transmit driver descriptor block information */
|
3384 |
|
|
|
3385 |
|
|
p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
|
3386 |
|
|
|
3387 |
|
|
/* Return skb to operating system */
|
3388 |
|
|
|
3389 |
|
|
dev_kfree_skb(p_xmt_drv_descr->p_skb, FREE_WRITE);
|
3390 |
|
|
|
3391 |
|
|
/* Increment transmit error counter */
|
3392 |
|
|
|
3393 |
|
|
bp->xmt_discards++;
|
3394 |
|
|
|
3395 |
|
|
/*
|
3396 |
|
|
* Move to start of next packet by updating completion index
|
3397 |
|
|
*
|
3398 |
|
|
* Here we assume that a transmit packet request is always
|
3399 |
|
|
* serviced by posting one fragment. We can therefore
|
3400 |
|
|
* simplify the completion code by incrementing the
|
3401 |
|
|
* completion index by one. This code will need to be
|
3402 |
|
|
* modified if this assumption changes. See comments
|
3403 |
|
|
* in dfx_xmt_queue_pkt for more details.
|
3404 |
|
|
*/
|
3405 |
|
|
|
3406 |
|
|
bp->rcv_xmt_reg.index.xmt_comp += 1;
|
3407 |
|
|
}
|
3408 |
|
|
|
3409 |
|
|
/* Update the transmit consumer index in the consumer block */
|
3410 |
|
|
|
3411 |
|
|
prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
|
3412 |
|
|
prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
|
3413 |
|
|
bp->cons_block_virt->xmt_rcv_data = prod_cons;
|
3414 |
|
|
return;
|
3415 |
|
|
}
|
3416 |
|
|
|
3417 |
|
|
|
3418 |
|
|
/*
|
3419 |
|
|
* Local variables:
|
3420 |
|
|
* kernel-compile-command: "gcc -D__KERNEL__ -I/root/linux/include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DCPU=586 -c defxx.c"
|
3421 |
|
|
* End:
|
3422 |
|
|
*/
|