1 |
199 |
simons |
#ifndef _ALPHA_PGTABLE_H
|
2 |
|
|
#define _ALPHA_PGTABLE_H
|
3 |
|
|
|
4 |
|
|
/*
|
5 |
|
|
* This file contains the functions and defines necessary to modify and use
|
6 |
|
|
* the alpha page table tree.
|
7 |
|
|
*
|
8 |
|
|
* This hopefully works with any standard alpha page-size, as defined
|
9 |
|
|
* in <asm/page.h> (currently 8192).
|
10 |
|
|
*/
|
11 |
|
|
|
12 |
|
|
#include <asm/system.h>
|
13 |
|
|
#include <asm/mmu_context.h>
|
14 |
|
|
|
15 |
|
|
/* Caches aren't brain-dead on the alpha. */
|
16 |
|
|
#define flush_cache_all() do { } while (0)
|
17 |
|
|
#define flush_cache_mm(mm) do { } while (0)
|
18 |
|
|
#define flush_cache_range(mm, start, end) do { } while (0)
|
19 |
|
|
#define flush_cache_page(vma, vmaddr) do { } while (0)
|
20 |
|
|
#define flush_page_to_ram(page) do { } while (0)
|
21 |
|
|
|
22 |
|
|
/*
|
23 |
|
|
* Force a context reload. This is needed when we
|
24 |
|
|
* change the page table pointer or when we update
|
25 |
|
|
* the ASN of the current process.
|
26 |
|
|
*/
|
27 |
|
|
static inline void reload_context(struct task_struct *task)
|
28 |
|
|
{
|
29 |
|
|
__asm__ __volatile__(
|
30 |
|
|
"bis %0,%0,$16\n\t"
|
31 |
|
|
"call_pal %1"
|
32 |
|
|
: /* no outputs */
|
33 |
|
|
: "r" (&task->tss), "i" (PAL_swpctx)
|
34 |
|
|
: "$0", "$1", "$16", "$22", "$23", "$24", "$25");
|
35 |
|
|
}
|
36 |
|
|
|
37 |
|
|
/*
|
38 |
|
|
* Use a few helper functions to hide the ugly broken ASN
|
39 |
|
|
* numbers on early alpha's (ev4 and ev45)
|
40 |
|
|
*/
|
41 |
|
|
#ifdef BROKEN_ASN
|
42 |
|
|
|
43 |
|
|
#define flush_tlb_current(x) tbiap()
|
44 |
|
|
#define flush_tlb_other(x) do { } while (0)
|
45 |
|
|
|
46 |
|
|
#else
|
47 |
|
|
|
48 |
|
|
extern void get_new_asn_and_reload(struct task_struct *, struct mm_struct *);
|
49 |
|
|
|
50 |
|
|
#define flush_tlb_current(mm) get_new_asn_and_reload(current, mm)
|
51 |
|
|
#define flush_tlb_other(mm) do { (mm)->context = 0; } while (0)
|
52 |
|
|
|
53 |
|
|
#endif
|
54 |
|
|
|
55 |
|
|
/*
|
56 |
|
|
* Flush just one page in the current TLB set.
|
57 |
|
|
* We need to be very careful about the icache here, there
|
58 |
|
|
* is no way to invalidate a specific icache page..
|
59 |
|
|
*/
|
60 |
|
|
static inline void flush_tlb_current_page(struct mm_struct * mm,
|
61 |
|
|
struct vm_area_struct *vma,
|
62 |
|
|
unsigned long addr)
|
63 |
|
|
{
|
64 |
|
|
#ifdef BROKEN_ASN
|
65 |
|
|
tbi(2 + ((vma->vm_flags & VM_EXEC) != 0), addr);
|
66 |
|
|
#else
|
67 |
|
|
if (vma->vm_flags & VM_EXEC)
|
68 |
|
|
flush_tlb_current(mm);
|
69 |
|
|
else
|
70 |
|
|
tbi(2, addr);
|
71 |
|
|
#endif
|
72 |
|
|
}
|
73 |
|
|
|
74 |
|
|
/*
|
75 |
|
|
* Flush current user mapping.
