1 |
1181 |
sfurman |
/* GDB-specific functions for operating on agent expressions
|
2 |
|
|
Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
|
3 |
|
|
|
4 |
|
|
This file is part of GDB.
|
5 |
|
|
|
6 |
|
|
This program is free software; you can redistribute it and/or modify
|
7 |
|
|
it under the terms of the GNU General Public License as published by
|
8 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
9 |
|
|
(at your option) any later version.
|
10 |
|
|
|
11 |
|
|
This program is distributed in the hope that it will be useful,
|
12 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
|
|
GNU General Public License for more details.
|
15 |
|
|
|
16 |
|
|
You should have received a copy of the GNU General Public License
|
17 |
|
|
along with this program; if not, write to the Free Software
|
18 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
19 |
|
|
Boston, MA 02111-1307, USA. */
|
20 |
|
|
|
21 |
|
|
#include "defs.h"
|
22 |
|
|
#include "symtab.h"
|
23 |
|
|
#include "symfile.h"
|
24 |
|
|
#include "gdbtypes.h"
|
25 |
|
|
#include "value.h"
|
26 |
|
|
#include "expression.h"
|
27 |
|
|
#include "command.h"
|
28 |
|
|
#include "gdbcmd.h"
|
29 |
|
|
#include "frame.h"
|
30 |
|
|
#include "target.h"
|
31 |
|
|
#include "ax.h"
|
32 |
|
|
#include "ax-gdb.h"
|
33 |
|
|
#include "gdb_string.h"
|
34 |
|
|
|
35 |
|
|
/* To make sense of this file, you should read doc/agentexpr.texi.
|
36 |
|
|
Then look at the types and enums in ax-gdb.h. For the code itself,
|
37 |
|
|
look at gen_expr, towards the bottom; that's the main function that
|
38 |
|
|
looks at the GDB expressions and calls everything else to generate
|
39 |
|
|
code.
|
40 |
|
|
|
41 |
|
|
I'm beginning to wonder whether it wouldn't be nicer to internally
|
42 |
|
|
generate trees, with types, and then spit out the bytecode in
|
43 |
|
|
linear form afterwards; we could generate fewer `swap', `ext', and
|
44 |
|
|
`zero_ext' bytecodes that way; it would make good constant folding
|
45 |
|
|
easier, too. But at the moment, I think we should be willing to
|
46 |
|
|
pay for the simplicity of this code with less-than-optimal bytecode
|
47 |
|
|
strings.
|
48 |
|
|
|
49 |
|
|
Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
|
50 |
|
|
|
51 |
|
|
|
52 |
|
|
|
53 |
|
|
/* Prototypes for local functions. */
|
54 |
|
|
|
55 |
|
|
/* There's a standard order to the arguments of these functions:
|
56 |
|
|
union exp_element ** --- pointer into expression
|
57 |
|
|
struct agent_expr * --- agent expression buffer to generate code into
|
58 |
|
|
struct axs_value * --- describes value left on top of stack */
|
59 |
|
|
|
60 |
|
|
static struct value *const_var_ref (struct symbol *var);
|
61 |
|
|
static struct value *const_expr (union exp_element **pc);
|
62 |
|
|
static struct value *maybe_const_expr (union exp_element **pc);
|
63 |
|
|
|
64 |
|
|
static void gen_traced_pop (struct agent_expr *, struct axs_value *);
|
65 |
|
|
|
66 |
|
|
static void gen_sign_extend (struct agent_expr *, struct type *);
|
67 |
|
|
static void gen_extend (struct agent_expr *, struct type *);
|
68 |
|
|
static void gen_fetch (struct agent_expr *, struct type *);
|
69 |
|
|
static void gen_left_shift (struct agent_expr *, int);
|
70 |
|
|
|
71 |
|
|
|
72 |
|
|
static void gen_frame_args_address (struct agent_expr *);
|
73 |
|
|
static void gen_frame_locals_address (struct agent_expr *);
|
74 |
|
|
static void gen_offset (struct agent_expr *ax, int offset);
|
75 |
|
|
static void gen_sym_offset (struct agent_expr *, struct symbol *);
|
76 |
|
|
static void gen_var_ref (struct agent_expr *ax,
|
77 |
|
|
struct axs_value *value, struct symbol *var);
|
78 |
|
|
|
79 |
|
|
|
80 |
|
|
static void gen_int_literal (struct agent_expr *ax,
|
81 |
|
|
struct axs_value *value,
|
82 |
|
|
LONGEST k, struct type *type);
|
83 |
|
|
|
84 |
|
|
|
85 |
|
|
static void require_rvalue (struct agent_expr *ax, struct axs_value *value);
|
86 |
|
|
static void gen_usual_unary (struct agent_expr *ax, struct axs_value *value);
|
87 |
|
|
static int type_wider_than (struct type *type1, struct type *type2);
|
88 |
|
|
static struct type *max_type (struct type *type1, struct type *type2);
|
89 |
|
|
static void gen_conversion (struct agent_expr *ax,
|
90 |
|
|
struct type *from, struct type *to);
|
91 |
|
|
static int is_nontrivial_conversion (struct type *from, struct type *to);
|
92 |
|
|
static void gen_usual_arithmetic (struct agent_expr *ax,
|
93 |
|
|
struct axs_value *value1,
|
94 |
|
|
struct axs_value *value2);
|
95 |
|
|
static void gen_integral_promotions (struct agent_expr *ax,
|
96 |
|
|
struct axs_value *value);
|
97 |
|
|
static void gen_cast (struct agent_expr *ax,
|
98 |
|
|
struct axs_value *value, struct type *type);
|
99 |
|
|
static void gen_scale (struct agent_expr *ax,
|
100 |
|
|
enum agent_op op, struct type *type);
|
101 |
|
|
static void gen_add (struct agent_expr *ax,
|
102 |
|
|
struct axs_value *value,
|
103 |
|
|
struct axs_value *value1,
|
104 |
|
|
struct axs_value *value2, char *name);
|
105 |
|
|
static void gen_sub (struct agent_expr *ax,
|
106 |
|
|
struct axs_value *value,
|
107 |
|
|
struct axs_value *value1, struct axs_value *value2);
|
108 |
|
|
static void gen_binop (struct agent_expr *ax,
|
109 |
|
|
struct axs_value *value,
|
110 |
|
|
struct axs_value *value1,
|
111 |
|
|
struct axs_value *value2,
|
112 |
|
|
enum agent_op op,
|
113 |
|
|
enum agent_op op_unsigned, int may_carry, char *name);
|
114 |
|
|
static void gen_logical_not (struct agent_expr *ax, struct axs_value *value);
|
115 |
|
|
static void gen_complement (struct agent_expr *ax, struct axs_value *value);
|
116 |
|
|
static void gen_deref (struct agent_expr *, struct axs_value *);
|
117 |
|
|
static void gen_address_of (struct agent_expr *, struct axs_value *);
|
118 |
|
|
static int find_field (struct type *type, char *name);
|
119 |
|
|
static void gen_bitfield_ref (struct agent_expr *ax,
|
120 |
|
|
struct axs_value *value,
|
121 |
|
|
struct type *type, int start, int end);
|
122 |
|
|
static void gen_struct_ref (struct agent_expr *ax,
|
123 |
|
|
struct axs_value *value,
|
124 |
|
|
char *field,
|
125 |
|
|
char *operator_name, char *operand_name);
|
126 |
|
|
static void gen_repeat (union exp_element **pc,
|
127 |
|
|
struct agent_expr *ax, struct axs_value *value);
|
128 |
|
|
static void gen_sizeof (union exp_element **pc,
|
129 |
|
|
struct agent_expr *ax, struct axs_value *value);
|
130 |
|
|
static void gen_expr (union exp_element **pc,
|
131 |
|
|
struct agent_expr *ax, struct axs_value *value);
|
132 |
|
|
|
133 |
|
|
static void print_axs_value (struct ui_file *f, struct axs_value * value);
|
134 |
|
|
static void agent_command (char *exp, int from_tty);
|
135 |
|
|
|
136 |
|
|
|
137 |
|
|
/* Detecting constant expressions. */
|
138 |
|
|
|
139 |
|
|
/* If the variable reference at *PC is a constant, return its value.
