OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [uclinux/] [uClinux-2.0.x/] [include/] [asm-mips/] [dma.h] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 199 simons
/* $Id: dma.h,v 1.1.1.1 2001-09-10 07:44:42 simons Exp $
2
 * linux/include/asm/dma.h: Defines for using and allocating dma channels.
3
 * Written by Hennus Bergman, 1992.
4
 * High DMA channel support & info by Hannu Savolainen
5
 * and John Boyd, Nov. 1992.
6
 *
7
 * NOTE: all this is true *only* for ISA/EISA expansions on Mips boards
8
 * and can only be used for expansion cards. Onboard DMA controller, such
9
 * as the R4030 on Jazz boards behave totally different!
10
 */
11
 
12
#ifndef __ASM_MIPS_DMA_H
13
#define __ASM_MIPS_DMA_H
14
 
15
#include <asm/io.h>             /* need byte IO */
16
 
17
 
18
#ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
19
#define dma_outb        outb_p
20
#else
21
#define dma_outb        outb
22
#endif
23
 
24
#define dma_inb         inb
25
 
26
/*
27
 * NOTES about DMA transfers:
28
 *
29
 *  controller 1: channels 0-3, byte operations, ports 00-1F
30
 *  controller 2: channels 4-7, word operations, ports C0-DF
31
 *
32
 *  - ALL registers are 8 bits only, regardless of transfer size
33
 *  - channel 4 is not used - cascades 1 into 2.
34
 *  - channels 0-3 are byte - addresses/counts are for physical bytes
35
 *  - channels 5-7 are word - addresses/counts are for physical words
36
 *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
37
 *  - transfer count loaded to registers is 1 less than actual count
38
 *  - controller 2 offsets are all even (2x offsets for controller 1)
39
 *  - page registers for 5-7 don't use data bit 0, represent 128K pages
40
 *  - page registers for 0-3 use bit 0, represent 64K pages
41
 *
42
 * DMA transfers are limited to the lower 16MB of _physical_ memory.
43
 * Note that addresses loaded into registers must be _physical_ addresses,
44
 * not logical addresses (which may differ if paging is active).
45
 *
46
 *  Address mapping for channels 0-3:
47
 *
48
 *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
49
 *    |  ...  |   |  ... |   |  ... |
50
 *    |  ...  |   |  ... |   |  ... |
51
 *    |  ...  |   |  ... |   |  ... |
52
 *   P7  ...  P0  A7 ... A0  A7 ... A0
53
 * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
54
 *
55
 *  Address mapping for channels 5-7:
56
 *
57
 *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
58
 *    |  ...  |   \   \   ... \  \  \  ... \  \
59
 *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
60
 *    |  ...  |     \   \   ... \  \  \  ... \
61
 *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0
62
 * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
63
 *
64
 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
65
 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
66
 * the hardware level, so odd-byte transfers aren't possible).
67
 *
68
 * Transfer count (_not # bytes_) is limited to 64K, represented as actual
69
 * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
70
 * and up to 128K bytes may be transferred on channels 5-7 in one operation.
71
 *
72
 */
73
 
74
#define MAX_DMA_CHANNELS        8
75
 
76
/*
77
 * The maximum address that we can perform a DMA transfer to on this platform
78
 * This describes only the PC style part of the DMA logic like on Deskstations
79
 * or Acer PICA but not the much more versatile DMA logic used for the
80
 * local devices on Acer PICA or Magnums.
81
 */
82
#define MAX_DMA_ADDRESS         0x1000000
83
 
84
/* 8237 DMA controllers */
85
#define IO_DMA1_BASE    0x00    /* 8 bit slave DMA, channels 0..3 */
86
#define IO_DMA2_BASE    0xC0    /* 16 bit master DMA, ch 4(=slave input)..7 */
87
 