|
76 |
|
|
*/
|
77 |
|
|
static inline void flush_tlb(void)
|
78 |
|
|
{
|
79 |
|
|
flush_tlb_current(current->mm);
|
80 |
|
|
}
|
81 |
|
|
|
82 |
|
|
/*
|
83 |
|
|
* Flush everything (kernel mapping may also have
|
84 |
|
|
* changed due to vmalloc/vfree)
|
85 |
|
|
*/
|
86 |
|
|
static inline void flush_tlb_all(void)
|
87 |
|
|
{
|
88 |
|
|
tbia();
|
89 |
|
|
}
|
90 |
|
|
|
91 |
|
|
/*
|
92 |
|
|
* Flush a specified user mapping
|
93 |
|
|
*/
|
94 |
|
|
static inline void flush_tlb_mm(struct mm_struct *mm)
|
95 |
|
|
{
|
96 |
|
|
if (mm != current->mm)
|
97 |
|
|
flush_tlb_other(mm);
|
98 |
|
|
else
|
99 |
|
|
flush_tlb_current(mm);
|
100 |
|
|
}
|
101 |
|
|
|
102 |
|
|
/*
|
103 |
|
|
* Page-granular tlb flush.
|
104 |
|
|
*
|
105 |
|
|
* do a tbisd (type = 2) normally, and a tbis (type = 3)
|
106 |
|
|
* if it is an executable mapping. We want to avoid the
|
107 |
|
|
* itlb flush, because that potentially also does a
|
108 |
|
|
* icache flush.
|
109 |
|
|
*/
|
110 |
|
|
static inline void flush_tlb_page(struct vm_area_struct *vma,
|
111 |
|
|
unsigned long addr)
|
112 |
|
|
{
|
113 |
|
|
struct mm_struct * mm = vma->vm_mm;
|
114 |
|
|
|
115 |
|
|
if (mm != current->mm)
|
116 |
|
|
flush_tlb_other(mm);
|
117 |
|
|
else
|
118 |
|
|
flush_tlb_current_page(mm, vma, addr);
|
119 |
|
|
}
|
120 |
|
|
|
121 |
|
|
/*
|
122 |
|
|
* Flush a specified range of user mapping: on the
|
123 |
|
|
* alpha we flush the whole user tlb
|
124 |
|
|
*/
|
125 |
|
|
static inline void flush_tlb_range(struct mm_struct *mm,
|
126 |
|
|
unsigned long start, unsigned long end)
|
127 |
|
|
{
|
128 |
|
|
flush_tlb_mm(mm);
|
129 |
|
|
}
|
130 |
|
|
|
131 |
|
|
/* Certain architectures need to do special things when pte's
|
132 |
|
|
* within a page table are directly modified. Thus, the following
|
133 |
|
|
* hook is made available.
|
134 |
|
|
*/
|
135 |
|
|
#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
|
136 |
|
|
|
137 |
|
|
/* PMD_SHIFT determines the size of the area a second-level page table can map */
|
138 |
|
|
#define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3))
|
139 |
|
|
#define PMD_SIZE (1UL << PMD_SHIFT)
|
140 |
|
|
#define PMD_MASK (~(PMD_SIZE-1))
|
141 |
|
|
|
142 |
|
|
/* PGDIR_SHIFT determines what a third-level page table entry can map */
|
143 |
|
|
#define PGDIR_SHIFT (PAGE_SHIFT + 2*(PAGE_SHIFT-3))
|
144 |
|
|
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
|
145 |
|
|
#define PGDIR_MASK (~(PGDIR_SIZE-1))
|
146 |
|
|
|
147 |
|
|
/*
|
148 |
|
|
* entries per page directory level: the alpha is three-level, with
|
149 |
|
|
* all levels having a one-page page table.
|
150 |
|
|
*
|
151 |
|
|
* The PGD is special: the last entry is reserved for self-mapping.