|
140 |
|
|
Otherwise, return zero.
|
141 |
|
|
|
142 |
|
|
Hey, Wally! How can a variable reference be a constant?
|
143 |
|
|
|
144 |
|
|
Well, Beav, this function really handles the OP_VAR_VALUE operator,
|
145 |
|
|
not specifically variable references. GDB uses OP_VAR_VALUE to
|
146 |
|
|
refer to any kind of symbolic reference: function names, enum
|
147 |
|
|
elements, and goto labels are all handled through the OP_VAR_VALUE
|
148 |
|
|
operator, even though they're constants. It makes sense given the
|
149 |
|
|
situation.
|
150 |
|
|
|
151 |
|
|
Gee, Wally, don'cha wonder sometimes if data representations that
|
152 |
|
|
subvert commonly accepted definitions of terms in favor of heavily
|
153 |
|
|
context-specific interpretations are really just a tool of the
|
154 |
|
|
programming hegemony to preserve their power and exclude the
|
155 |
|
|
proletariat? */
|
156 |
|
|
|
157 |
|
|
static struct value *
|
158 |
|
|
const_var_ref (struct symbol *var)
|
159 |
|
|
{
|
160 |
|
|
struct type *type = SYMBOL_TYPE (var);
|
161 |
|
|
|
162 |
|
|
switch (SYMBOL_CLASS (var))
|
163 |
|
|
{
|
164 |
|
|
case LOC_CONST:
|
165 |
|
|
return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
|
166 |
|
|
|
167 |
|
|
case LOC_LABEL:
|
168 |
|
|
return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
|
169 |
|
|
|
170 |
|
|
default:
|
171 |
|
|
return 0;
|
172 |
|
|
}
|
173 |
|
|
}
|
174 |
|
|
|
175 |
|
|
|
176 |
|
|
/* If the expression starting at *PC has a constant value, return it.
|
177 |
|
|
Otherwise, return zero. If we return a value, then *PC will be
|
178 |
|
|
advanced to the end of it. If we return zero, *PC could be
|
179 |
|
|
anywhere. */
|
180 |
|
|
static struct value *
|
181 |
|
|
const_expr (union exp_element **pc)
|
182 |
|
|
{
|
183 |
|
|
enum exp_opcode op = (*pc)->opcode;
|
184 |
|
|
struct value *v1;
|
185 |
|
|
|
186 |
|
|
switch (op)
|
187 |
|
|
{
|
188 |
|
|
case OP_LONG:
|
189 |
|
|
{
|
190 |
|
|
struct type *type = (*pc)[1].type;
|
191 |
|
|
LONGEST k = (*pc)[2].longconst;
|
192 |
|
|
(*pc) += 4;
|
193 |
|
|
return value_from_longest (type, k);
|
194 |
|
|
}
|
195 |
|
|
|
196 |
|
|
case OP_VAR_VALUE:
|
197 |
|
|
{
|
198 |
|
|
struct value *v = const_var_ref ((*pc)[2].symbol);
|
199 |
|
|
(*pc) += 4;
|
200 |
|
|
return v;
|
201 |
|
|
}
|
202 |
|
|
|
203 |
|
|
/* We could add more operators in here. */
|
204 |
|
|
|
205 |
|
|
case UNOP_NEG:
|
206 |
|
|
(*pc)++;
|
207 |
|
|
v1 = const_expr (pc);
|
208 |
|
|
if (v1)
|
209 |
|
|
return value_neg (v1);
|
210 |
|
|
else
|
211 |
|
|
return 0;
|
212 |
|
|
|
213 |
|
|
default:
|
214 |
|
|
return 0;
|
215 |
|
|
}
|
216 |
|
|
}
|
217 |
|
|
|
218 |
|
|
|
219 |
|
|
/* Like const_expr, but guarantee also that *PC is undisturbed if the
|
220 |
|
|
expression is not constant. */
|
221 |
|
|
static struct value *
|
222 |
|
|
maybe_const_expr (union exp_element **pc)
|
223 |
|
|
{
|
224 |
|
|
union exp_element *tentative_pc = *pc;
|
225 |
|
|
struct value *v = const_expr (&tentative_pc);
|
226 |
|
|
|
227 |
|
|
/* If we got a value, then update the real PC. */
|
228 |
|
|
if (v)
|
229 |
|
|
*pc = tentative_pc;
|
230 |
|
|
|
231 |
|
|
return v;
|
232 |
|
|
}
|
233 |
|
|
|
234 |
|
|
|
235 |
|
|
/* Generating bytecode from GDB expressions: general assumptions */
|
236 |
|
|
|
237 |
|
|
/* Here are a few general assumptions made throughout the code; if you
|
238 |
|
|
want to make a change that contradicts one of these, then you'd
|
239 |
|
|
better scan things pretty thoroughly.
|
240 |
|
|
|
241 |
|
|
- We assume that all values occupy one stack element. For example,
|
242 |
|
|
sometimes we'll swap to get at the left argument to a binary
|
243 |
|
|
operator. If we decide that void values should occupy no stack
|
244 |
|
|
elements, or that synthetic arrays (whose size is determined at
|
245 |
|
|
run time, created by the `@' operator) should occupy two stack
|
246 |
|
|
elements (address and length), then this will cause trouble.