88
/* DMA controller registers */
89
#define DMA1_CMD_REG            0x08    /* command register (w) */
90
#define DMA1_STAT_REG           0x08    /* status register (r) */
91
#define DMA1_REQ_REG            0x09    /* request register (w) */
92
#define DMA1_MASK_REG           0x0A    /* single-channel mask (w) */
93
#define DMA1_MODE_REG           0x0B    /* mode register (w) */
94
#define DMA1_CLEAR_FF_REG       0x0C    /* clear pointer flip-flop (w) */
95
#define DMA1_TEMP_REG           0x0D    /* Temporary Register (r) */
96
#define DMA1_RESET_REG          0x0D    /* Master Clear (w) */
97
#define DMA1_CLR_MASK_REG       0x0E    /* Clear Mask */
98
#define DMA1_MASK_ALL_REG       0x0F    /* all-channels mask (w) */
99
 
100
#define DMA2_CMD_REG            0xD0    /* command register (w) */
101
#define DMA2_STAT_REG           0xD0    /* status register (r) */
102
#define DMA2_REQ_REG            0xD2    /* request register (w) */
103
#define DMA2_MASK_REG           0xD4    /* single-channel mask (w) */
104
#define DMA2_MODE_REG           0xD6    /* mode register (w) */
105
#define DMA2_CLEAR_FF_REG       0xD8    /* clear pointer flip-flop (w) */
106
#define DMA2_TEMP_REG           0xDA    /* Temporary Register (r) */
107
#define DMA2_RESET_REG          0xDA    /* Master Clear (w) */
108
#define DMA2_CLR_MASK_REG       0xDC    /* Clear Mask */
109
#define DMA2_MASK_ALL_REG       0xDE    /* all-channels mask (w) */
110
 
111
#define DMA_ADDR_0              0x00    /* DMA address registers */
112
#define DMA_ADDR_1              0x02
113
#define DMA_ADDR_2              0x04
114
#define DMA_ADDR_3              0x06
115
#define DMA_ADDR_4              0xC0
116
#define DMA_ADDR_5              0xC4
117
#define DMA_ADDR_6              0xC8
118
#define DMA_ADDR_7              0xCC
119
 
120
#define DMA_CNT_0               0x01    /* DMA count registers */
121
#define DMA_CNT_1               0x03
122
#define DMA_CNT_2               0x05
123
#define DMA_CNT_3               0x07
124
#define DMA_CNT_4               0xC2
125
#define DMA_CNT_5               0xC6
126
#define DMA_CNT_6               0xCA
127
#define DMA_CNT_7               0xCE
128
 
129
#define DMA_PAGE_0              0x87    /* DMA page registers */
130
#define DMA_PAGE_1              0x83
131
#define DMA_PAGE_2              0x81
132
#define DMA_PAGE_3              0x82
133
#define DMA_PAGE_5              0x8B
134
#define DMA_PAGE_6              0x89
135
#define DMA_PAGE_7              0x8A
136
 
137
#define DMA_MODE_READ   0x44    /* I/O to memory, no autoinit, increment, single mode */
138
#define DMA_MODE_WRITE  0x48    /* memory to I/O, no autoinit, increment, single mode */
139
#define DMA_MODE_CASCADE 0xC0   /* pass thru DREQ->HRQ, DACK<-HLDA only */
140
 
141
/* enable/disable a specific DMA channel */
142
static __inline__ void enable_dma(unsigned int dmanr)
143
{
144
        if (dmanr<=3)
145
                dma_outb(dmanr,  DMA1_MASK_REG);
146
        else
147
                dma_outb(dmanr & 3,  DMA2_MASK_REG);
148
}
149
 
150
static __inline__ void disable_dma(unsigned int dmanr)
151
{
152
        if (dmanr<=3)
153
                dma_outb(dmanr | 4,  DMA1_MASK_REG);
154
        else
155
                dma_outb((dmanr & 3) | 4,  DMA2_MASK_REG);
156
}
157
 