|
152 |
|
|
*/
|
153 |
|
|
#define PTRS_PER_PTE (1UL << (PAGE_SHIFT-3))
|
154 |
|
|
#define PTRS_PER_PMD (1UL << (PAGE_SHIFT-3))
|
155 |
|
|
#define PTRS_PER_PGD ((1UL << (PAGE_SHIFT-3))-1)
|
156 |
|
|
|
157 |
|
|
/* the no. of pointers that fit on a page: this will go away */
|
158 |
|
|
#define PTRS_PER_PAGE (1UL << (PAGE_SHIFT-3))
|
159 |
|
|
|
160 |
|
|
#define VMALLOC_START 0xFFFFFE0000000000
|
161 |
|
|
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
|
162 |
|
|
|
163 |
|
|
/*
|
164 |
|
|
* OSF/1 PAL-code-imposed page table bits
|
165 |
|
|
*/
|
166 |
|
|
#define _PAGE_VALID 0x0001
|
167 |
|
|
#define _PAGE_FOR 0x0002 /* used for page protection (fault on read) */
|
168 |
|
|
#define _PAGE_FOW 0x0004 /* used for page protection (fault on write) */
|
169 |
|
|
#define _PAGE_FOE 0x0008 /* used for page protection (fault on exec) */
|
170 |
|
|
#define _PAGE_ASM 0x0010
|
171 |
|
|
#define _PAGE_KRE 0x0100 /* xxx - see below on the "accessed" bit */
|
172 |
|
|
#define _PAGE_URE 0x0200 /* xxx */
|
173 |
|
|
#define _PAGE_KWE 0x1000 /* used to do the dirty bit in software */
|
174 |
|
|
#define _PAGE_UWE 0x2000 /* used to do the dirty bit in software */
|
175 |
|
|
|
176 |
|
|
/* .. and these are ours ... */
|
177 |
|
|
#define _PAGE_DIRTY 0x20000
|
178 |
|
|
#define _PAGE_ACCESSED 0x40000
|
179 |
|
|
|
180 |
|
|
/*
|
181 |
|
|
* NOTE! The "accessed" bit isn't necessarily exact: it can be kept exactly
|
182 |
|
|
* by software (use the KRE/URE/KWE/UWE bits appropriately), but I'll fake it.
|
183 |
|
|
* Under Linux/AXP, the "accessed" bit just means "read", and I'll just use
|
184 |
|
|
* the KRE/URE bits to watch for it. That way we don't need to overload the
|
185 |
|
|
* KWE/UWE bits with both handling dirty and accessed.
|
186 |
|
|
*
|
187 |
|
|
* Note that the kernel uses the accessed bit just to check whether to page
|
188 |
|
|
* out a page or not, so it doesn't have to be exact anyway.
|
189 |
|
|
*/
|
190 |
|
|
|
191 |
|
|
#define __DIRTY_BITS (_PAGE_DIRTY | _PAGE_KWE | _PAGE_UWE)
|
192 |
|
|
#define __ACCESS_BITS (_PAGE_ACCESSED | _PAGE_KRE | _PAGE_URE)
|
193 |
|
|
|
194 |
|
|
#define _PFN_MASK 0xFFFFFFFF00000000
|
195 |
|
|
|
196 |
|
|
#define _PAGE_TABLE (_PAGE_VALID | __DIRTY_BITS | __ACCESS_BITS)
|
197 |
|
|
#define _PAGE_CHG_MASK (_PFN_MASK | __DIRTY_BITS | __ACCESS_BITS)
|
198 |
|
|
|
199 |
|
|
/*
|
200 |
|
|
* All the normal masks have the "page accessed" bits on, as any time they are used,
|
201 |
|
|
* the page is accessed. They are cleared only by the page-out routines
|
202 |
|
|
*/
|
203 |
|
|
#define PAGE_NONE __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOR | _PAGE_FOW | _PAGE_FOE)
|
204 |
|
|
#define PAGE_SHARED __pgprot(_PAGE_VALID | __ACCESS_BITS)
|
205 |
|
|
#define PAGE_COPY __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW)
|
206 |
|
|
#define PAGE_READONLY __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW)
|
207 |
|
|
#define PAGE_KERNEL __pgprot(_PAGE_VALID | _PAGE_ASM | _PAGE_KRE | _PAGE_KWE)
|
208 |
|
|
|
209 |
|
|
#define _PAGE_NORMAL(x) __pgprot(_PAGE_VALID | __ACCESS_BITS | (x))
|
210 |
|
|
|
211 |
|
|
#define _PAGE_P(x) _PAGE_NORMAL((x) | (((x) & _PAGE_FOW)?0:_PAGE_FOW))
|
212 |
|
|
#define _PAGE_S(x) _PAGE_NORMAL(x)
|
213 |
|
|
|
214 |
|
|
/*
|
215 |
|
|
* The hardware can handle write-only mappings, but as the alpha
|
216 |
|
|
* architecture does byte-wide writes with a read-modify-write
|
217 |
|
|
* sequence, it's not practical to have write-without-read privs.