|
247 |
|
|
|
248 |
|
|
- We assume the stack elements are infinitely wide, and that we
|
249 |
|
|
don't have to worry what happens if the user requests an
|
250 |
|
|
operation that is wider than the actual interpreter's stack.
|
251 |
|
|
That is, it's up to the interpreter to handle directly all the
|
252 |
|
|
integer widths the user has access to. (Woe betide the language
|
253 |
|
|
with bignums!)
|
254 |
|
|
|
255 |
|
|
- We don't support side effects. Thus, we don't have to worry about
|
256 |
|
|
GCC's generalized lvalues, function calls, etc.
|
257 |
|
|
|
258 |
|
|
- We don't support floating point. Many places where we switch on
|
259 |
|
|
some type don't bother to include cases for floating point; there
|
260 |
|
|
may be even more subtle ways this assumption exists. For
|
261 |
|
|
example, the arguments to % must be integers.
|
262 |
|
|
|
263 |
|
|
- We assume all subexpressions have a static, unchanging type. If
|
264 |
|
|
we tried to support convenience variables, this would be a
|
265 |
|
|
problem.
|
266 |
|
|
|
267 |
|
|
- All values on the stack should always be fully zero- or
|
268 |
|
|
sign-extended.
|
269 |
|
|
|
270 |
|
|
(I wasn't sure whether to choose this or its opposite --- that
|
271 |
|
|
only addresses are assumed extended --- but it turns out that
|
272 |
|
|
neither convention completely eliminates spurious extend
|
273 |
|
|
operations (if everything is always extended, then you have to
|
274 |
|
|
extend after add, because it could overflow; if nothing is
|
275 |
|
|
extended, then you end up producing extends whenever you change
|
276 |
|
|
sizes), and this is simpler.) */
|
277 |
|
|
|
278 |
|
|
|
279 |
|
|
/* Generating bytecode from GDB expressions: the `trace' kludge */
|
280 |
|
|
|
281 |
|
|
/* The compiler in this file is a general-purpose mechanism for
|
282 |
|
|
translating GDB expressions into bytecode. One ought to be able to
|
283 |
|
|
find a million and one uses for it.
|
284 |
|
|
|
285 |
|
|
However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
|
286 |
|
|
of expediency. Let he who is without sin cast the first stone.
|
287 |
|
|
|
288 |
|
|
For the data tracing facility, we need to insert `trace' bytecodes
|
289 |
|
|
before each data fetch; this records all the memory that the
|
290 |
|
|
expression touches in the course of evaluation, so that memory will
|
291 |
|
|
be available when the user later tries to evaluate the expression
|
292 |
|
|
in GDB.
|
293 |
|
|
|
294 |
|
|
This should be done (I think) in a post-processing pass, that walks
|
295 |
|
|
an arbitrary agent expression and inserts `trace' operations at the
|
296 |
|
|
appropriate points. But it's much faster to just hack them
|
297 |
|
|
directly into the code. And since we're in a crunch, that's what
|
298 |
|
|
I've done.
|
299 |
|
|
|
300 |
|
|
Setting the flag trace_kludge to non-zero enables the code that
|
301 |
|
|
emits the trace bytecodes at the appropriate points. */
|
302 |
|
|
static int trace_kludge;
|
303 |
|
|
|
304 |
|
|
/* Trace the lvalue on the stack, if it needs it. In either case, pop
|
305 |
|
|
the value. Useful on the left side of a comma, and at the end of
|
306 |
|
|
an expression being used for tracing. */
|
307 |
|
|
static void
|
308 |
|
|
gen_traced_pop (struct agent_expr *ax, struct axs_value *value)
|
309 |
|
|
{
|
310 |
|
|
if (trace_kludge)
|
311 |
|
|
switch (value->kind)
|
312 |
|
|
{
|
313 |
|
|
case axs_rvalue:
|
314 |
|
|
/* We don't trace rvalues, just the lvalues necessary to
|
315 |
|
|
produce them. So just dispose of this value. */
|
316 |
|
|
ax_simple (ax, aop_pop);
|
317 |
|
|
break;
|
318 |
|
|
|
319 |
|
|
case axs_lvalue_memory:
|
320 |
|
|
{
|
321 |
|
|
int length = TYPE_LENGTH (value->type);
|
322 |
|
|
|
323 |
|
|
/* There's no point in trying to use a trace_quick bytecode
|
324 |
|
|
here, since "trace_quick SIZE pop" is three bytes, whereas
|
325 |
|
|
"const8 SIZE trace" is also three bytes, does the same
|
326 |
|
|
thing, and the simplest code which generates that will also
|
327 |
|
|
work correctly for objects with large sizes. */
|
328 |
|
|
ax_const_l (ax, length);
|
329 |
|
|
ax_simple (ax, aop_trace);
|
330 |
|
|
}
|
331 |
|
|
break;
|
332 |
|
|
|
333 |
|
|
case axs_lvalue_register:
|
334 |
|
|
/* We need to mention the register somewhere in the bytecode,
|
335 |
|
|
so ax_reqs will pick it up and add it to the mask of
|
336 |
|
|
registers used. */
|
337 |
|
|
ax_reg (ax, value->u.reg);
|
338 |
|
|
ax_simple (ax, aop_pop);
|
339 |
|
|
break;
|
340 |
|
|
}
|
341 |
|
|
else
|
342 |
|
|
/* If we're not tracing, just pop the value. */
|
343 |
|
|
ax_simple (ax, aop_pop);
|
344 |
|
|
}
|
345 |
|
|
|
346 |
|
|
|
347 |
|
|
|
348 |
|
|
/* Generating bytecode from GDB expressions: helper functions */
|
349 |
|
|
|
350 |
|
|
/* Assume that the lower bits of the top of the stack is a value of
|
351 |
|
|
type TYPE, and the upper bits are zero. Sign-extend if necessary. */
|
352 |
|
|
static void
|
353 |
|
|
gen_sign_extend (struct agent_expr *ax, struct type *type)
|
354 |
|
|
{
|
355 |