158
/* Clear the 'DMA Pointer Flip Flop'.
159
 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
160
 * Use this once to initialize the FF to a known state.
161
 * After that, keep track of it. :-)
162
 * --- In order to do that, the DMA routines below should ---
163
 * --- only be used while interrupts are disabled! ---
164
 */
165
static __inline__ void clear_dma_ff(unsigned int dmanr)
166
{
167
        if (dmanr<=3)
168
                dma_outb(0,  DMA1_CLEAR_FF_REG);
169
        else
170
                dma_outb(0,  DMA2_CLEAR_FF_REG);
171
}
172
 
173
/* set mode (above) for a specific DMA channel */
174
static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
175
{
176
        if (dmanr<=3)
177
                dma_outb(mode | dmanr,  DMA1_MODE_REG);
178
        else
179
                dma_outb(mode | (dmanr&3),  DMA2_MODE_REG);
180
}
181
 
182
/* Set only the page register bits of the transfer address.
183
 * This is used for successive transfers when we know the contents of
184
 * the lower 16 bits of the DMA current address register, but a 64k boundary
185
 * may have been crossed.
186
 */
187
static __inline__ void set_dma_page(unsigned int dmanr, char pagenr)
188
{
189
        switch(dmanr) {
190
                case 0:
191
                        dma_outb(pagenr, DMA_PAGE_0);
192
                        break;
193
                case 1:
194
                        dma_outb(pagenr, DMA_PAGE_1);
195
                        break;
196
                case 2:
197
                        dma_outb(pagenr, DMA_PAGE_2);
198
                        break;
199
                case 3:
200
                        dma_outb(pagenr, DMA_PAGE_3);
201
                        break;
202
                case 5:
203
                        dma_outb(pagenr & 0xfe, DMA_PAGE_5);
204
                        break;
205
                case 6:
206
                        dma_outb(pagenr & 0xfe, DMA_PAGE_6);
207
                        break;
208
                case 7:
209
                        dma_outb(pagenr & 0xfe, DMA_PAGE_7);
210
                        break;
211
        }
212
}
213
 
214
 
215
/* Set transfer address & page bits for specific DMA channel.
216
 * Assumes dma flipflop is clear.
217
 */
218
static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
219
{
220
        set_dma_page(dmanr, a>>16);
221
        if (dmanr <= 3)  {
222
            dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
223
            dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
224
        }  else  {
225
            dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
226
            dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
227
        }
228
}
229
 
230
 
231
/* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
232
 * a specific DMA channel.
233
 * You must ensure the parameters are valid.
234
 * NOTE: from a manual: "the number of transfers is one more
235
 * than the initial word count"! This is taken into account.
236
 * Assumes dma flip-flop is clear.
237
 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
238
 */
239
static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
240
{
241
        count--;
242
        if (dmanr <= 3)  {
243
            dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
244
            dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
245
        } else {
246
            dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
247
            dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
248
        }
249
}
250
 
251
 
252
/* Get DMA residue count. After a DMA transfer, this
253
 * should return zero. Reading this while a DMA transfer is
254
 * still in progress will return unpredictable results.
255
 * If called before the channel has been used, it may return 1.
256
 * Otherwise, it returns the number of _bytes_ left to transfer.
257
 *
258
 * Assumes DMA flip-flop is clear.
259
 */
260
static __inline__ int get_dma_residue(unsigned int dmanr)
261
{
262
        unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
263
                                         : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
264
 
265
        /* using short to get 16-bit wrap around */
266
        unsigned short count;
267
 
268
        count = 1 + dma_inb(io_port);
269
        count += dma_inb(io_port) << 8;
270
 
271
        return (dmanr<=3)? count : (count<<1);
272
}
273
 
274
 
275
/* These are in kernel/dma.c: */
276
extern int request_dma(unsigned int dmanr, const char * device_id);     /* reserve a DMA channel */
277
extern void free_dma(unsigned int dmanr);       /* release it again */
278
 
279
/*
280
 * DMA memory allocation - formerly in include/linux/mm.h
281
 */
282
#define __get_dma_pages(priority, order) __get_free_pages((priority),(order), 1)
283
 
284
#endif /* __ASM_MIPS_DMA_H */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.