|
218 |
|
|
* Thus the "-w- -> rw-" and "-wx -> rwx" mapping here (and in
|
219 |
|
|
* arch/alpha/mm/fault.c)
|
220 |
|
|
*/
|
221 |
|
|
/* xwr */
|
222 |
|
|
#define __P000 _PAGE_P(_PAGE_FOE | _PAGE_FOW | _PAGE_FOR)
|
223 |
|
|
#define __P001 _PAGE_P(_PAGE_FOE | _PAGE_FOW)
|
224 |
|
|
#define __P010 _PAGE_P(_PAGE_FOE)
|
225 |
|
|
#define __P011 _PAGE_P(_PAGE_FOE)
|
226 |
|
|
#define __P100 _PAGE_P(_PAGE_FOW | _PAGE_FOR)
|
227 |
|
|
#define __P101 _PAGE_P(_PAGE_FOW)
|
228 |
|
|
#define __P110 _PAGE_P(0)
|
229 |
|
|
#define __P111 _PAGE_P(0)
|
230 |
|
|
|
231 |
|
|
#define __S000 _PAGE_S(_PAGE_FOE | _PAGE_FOW | _PAGE_FOR)
|
232 |
|
|
#define __S001 _PAGE_S(_PAGE_FOE | _PAGE_FOW)
|
233 |
|
|
#define __S010 _PAGE_S(_PAGE_FOE)
|
234 |
|
|
#define __S011 _PAGE_S(_PAGE_FOE)
|
235 |
|
|
#define __S100 _PAGE_S(_PAGE_FOW | _PAGE_FOR)
|
236 |
|
|
#define __S101 _PAGE_S(_PAGE_FOW)
|
237 |
|
|
#define __S110 _PAGE_S(0)
|
238 |
|
|
#define __S111 _PAGE_S(0)
|
239 |
|
|
|
240 |
|
|
/*
|
241 |
|
|
* BAD_PAGETABLE is used when we need a bogus page-table, while
|
242 |
|
|
* BAD_PAGE is used for a bogus page.
|
243 |
|
|
*
|
244 |
|
|
* ZERO_PAGE is a global shared page that is always zero: used
|
245 |
|
|
* for zero-mapped memory areas etc..