|
|
/* Do we need to sign-extend this? */
|
356 |
|
|
if (!TYPE_UNSIGNED (type))
|
357 |
|
|
ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
|
358 |
|
|
}
|
359 |
|
|
|
360 |
|
|
|
361 |
|
|
/* Assume the lower bits of the top of the stack hold a value of type
|
362 |
|
|
TYPE, and the upper bits are garbage. Sign-extend or truncate as
|
363 |
|
|
needed. */
|
364 |
|
|
static void
|
365 |
|
|
gen_extend (struct agent_expr *ax, struct type *type)
|
366 |
|
|
{
|
367 |
|
|
int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
|
368 |
|
|
/* I just had to. */
|
369 |
|
|
((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
|
370 |
|
|
}
|
371 |
|
|
|
372 |
|
|
|
373 |
|
|
/* Assume that the top of the stack contains a value of type "pointer
|
374 |
|
|
to TYPE"; generate code to fetch its value. Note that TYPE is the
|
375 |
|
|
target type, not the pointer type. */
|
376 |
|
|
static void
|
377 |
|
|
gen_fetch (struct agent_expr *ax, struct type *type)
|
378 |
|
|
{
|
379 |
|
|
if (trace_kludge)
|
380 |
|
|
{
|
381 |
|
|
/* Record the area of memory we're about to fetch. */
|
382 |
|
|
ax_trace_quick (ax, TYPE_LENGTH (type));
|
383 |
|
|
}
|
384 |
|
|
|
385 |
|
|
switch (TYPE_CODE (type))
|
386 |
|
|
{
|
387 |
|
|
case TYPE_CODE_PTR:
|
388 |
|
|
case TYPE_CODE_ENUM:
|
389 |
|
|
case TYPE_CODE_INT:
|
390 |
|
|
case TYPE_CODE_CHAR:
|
391 |
|
|
/* It's a scalar value, so we know how to dereference it. How
|
392 |
|
|
many bytes long is it? */
|
393 |
|
|
switch (TYPE_LENGTH (type))
|
394 |
|
|
{
|
395 |
|
|
case 8 / TARGET_CHAR_BIT:
|
396 |
|
|
ax_simple (ax, aop_ref8);
|
397 |
|
|
break;
|
398 |
|
|
case 16 / TARGET_CHAR_BIT:
|
399 |
|
|
ax_simple (ax, aop_ref16);
|
400 |
|
|
break;
|
401 |
|
|
case 32 / TARGET_CHAR_BIT:
|
402 |
|
|
ax_simple (ax, aop_ref32);
|
403 |
|
|
break;
|
404 |
|
|
case 64 / TARGET_CHAR_BIT:
|
405 |
|
|
ax_simple (ax, aop_ref64);
|
406 |
|
|
break;
|
407 |
|
|
|
408 |
|
|
/* Either our caller shouldn't have asked us to dereference
|
409 |
|
|
that pointer (other code's fault), or we're not
|
410 |
|
|
implementing something we should be (this code's fault).
|
411 |
|
|
In any case, it's a bug the user shouldn't see. */
|
412 |
|
|
default:
|
413 |
|
|
internal_error (__FILE__, __LINE__,
|
414 |
|
|
"gen_fetch: strange size");
|
415 |
|
|
}
|
416 |
|
|
|
417 |
|
|
gen_sign_extend (ax, type);
|
418 |
|
|
break;
|
419 |
|
|
|
420 |
|
|
default:
|
421 |
|
|
/* Either our caller shouldn't have asked us to dereference that
|
422 |
|
|
pointer (other code's fault), or we're not implementing
|
423 |
|
|
something we should be (this code's fault). In any case,
|
424 |
|
|
it's a bug the user shouldn't see. */
|
425 |
|
|
internal_error (__FILE__, __LINE__,
|
426 |
|
|
"gen_fetch: bad type code");
|
427 |
|
|
}
|
428 |
|
|
}
|
429 |
|
|
|
430 |
|
|
|
431 |
|
|
/* Generate code to left shift the top of the stack by DISTANCE bits, or
|
432 |
|
|
right shift it by -DISTANCE bits if DISTANCE < 0. This generates
|
433 |
|
|
unsigned (logical) right shifts. */
|
434 |
|
|
static void
|
435 |
|
|
gen_left_shift (struct agent_expr *ax, int distance)
|
436 |
|
|
{
|
437 |
|
|
if (distance > 0)
|
438 |
|
|
{
|
439 |
|
|
ax_const_l (ax, distance);
|
440 |
|
|
ax_simple (ax, aop_lsh);
|
441 |
|
|
}
|
442 |
|
|
else if (distance < 0)
|
443 |
|
|
{
|
444 |
|
|
ax_const_l (ax, -distance);
|
445 |
|
|
ax_simple (ax, aop_rsh_unsigned);
|
446 |
|
|
}
|
447 |
|
|
}
|
448 |
|
|
|
449 |
|
|
|
450 |
|
|
|
451 |
|
|
/* Generating bytecode from GDB expressions: symbol references */
|
452 |
|
|
|
453 |
|
|
/* Generate code to push the base address of the argument portion of
|
454 |
|
|
the top stack frame. */
|
455 |
|
|
static void
|
456 |
|
|
gen_frame_args_address (struct agent_expr *ax)
|
457 |
|
|
{
|
458 |
|
|
int frame_reg;
|
459 |
|
|
LONGEST frame_offset;
|
460 |
|
|
|
461 |
|
|
TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
|
462 |
|
|
ax_reg (ax, frame_reg);
|
463 |
|
|
gen_offset (ax, frame_offset);
|
464 |
|
|
}
|
465 |
|
|
|
466 |
|
|
|
467 |
|
|
/* Generate code to push the base address of the locals portion of the
|
468 |
|
|
top stack frame. */
|
469 |
|
|
static void
|
470 |
|
|
gen_frame_locals_address (struct agent_expr *ax)
|
471 |
|
|
{
|
472 |
|
|
int frame_reg;
|
473 |
|
|
LONGEST frame_offset;
|
474 |
|
|
|
475 |
|
|
TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
|
476 |
|
|
ax_reg (ax, frame_reg);
|
477 |
|
|
gen_offset (ax, frame_offset);
|
478 |
|
|
}
|
479 |
|
|
|
480 |
|
|
|
481 |
|
|
/* Generate code to add OFFSET to the top of the stack. Try to
|
482 |
|
|
generate short and readable code. We use this for getting to
|
483 |
|
|
variables on the stack, and structure members. If we were
|
484 |
|
|
programming in ML, it would be clearer why these are the same
|
485 |
|
|
thing. */
|
486 |
|
|
static void
|
487 |
|
|
gen_offset (struct agent_expr *ax, int offset)
|
488 |
|
|
{
|
489 |
|
|
/* It would suffice to simply push the offset and add it, but this
|
490 |
|
|
makes it easier to read positive and negative offsets in the
|