|
246 |
|
|
*/
|
247 |
|
|
extern pte_t __bad_page(void);
|
248 |
|
|
extern pmd_t * __bad_pagetable(void);
|
249 |
|
|
|
250 |
|
|
extern unsigned long __zero_page(void);
|
251 |
|
|
|
252 |
|
|
#define BAD_PAGETABLE __bad_pagetable()
|
253 |
|
|
#define BAD_PAGE __bad_page()
|
254 |
|
|
#define ZERO_PAGE 0xfffffc000030A000
|
255 |
|
|
|
256 |
|
|
/* number of bits that fit into a memory pointer */
|
257 |
|
|
#define BITS_PER_PTR (8*sizeof(unsigned long))
|
258 |
|
|
|
259 |
|
|
/* to align the pointer to a pointer address */
|
260 |
|
|
#define PTR_MASK (~(sizeof(void*)-1))
|
261 |
|
|
|
262 |
|
|
/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
|
263 |
|
|
#define SIZEOF_PTR_LOG2 3
|
264 |
|
|
|
265 |
|
|
/* to find an entry in a page-table */
|
266 |
|
|
#define PAGE_PTR(address) \
|
267 |
|
|
((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
|
268 |
|
|
|
269 |
|
|
extern unsigned long high_memory;
|
270 |
|
|
|
271 |
|
|
/*
|
272 |
|
|
* Conversion functions: convert a page and protection to a page entry,
|
273 |
|
|
* and a page entry and page directory to the page they refer to.
|
274 |
|
|
*/
|
275 |
|
|
extern inline pte_t mk_pte(unsigned long page, pgprot_t pgprot)
|
276 |
|
|
{ pte_t pte; pte_val(pte) = ((page-PAGE_OFFSET) << (32-PAGE_SHIFT)) | pgprot_val(pgprot); return pte; }
|
277 |
|
|
|
278 |
|
|
extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
279 |
|
|
{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
|
280 |
|
|
|
281 |
|
|
extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
|
282 |
|
|
{ pmd_val(*pmdp) = _PAGE_TABLE | ((((unsigned long) ptep) - PAGE_OFFSET) << (32-PAGE_SHIFT)); }
|
283 |
|
|
|
284 |
|
|
extern inline void pgd_set(pgd_t * pgdp, pmd_t * pmdp)
|
285 |
|
|
{ pgd_val(*pgdp) = _PAGE_TABLE | ((((unsigned long) pmdp) - PAGE_OFFSET) << (32-PAGE_SHIFT)); }
|
286 |
|
|
|
287 |
|
|
extern inline unsigned long pte_page(pte_t pte)
|
288 |
|
|
{ return PAGE_OFFSET + ((pte_val(pte) & _PFN_MASK) >> (32-PAGE_SHIFT)); }
|
289 |
|
|
|
290 |
|
|
extern inline unsigned long pmd_page(pmd_t pmd)
|
291 |
|
|
{ return PAGE_OFFSET + ((pmd_val(pmd) & _PFN_MASK) >> (32-PAGE_SHIFT)); }
|
292 |
|
|
|
293 |
|
|
extern inline unsigned long pgd_page(pgd_t pgd)
|
294 |
|
|
{ return PAGE_OFFSET + ((pgd_val(pgd) & _PFN_MASK) >> (32-PAGE_SHIFT)); }
|
295 |
|
|
|
296 |
|
|
extern inline int pte_none(pte_t pte) { return !pte_val(pte); }
|
297 |
|
|
extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_VALID; }
|
298 |
|
|
extern inline void pte_clear(pte_t *ptep) { pte_val(*ptep) = 0; }
|
299 |
|
|
|
300 |
|
|
extern inline int pmd_none(pmd_t pmd) { return !pmd_val(pmd); }
|
301 |
|
|
extern inline int pmd_bad(pmd_t pmd) { return (pmd_val(pmd) & ~_PFN_MASK) != _PAGE_TABLE || pmd_page(pmd) > high_memory; }
|
302 |
|
|
extern inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _PAGE_VALID; }
|
303 |
|
|
extern inline void pmd_clear(pmd_t * pmdp) { pmd_val(*pmdp) = 0; }
|
304 |
|
|
|
305 |
|
|
extern inline int pgd_none(pgd_t pgd) { return !pgd_val(pgd); }
|
306 |
|
|
extern inline int pgd_bad(pgd_t pgd) { return (pgd_val(pgd) & ~_PFN_MASK) != _PAGE_TABLE || pgd_page(pgd) > high_memory; }
|
307 |
|
|
extern inline int pgd_present(pgd_t pgd) { return pgd_val(pgd) & _PAGE_VALID; }
|
308 |
|
|
extern inline void pgd_clear(pgd_t * pgdp) { pgd_val(*pgdp) = 0; }
|
309 |
|
|
|
310 |
|
|
/*
|
311 |
|
|
* The following only work if pte_present() is true.