491 |
|
|
bytecode. */
|
492 |
|
|
if (offset > 0)
|
493 |
|
|
{
|
494 |
|
|
ax_const_l (ax, offset);
|
495 |
|
|
ax_simple (ax, aop_add);
|
496 |
|
|
}
|
497 |
|
|
else if (offset < 0)
|
498 |
|
|
{
|
499 |
|
|
ax_const_l (ax, -offset);
|
500 |
|
|
ax_simple (ax, aop_sub);
|
501 |
|
|
}
|
502 |
|
|
}
|
503 |
|
|
|
504 |
|
|
|
505 |
|
|
/* In many cases, a symbol's value is the offset from some other
|
506 |
|
|
address (stack frame, base register, etc.) Generate code to add
|
507 |
|
|
VAR's value to the top of the stack. */
|
508 |
|
|
static void
|
509 |
|
|
gen_sym_offset (struct agent_expr *ax, struct symbol *var)
|
510 |
|
|
{
|
511 |
|
|
gen_offset (ax, SYMBOL_VALUE (var));
|
512 |
|
|
}
|
513 |
|
|
|
514 |
|
|
|
515 |
|
|
/* Generate code for a variable reference to AX. The variable is the
|
516 |
|
|
symbol VAR. Set VALUE to describe the result. */
|
517 |
|
|
|
518 |
|
|
static void
|
519 |
|
|
gen_var_ref (struct agent_expr *ax, struct axs_value *value, struct symbol *var)
|
520 |
|
|
{
|
521 |
|
|
/* Dereference any typedefs. */
|
522 |
|
|
value->type = check_typedef (SYMBOL_TYPE (var));
|
523 |
|
|
|
524 |
|
|
/* I'm imitating the code in read_var_value. */
|
525 |
|
|
switch (SYMBOL_CLASS (var))
|
526 |
|
|
{
|
527 |
|
|
case LOC_CONST: /* A constant, like an enum value. */
|
528 |
|
|
ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
|
529 |
|
|
value->kind = axs_rvalue;
|
530 |
|
|
break;
|
531 |
|
|
|
532 |
|
|
case LOC_LABEL: /* A goto label, being used as a value. */
|
533 |
|
|
ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
|
534 |
|
|
value->kind = axs_rvalue;
|
535 |
|
|
break;
|
536 |
|
|
|
537 |
|
|
case LOC_CONST_BYTES:
|
538 |
|
|
internal_error (__FILE__, __LINE__,
|
539 |
|
|
"gen_var_ref: LOC_CONST_BYTES symbols are not supported");
|
540 |
|
|
|
541 |
|
|
/* Variable at a fixed location in memory. Easy. */
|
542 |
|
|
case LOC_STATIC:
|
543 |
|
|
/* Push the address of the variable. */
|
544 |
|
|
ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
|
545 |
|
|
value->kind = axs_lvalue_memory;
|
546 |
|
|
break;
|
547 |
|
|
|
548 |
|
|
case LOC_ARG: /* var lives in argument area of frame */
|
549 |
|
|
gen_frame_args_address (ax);
|
550 |
|
|
gen_sym_offset (ax, var);
|
551 |
|
|
value->kind = axs_lvalue_memory;
|
552 |
|
|
break;
|
553 |
|
|
|
554 |
|
|
case LOC_REF_ARG: /* As above, but the frame slot really
|
555 |
|
|
holds the address of the variable. */
|
556 |
|
|
gen_frame_args_address (ax);
|
557 |
|
|
gen_sym_offset (ax, var);
|
558 |
|
|
/* Don't assume any particular pointer size. */
|
559 |
|
|
gen_fetch (ax, lookup_pointer_type (builtin_type_void));
|
560 |
|
|
value->kind = axs_lvalue_memory;
|
561 |
|
|
break;
|
562 |
|
|
|
563 |
|
|
case LOC_LOCAL: /* var lives in locals area of frame */
|
564 |
|
|
case LOC_LOCAL_ARG:
|
565 |
|
|
gen_frame_locals_address (ax);
|
566 |
|
|
gen_sym_offset (ax, var);
|
567 |
|
|
value->kind = axs_lvalue_memory;
|
568 |
|
|
break;
|
569 |
|
|
|
570 |
|
|
case LOC_BASEREG: /* relative to some base register */
|
571 |
|
|
case LOC_BASEREG_ARG:
|
572 |
|
|
ax_reg (ax, SYMBOL_BASEREG (var));
|
573 |
|
|
gen_sym_offset (ax, var);
|
574 |
|
|
value->kind = axs_lvalue_memory;
|
575 |
|
|
break;
|
576 |
|
|
|
577 |
|
|
case LOC_TYPEDEF:
|
578 |
|
|
error ("Cannot compute value of typedef `%s'.",
|
579 |
|
|
SYMBOL_SOURCE_NAME (var));
|
580 |
|
|
break;
|
581 |
|
|
|
582 |
|
|
case LOC_BLOCK:
|
583 |
|
|
ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
|
584 |
|
|
value->kind = axs_rvalue;
|
585 |
|
|
break;
|
586 |
|
|
|
587 |
|
|
case LOC_REGISTER:
|
588 |
|
|
case LOC_REGPARM:
|
589 |
|
|
/* Don't generate any code at all; in the process of treating
|
590 |
|
|
this as an lvalue or rvalue, the caller will generate the
|
591 |
|
|
right code. */
|
592 |
|
|
value->kind = axs_lvalue_register;
|
593 |
|
|
value->u.reg = SYMBOL_VALUE (var);
|
594 |
|
|
break;
|
595 |
|
|
|
596 |
|
|
/* A lot like LOC_REF_ARG, but the pointer lives directly in a
|
597 |
|
|
register, not on the stack. Simpler than LOC_REGISTER and
|
598 |
|
|
LOC_REGPARM, because it's just like any other case where the
|
599 |
|
|
thing has a real address. */
|
600 |
|
|
case LOC_REGPARM_ADDR:
|
601 |
|
|
ax_reg (ax, SYMBOL_VALUE (var));
|
602 |
|
|
value->kind = axs_lvalue_memory;
|
603 |
|
|
break;
|
604 |
|
|
|
605 |
|
|
case LOC_UNRESOLVED:
|
606 |
|
|
{
|
607 |
|
|
struct minimal_symbol *msym
|
608 |
|
|
= lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL);
|
609 |
|
|
if (!msym)
|
610 |
|
|
error ("Couldn't resolve symbol `%s'.", SYMBOL_SOURCE_NAME (var));
|
611 |
|
|
|
612 |
|
|
/* Push the address of the variable. */
|
613 |
|
|
ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
|
614 |
|
|
value->kind = axs_lvalue_memory;
|
615 |
|
|
}
|
616 |
|
|
break;
|
617 |
|
|
|
618 |
|
|
case LOC_OPTIMIZED_OUT:
|
619 |
|
|
error ("The variable `%s' has been optimized out.",
|
620 |
|
|
SYMBOL_SOURCE_NAME (var));
|
621 |
|
|
break;
|
622 |
|
|
|
623 |
|
|
default:
|
624 |
|
|
error ("Cannot find value of botched symbol `%s'.",