|
312 |
|
|
* Undefined behaviour if not..
|
313 |
|
|
*/
|
314 |
|
|
extern inline int pte_read(pte_t pte) { return !(pte_val(pte) & _PAGE_FOR); }
|
315 |
|
|
extern inline int pte_write(pte_t pte) { return !(pte_val(pte) & _PAGE_FOW); }
|
316 |
|
|
extern inline int pte_exec(pte_t pte) { return !(pte_val(pte) & _PAGE_FOE); }
|
317 |
|
|
extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
|
318 |
|
|
extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
|
319 |
|
|
|
320 |
|
|
extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) |= _PAGE_FOW; return pte; }
|
321 |
|
|
extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) |= _PAGE_FOR; return pte; }
|
322 |
|
|
extern inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) |= _PAGE_FOE; return pte; }
|
323 |
|
|
extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~(__DIRTY_BITS); return pte; }
|
324 |
|
|
extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~(__ACCESS_BITS); return pte; }
|
325 |
|
|
extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) &= ~_PAGE_FOW; return pte; }
|
326 |
|
|
extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) &= ~_PAGE_FOR; return pte; }
|
327 |
|
|
extern inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) &= ~_PAGE_FOE; return pte; }
|
328 |
|
|
extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= __DIRTY_BITS; return pte; }
|
329 |
|
|
extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= __ACCESS_BITS; return pte; }
|
330 |
|
|
|
331 |
|
|
/*
|
332 |
|
|
* To set the page-dir. Note the self-mapping in the last entry
|
333 |
|
|
*
|
334 |
|
|
* Also note that if we update the current process ptbr, we need to
|
335 |
|
|
* update the PAL-cached ptbr value as well.. There doesn't seem to
|
336 |
|
|
* be any "wrptbr" PAL-insn, but we can do a dummy swpctx to ourself
|
337 |
|
|
* instead.
|
338 |
|
|
*/
|
339 |
|
|
extern inline void SET_PAGE_DIR(struct task_struct * tsk, pgd_t * pgdir)
|
340 |
|
|
{
|
341 |
|
|
pgd_val(pgdir[PTRS_PER_PGD]) = pte_val(mk_pte((unsigned long) pgdir, PAGE_KERNEL));
|
342 |
|
|
tsk->tss.ptbr = ((unsigned long) pgdir - PAGE_OFFSET) >> PAGE_SHIFT;
|
343 |
|
|
if (tsk == current)
|
344 |
|
|
reload_context(tsk);
|
345 |
|
|
}
|
346 |
|
|
|
347 |
|
|
#define PAGE_DIR_OFFSET(tsk,address) pgd_offset((tsk),(address))
|
348 |
|
|
|
349 |
|
|
/* to find an entry in a page-table-directory. */
|
350 |
|
|
extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
|
351 |
|
|
{
|
352 |
|
|
return mm->pgd + ((address >> PGDIR_SHIFT) & (PTRS_PER_PAGE - 1));
|
353 |
|
|
}
|
354 |
|
|
|
355 |
|
|
/* Find an entry in the second-level page table.. */
|
356 |
|
|
extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
|
357 |
|
|
{
|
358 |
|
|
return (pmd_t *) pgd_page(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PAGE - 1));
|
359 |
|
|
}
|
360 |
|
|
|
361 |
|
|
/* Find an entry in the third-level page table.. */
|
362 |
|
|
extern inline pte_t * pte_offset(pmd_t * dir, unsigned long address)
|
363 |
|
|
{
|
364 |
|
|
return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PAGE - 1));
|
365 |
|
|
}
|
366 |
|
|
|
367 |
|
|
/*
|
368 |
|
|
* Allocate and free page tables. The xxx_kernel() versions are
|
369 |
|
|
* used to allocate a kernel page table - this turns on ASN bits
|
370 |
|
|
* if any.
|
371 |
|
|
*/
|
372 |
|
|
extern inline void pte_free_kernel(pte_t * pte)
|
373 |
|
|
{
|
374 |
|
|
free_page((unsigned long) pte);
|
375 |
|
|
}
|
376 |
|
|
|
377 |
|
|
extern inline pte_t * pte_alloc_kernel(pmd_t *pmd, unsigned long address)
|
378 |
|
|
{
|
379 |
|
|
address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
|
380 |
|
|
if (pmd_none(*pmd)) {
|
381 |
|
|
pte_t *page = (pte_t *) get_free_page(GFP_KERNEL);
|
382 |
|
|
if (pmd_none(*pmd)) {
|
383 |
|
|
if (page) {
|
384 |
|
|
pmd_set(pmd, page);
|
385 |
|
|
return page + address;
|
386 |
|
|
}
|
387 |
|
|
pmd_set(pmd, (pte_t *) BAD_PAGETABLE);
|
388 |
|
|
return NULL;
|
389 |
|
|
}
|
390 |
|
|
free_page((unsigned long) page);
|
391 |
|
|
}
|
392 |
|
|
if (pmd_bad(*pmd)) {
|
393 |
|
|
printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
|
394 |
|
|
pmd_set(pmd, (pte_t *) BAD_PAGETABLE);
|
395 |
|
|
return NULL;
|
396 |
|
|
}
|
397 |
|
|
return (pte_t *) pmd_page(*pmd) + address;
|
398 |
|
|
}
|
399 |
|
|
|
400 |
|
|
extern inline void pmd_free_kernel(pmd_t * pmd)
|
401 |
|
|
{
|
402 |
|
|
free_page((unsigned long) pmd);
|
403 |
|
|
}
|
404 |
|
|
|
405 |
|
|
extern inline pmd_t * pmd_alloc_kernel(pgd_t *pgd, unsigned long address)
|
406 |
|
|
{
|
407 |
|
|
address = (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
|
408 |
|
|
if (pgd_none(*pgd)) {
|
409 |
|
|
pmd_t *page = (pmd_t *) get_free_page(GFP_KERNEL);
|
410 |
|
|
if (pgd_none(*pgd)) {
|
411 |
|
|
if (page) {
|
412 |
|
|
pgd_set(pgd, page);
|
413 |
|
|
return page + address;
|
414 |
|
|
}
|
415 |
|
|
pgd_set(pgd, BAD_PAGETABLE);
|
416 |
|
|
return NULL;
|
417 |
|
|
}
|
418 |
|
|
free_page((unsigned long) page);
|
419 |
|
|
}
|
420 |
|
|
if (pgd_bad(*pgd)) {
|
421 |
|
|
printk("Bad pgd in pmd_alloc: %08lx\n", pgd_val(*pgd));
|
422 |
|
|
pgd_set(pgd, BAD_PAGETABLE);
|
423 |
|
|
return NULL;
|
424 |
|
|
}
|
425 |
|
|
return (pmd_t *) pgd_page(*pgd) + address;
|
426 |
|
|
}
|
427 |
|
|
|
428 |
|
|
extern inline void pte_free(pte_t * pte)
|
429 |
|
|
{
|
430 |
|
|
free_page((unsigned long) pte);
|
431 |
|
|
}
|
432 |
|
|
|
433 |
|
|
extern inline pte_t * pte_alloc(pmd_t *pmd, unsigned long address)
|
434 |
|
|
{
|
435 |
|
|
address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
|
436 |
|
|
if (pmd_none(*pmd)) {
|
437 |
|
|
pte_t *page = (pte_t *) get_free_page(GFP_KERNEL);
|
438 |
|
|
if (pmd_none(*pmd)) {
|
439 |
|
|
if (page) {
|
440 |
|
|
pmd_set(pmd, page);
|
441 |
|
|
return page + address;
|
442 |
|
|
}
|
443 |
|
|
pmd_set(pmd, (pte_t *) BAD_PAGETABLE);
|