|
625 |
|
|
SYMBOL_SOURCE_NAME (var));
|
626 |
|
|
break;
|
627 |
|
|
}
|
628 |
|
|
}
|
629 |
|
|
|
630 |
|
|
|
631 |
|
|
|
632 |
|
|
/* Generating bytecode from GDB expressions: literals */
|
633 |
|
|
|
634 |
|
|
static void
|
635 |
|
|
gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
|
636 |
|
|
struct type *type)
|
637 |
|
|
{
|
638 |
|
|
ax_const_l (ax, k);
|
639 |
|
|
value->kind = axs_rvalue;
|
640 |
|
|
value->type = type;
|
641 |
|
|
}
|
642 |
|
|
|
643 |
|
|
|
644 |
|
|
|
645 |
|
|
/* Generating bytecode from GDB expressions: unary conversions, casts */
|
646 |
|
|
|
647 |
|
|
/* Take what's on the top of the stack (as described by VALUE), and
|
648 |
|
|
try to make an rvalue out of it. Signal an error if we can't do
|
649 |
|
|
that. */
|
650 |
|
|
static void
|
651 |
|
|
require_rvalue (struct agent_expr *ax, struct axs_value *value)
|
652 |
|
|
{
|
653 |
|
|
switch (value->kind)
|
654 |
|
|
{
|
655 |
|
|
case axs_rvalue:
|
656 |
|
|
/* It's already an rvalue. */
|
657 |
|
|
break;
|
658 |
|
|
|
659 |
|
|
case axs_lvalue_memory:
|
660 |
|
|
/* The top of stack is the address of the object. Dereference. */
|
661 |
|
|
gen_fetch (ax, value->type);
|
662 |
|
|
break;
|
663 |
|
|
|
664 |
|
|
case axs_lvalue_register:
|
665 |
|
|
/* There's nothing on the stack, but value->u.reg is the
|
666 |
|
|
register number containing the value.
|
667 |
|
|
|
668 |
|
|
When we add floating-point support, this is going to have to
|
669 |
|
|
change. What about SPARC register pairs, for example? */
|
670 |
|
|
ax_reg (ax, value->u.reg);
|
671 |
|
|
gen_extend (ax, value->type);
|
672 |
|
|
break;
|
673 |
|
|
}
|
674 |
|
|
|
675 |
|
|
value->kind = axs_rvalue;
|
676 |
|
|
}
|
677 |
|
|
|
678 |
|
|
|
679 |
|
|
/* Assume the top of the stack is described by VALUE, and perform the
|
680 |
|
|
usual unary conversions. This is motivated by ANSI 6.2.2, but of
|
681 |
|
|
course GDB expressions are not ANSI; they're the mishmash union of
|
682 |
|
|
a bunch of languages. Rah.
|
683 |
|
|
|
684 |
|
|
NOTE! This function promises to produce an rvalue only when the
|
685 |
|
|
incoming value is of an appropriate type. In other words, the
|
686 |
|
|
consumer of the value this function produces may assume the value
|
687 |
|
|
is an rvalue only after checking its type.
|
688 |
|
|
|
689 |
|
|
The immediate issue is that if the user tries to use a structure or
|
690 |
|
|
union as an operand of, say, the `+' operator, we don't want to try
|
691 |
|
|
to convert that structure to an rvalue; require_rvalue will bomb on
|
692 |
|
|
structs and unions. Rather, we want to simply pass the struct
|
693 |
|
|
lvalue through unchanged, and let `+' raise an error. */
|
694 |
|
|
|
695 |
|
|
static void
|
696 |
|
|
gen_usual_unary (struct agent_expr *ax, struct axs_value *value)
|
697 |
|
|
{
|
698 |
|
|
/* We don't have to generate any code for the usual integral
|
699 |
|
|
conversions, since values are always represented as full-width on
|
700 |
|
|
the stack. Should we tweak the type? */
|
701 |
|
|
|
702 |
|
|
/* Some types require special handling. */
|
703 |
|
|
switch (TYPE_CODE (value->type))
|
704 |
|
|
{
|
705 |
|
|
/* Functions get converted to a pointer to the function. */
|
706 |
|
|
case TYPE_CODE_FUNC:
|
707 |
|
|
value->type = lookup_pointer_type (value->type);
|
708 |
|
|
value->kind = axs_rvalue; /* Should always be true, but just in case. */
|
709 |
|
|
break;
|
710 |
|
|
|
711 |
|
|
/* Arrays get converted to a pointer to their first element, and
|
712 |
|
|
are no longer an lvalue. */
|
713 |
|
|
case TYPE_CODE_ARRAY:
|
714 |
|
|
{
|
715 |
|
|
struct type *elements = TYPE_TARGET_TYPE (value->type);
|
716 |
|
|
value->type = lookup_pointer_type (elements);
|
717 |
|
|
value->kind = axs_rvalue;
|
718 |
|
|
/* We don't need to generate any code; the address of the array
|
719 |
|
|
is also the address of its first element. */
|
720 |
|
|
}
|
721 |
|
|
break;
|
722 |
|
|
|
723 |
|
|
/* Don't try to convert structures and unions to rvalues. Let the
|
724 |
|
|
consumer signal an error. */
|
725 |
|
|
case TYPE_CODE_STRUCT:
|
726 |
|
|
case TYPE_CODE_UNION:
|
727 |
|
|
return;
|
728 |
|
|
|
729 |
|
|
/* If the value is an enum, call it an integer. */
|
730 |
|
|
case TYPE_CODE_ENUM:
|
731 |
|
|
value->type = builtin_type_int;
|
732 |
|
|
break;
|
733 |
|
|
}
|
734 |
|
|
|
735 |
|
|
/* If the value is an lvalue, dereference it. */
|
736 |
|
|
require_rvalue (ax, value);
|
737 |
|
|
}
|
738 |
|
|
|
739 |
|
|
|
740 |
|
|
/* Return non-zero iff the type TYPE1 is considered "wider" than the
|
741 |
|
|
type TYPE2, according to the rules described in gen_usual_arithmetic. */
|
742 |
|
|
static int
|
743 |
|
|
type_wider_than (struct type *type1, struct type *type2)
|
744 |
|
|
{
|
745 |
|
|
return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
|
746 |
|
|
|| (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
|
747 |
|
|
&& TYPE_UNSIGNED (type1)
|
748 |
|
|
&& !TYPE_UNSIGNED (type2)));
|
749 |
|
|
}
|
750 |
|
|
|
751 |
|
|
|
752 |
|
|