444 |
|
|
return NULL;
|
445 |
|
|
}
|
446 |
|
|
free_page((unsigned long) page);
|
447 |
|
|
}
|
448 |
|
|
if (pmd_bad(*pmd)) {
|
449 |
|
|
printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
|
450 |
|
|
pmd_set(pmd, (pte_t *) BAD_PAGETABLE);
|
451 |
|
|
return NULL;
|
452 |
|
|
}
|
453 |
|
|
return (pte_t *) pmd_page(*pmd) + address;
|
454 |
|
|
}
|
455 |
|
|
|
456 |
|
|
extern inline void pmd_free(pmd_t * pmd)
|
457 |
|
|
{
|
458 |
|
|
free_page((unsigned long) pmd);
|
459 |
|
|
}
|
460 |
|
|
|
461 |
|
|
extern inline pmd_t * pmd_alloc(pgd_t *pgd, unsigned long address)
|
462 |
|
|
{
|
463 |
|
|
address = (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
|
464 |
|
|
if (pgd_none(*pgd)) {
|
465 |
|
|
pmd_t *page = (pmd_t *) get_free_page(GFP_KERNEL);
|
466 |
|
|
if (pgd_none(*pgd)) {
|
467 |
|
|
if (page) {
|
468 |
|
|
pgd_set(pgd, page);
|
469 |
|
|
return page + address;
|
470 |
|
|
}
|
471 |
|
|
pgd_set(pgd, BAD_PAGETABLE);
|
472 |
|
|
return NULL;
|
473 |
|
|
}
|
474 |
|
|
free_page((unsigned long) page);
|
475 |
|
|
}
|
476 |
|
|
if (pgd_bad(*pgd)) {
|
477 |
|
|
printk("Bad pgd in pmd_alloc: %08lx\n", pgd_val(*pgd));
|
478 |
|
|
pgd_set(pgd, BAD_PAGETABLE);
|
479 |
|
|
return NULL;
|
480 |
|
|
}
|
481 |
|
|
return (pmd_t *) pgd_page(*pgd) + address;
|
482 |
|
|
}
|
483 |
|
|
|
484 |
|
|
extern inline void pgd_free(pgd_t * pgd)
|
485 |
|
|
{
|
486 |
|
|
free_page((unsigned long) pgd);
|
487 |
|
|
}
|
488 |
|
|
|
489 |
|
|
extern inline pgd_t * pgd_alloc(void)
|
490 |
|
|
{
|
491 |
|
|
return (pgd_t *) get_free_page(GFP_KERNEL);
|
492 |
|
|
}
|
493 |
|
|
|
494 |
|
|
extern pgd_t swapper_pg_dir[1024];
|
495 |
|
|
|
496 |
|
|
/*
|
497 |
|
|
* The alpha doesn't have any external MMU info: the kernel page
|
498 |
|
|
* tables contain all the necessary information.
|
499 |
|
|
*/
|
500 |
|
|
extern inline void update_mmu_cache(struct vm_area_struct * vma,
|
501 |
|
|
unsigned long address, pte_t pte)
|
502 |
|
|
{
|
503 |
|
|
}
|
504 |
|
|
|
505 |
|
|
/*
|
506 |
|
|
* Non-present pages: high 24 bits are offset, next 8 bits type,
|
507 |
|
|
* low 32 bits zero..
|
508 |
|
|
*/
|
509 |
|
|
extern inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
|
510 |
|
|
{ pte_t pte; pte_val(pte) = (type << 32) | (offset << 40); return pte; }
|
511 |
|
|
|
512 |
|
|
#define SWP_TYPE(entry) (((entry) >> 32) & 0xff)
|
513 |
|
|
#define SWP_OFFSET(entry) ((entry) >> 40)
|
514 |
|
|
#define SWP_ENTRY(type,offset) pte_val(mk_swap_pte((type),(offset)))
|
515 |
|
|
|
516 |
|
|
#endif /* _ALPHA_PGTABLE_H */
|