/* Return the "wider" of the two types TYPE1 and TYPE2. */
|
753 |
|
|
static struct type *
|
754 |
|
|
max_type (struct type *type1, struct type *type2)
|
755 |
|
|
{
|
756 |
|
|
return type_wider_than (type1, type2) ? type1 : type2;
|
757 |
|
|
}
|
758 |
|
|
|
759 |
|
|
|
760 |
|
|
/* Generate code to convert a scalar value of type FROM to type TO. */
|
761 |
|
|
static void
|
762 |
|
|
gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
|
763 |
|
|
{
|
764 |
|
|
/* Perhaps there is a more graceful way to state these rules. */
|
765 |
|
|
|
766 |
|
|
/* If we're converting to a narrower type, then we need to clear out
|
767 |
|
|
the upper bits. */
|
768 |
|
|
if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
|
769 |
|
|
gen_extend (ax, from);
|
770 |
|
|
|
771 |
|
|
/* If the two values have equal width, but different signednesses,
|
772 |
|
|
then we need to extend. */
|
773 |
|
|
else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
|
774 |
|
|
{
|
775 |
|
|
if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
|
776 |
|
|
gen_extend (ax, to);
|
777 |
|
|
}
|
778 |
|
|
|
779 |
|
|
/* If we're converting to a wider type, and becoming unsigned, then
|
780 |
|
|
we need to zero out any possible sign bits. */
|
781 |
|
|
else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
|
782 |
|
|
{
|
783 |
|
|
if (TYPE_UNSIGNED (to))
|
784 |
|
|
gen_extend (ax, to);
|
785 |
|
|
}
|
786 |
|
|
}
|
787 |
|
|
|
788 |
|
|
|
789 |
|
|
/* Return non-zero iff the type FROM will require any bytecodes to be
|
790 |
|
|
emitted to be converted to the type TO. */
|
791 |
|
|
static int
|
792 |
|
|
is_nontrivial_conversion (struct type *from, struct type *to)
|
793 |
|
|
{
|
794 |
|
|
struct agent_expr *ax = new_agent_expr (0);
|
795 |
|
|
int nontrivial;
|
796 |
|
|
|
797 |
|
|
/* Actually generate the code, and see if anything came out. At the
|
798 |
|
|
moment, it would be trivial to replicate the code in
|
799 |
|
|
gen_conversion here, but in the future, when we're supporting
|
800 |
|
|
floating point and the like, it may not be. Doing things this
|
801 |
|
|
way allows this function to be independent of the logic in
|
802 |
|
|
gen_conversion. */
|
803 |
|
|
gen_conversion (ax, from, to);
|
804 |
|
|
nontrivial = ax->len > 0;
|
805 |
|
|
free_agent_expr (ax);
|
806 |
|
|
return nontrivial;
|
807 |
|
|
}
|
808 |
|
|
|
809 |
|
|
|
810 |
|
|
/* Generate code to perform the "usual arithmetic conversions" (ANSI C
|
811 |
|
|
6.2.1.5) for the two operands of an arithmetic operator. This
|
812 |
|
|
effectively finds a "least upper bound" type for the two arguments,
|
813 |
|
|
and promotes each argument to that type. *VALUE1 and *VALUE2
|
814 |
|
|
describe the values as they are passed in, and as they are left. */
|
815 |
|
|
static void
|
816 |
|
|
gen_usual_arithmetic (struct agent_expr *ax, struct axs_value *value1,
|
817 |
|
|
struct axs_value *value2)
|
818 |
|
|
{
|
819 |
|
|
/* Do the usual binary conversions. */
|
820 |
|
|
if (TYPE_CODE (value1->type) == TYPE_CODE_INT
|
821 |
|
|
&& TYPE_CODE (value2->type) == TYPE_CODE_INT)
|
822 |
|
|
{
|
823 |
|
|
/* The ANSI integral promotions seem to work this way: Order the
|
824 |
|
|
integer types by size, and then by signedness: an n-bit
|
825 |
|
|
unsigned type is considered "wider" than an n-bit signed
|
826 |
|
|
type. Promote to the "wider" of the two types, and always
|
827 |
|
|
promote at least to int. */
|
828 |
|
|
struct type *target = max_type (builtin_type_int,
|
829 |
|
|
max_type (value1->type, value2->type));
|
830 |
|
|
|
831 |
|
|
/* Deal with value2, on the top of the stack. */
|
832 |
|
|
gen_conversion (ax, value2->type, target);
|
833 |
|
|
|
834 |
|
|
/* Deal with value1, not on the top of the stack. Don't
|
835 |
|
|
generate the `swap' instructions if we're not actually going
|
836 |
|
|
to do anything. */
|
837 |
|
|
if (is_nontrivial_conversion (value1->type, target))
|
838 |
|
|
{
|
839 |
|
|
ax_simple (ax, aop_swap);
|
840 |
|
|
gen_conversion (ax, value1->type, target);
|
841 |
|
|
ax_simple (ax, aop_swap);
|
842 |
|
|
}
|
843 |
|
|
|
844 |
|
|
value1->type = value2->type = target;
|
845 |
|
|
}
|
846 |
|
|
}
|
847 |
|
|
|
848 |
|
|
|
849 |
|
|
/* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
|
850 |
|
|
the value on the top of the stack, as described by VALUE. Assume
|
851 |
|
|
the value has integral type. */
|
852 |
|
|
static void
|
853 |
|
|
gen_integral_promotions (struct agent_expr *ax, struct axs_value *value)
|
854 |
|
|
{
|
855 |
|
|
if (!type_wider_than (value->type, builtin_type_int))
|
856 |
|
|
{
|
857 |
|
|
gen_conversion (ax, value->type, builtin_type_int);
|
858 |
|
|
value->type = builtin_type_int;
|
859 |
|
|
}
|
860 |
|
|
else if (!type_wider_than (value->type, builtin_type_unsigned_int))
|
861 |
|
|
{
|
862 |
|
|
gen_conversion (ax, value->type, builtin_type_unsigned_int);
|
863 |
|
|
value->type = builtin_type_unsigned_int;
|
864 |
|
|
}
|
865 |
|
|
}
|
866 |
|
|
|
867 |
|
|
|
868 |
|
|
/* Generate code for a cast to TYPE. */
|
869 |
|
|
static void
|
870 |
|
|
gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
|
871 |
|
|
{
|
872 |
|
|
/* GCC does allow casts to yield lvalues, so this should be fixed
|
873 |
|
|
before merging these changes into the trunk. */
|
874 |
|
|
require_rvalue (ax, value);
|
875 |
|
|
/* Dereference typedefs. */
|
876 |
|
|
type = check_typedef (type);
|
877 |
|
|
|
878 |
|
|
switch (TYPE_CODE (type))
|
879 |
|
|
{
|
880 |
|
|
case TYPE_CODE_PTR:
|
881 |
|
|
/* It's implementation-defined, and I'll bet this is what GCC
|
882 |
|
|
does. */
|
883 |
|
|
break;
|
884 |
|
|
|
885 |
|
|
case TYPE_CODE_ARRAY:
|
886 |
|
|
case TYPE_CODE_STRUCT:
|
887 |
|
|
case TYPE_CODE_UNION:
|
888 |
|
|
case TYPE_CODE_FUNC:
|
889 |
|
|
error ("Illegal type cast: intended type must be scalar.");
|
890 |
|
|
|
891 |
|
|
case TYPE_CODE_ENUM:
|
892 |
|
|
/* We don't have to worry about the size of the value, because
|
893 |
|
|
all our integral values are fully sign-extended, and when
|
894 |
|
|
casting pointers we can do anything we like. Is there any
|
895 |
|
|
way for us to actually know what GCC actually does with a
|
896 |
|
|
cast like this? */
|
897 |
|
|
value->type = type;
|
898 |
|
|
break;
|
899 |
|
|
|
900 |
|
|
case TYPE_CODE_INT:
|
901 |
|
|
gen_conversion (ax, value->type, type);
|
902 |
|
|
break;
|
903 |
|
|
|
904 |
|
|
case TYPE_CODE_VOID:
|
905 |
|
|
/* We could pop the value, and rely on everyone else to check
|
906 |
|
|
the type and notice that this value doesn't occupy a stack
|
907 |
|
|
slot. But for now, leave the value on the stack, and
|
908 |
|
|
preserve the "value == stack element" assumption. */
|
909 |
|
|
break;
|
910 |
|
|
|
911 |
|
|
default:
|
912 |
|
|
error ("Casts to requested type are not yet implemented.");
|
913 |
|
|
}
|
914 |
|
|
|
915 |
|
|
value->type = type;
|
916 |
|
|
}
|
917 |
|
|
|
918 |
|
|
|
919 |
|
|
|
920 |
|
|
/* Generating bytecode from GDB expressions: arithmetic */
|
921 |
|
|
|
922 |
|
|
/* Scale the integer on the top of the stack by the size of the target
|
923 |
|
|
of the pointer type TYPE. */
|
924 |
|
|
static void
|
925 |
|
|
gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
|
926 |
|
|
{
|
927 |
|
|
struct type *element = TYPE_TARGET_TYPE (type);
|
928 |
|
|
|
929 |
|
|
if (TYPE_LENGTH (element) != 1)
|
930 |
|
|
{
|
931 |
|
|
ax_const_l (ax, TYPE_LENGTH (element));
|
932 |
|
|
ax_simple (ax, op);
|
933 |
|
|
}
|
934 |
|
|
}
|
935 |
|
|
|
936 |
|
|
|
937 |
|
|
/* Generate code for an addition; non-trivial because we deal with
|
938 |
|
|
pointer arithmetic. We set VALUE to describe the result value; we
|
939 |
|
|
assume VALUE1 and VALUE2 describe the two operands, and that
|
940 |
|
|
they've undergone the usual binary conversions. Used by both
|
941 |
|
|
BINOP_ADD and BINOP_SUBSCRIPT. NAME is used in error messages. */
|
942 |
|
|
static void
|
943 |
|
|
gen_add (struct agent_expr *ax, struct axs_value *value,
|
944 |
|
|
struct axs_value *value1, struct axs_value *value2, char *name)
|
945 |
|
|
{
|
946 |
|
|
/* Is it INT+PTR? */
|
947 |
|
|
if (TYPE_CODE (value1->type) == TYPE_CODE_INT
|
948 |
|
|
&& TYPE_CODE (value2->type) == TYPE_CODE_PTR)
|
949 |
|
|
{
|
950 |
|
|
/* Swap the values and proceed normally. */
|
951 |
|
|
ax_simple (ax, aop_swap);
|
952 |
|
|
gen_scale (ax, aop_mul, value2->type);
|
953 |
|
|
ax_simple (ax, aop_add);
|
954 |
|
|
gen_extend (ax, value2->type); /* Catch overflow. */
|
955 |
|
|
value->type = value2->type;
|
956 |
|
|
}
|
957 |
|
|
|
958 |
|
|
/* Is it PTR+INT? */
|
959 |
|
|
else if (TYPE_CODE (value1->type) == TYPE_CODE_PTR
|
960 |
|
|
&& TYPE_CODE (value2->type) == TYPE_CODE_INT)
|
961 |
|
|
{
|
962 |
|
|
gen_scale (ax, aop_mul, value1->type);
|
963 |
|
|
ax_simple (ax, aop_add);
|
964 |
|
|
gen_extend (ax, value1->type); /* Catch overflow. */
|
965 |
|
|
value->type = value1->type;
|
966 |
|
|
}
|
967 |
|
|
|
968 |
|
|
/* Must be number + number; the usual binary conversions will have
|
969 |
|
|
brought them both to the same width. */
|
970 |
|
|
else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
|
971 |
|
|
&& TYPE_CODE (value2->type) == TYPE_CODE_INT)
|
972 |
|
|
{
|
973 |
|
|
ax_simple (ax, aop_add);
|
974 |
|
|
gen_extend (ax, value1->type); /* Catch overflow. */
|
975 |
|
|
value->type = value1->type;
|
976 |
|
|
}
|
977 |
|
|
|
978 |
|
|
else
|
979 |
|
|
error ("Illegal combination of types in %s.", name);
|
980 |
|
|
|
981 |
|
|
value->kind = axs_rvalue;
|
982 |
|
|
}
|
983 |
|
|
|
984 |
|
|
|
985 |
|
|
/* Generate code for an addition; non-trivial because we have to deal
|
986 |
|
|
with pointer arithmetic. We set VALUE to describe the result
|
987 |
|
|
value; we assume VALUE1 and VALUE2 describe the two operands, and
|
988 |
|
|
that they've undergone the usual binary conversions. */
|
989 |
|
|
static void
|
990 |
|
|
gen_sub (struct agent_expr *ax, struct axs_value *value,
|
991 |
|
|
struct axs_value *value1, struct axs_value *value2)
|
992 |
|
|
{
|
993 |
|
|
if (TYPE_CODE (value1->type) == TYPE_CODE_PTR)
|
994 |
|
|
{
|
995 |
|
|
/* Is it PTR - INT? */
|
996 |
|
|
if (TYPE_CODE (value2->type) == TYPE_CODE_INT)
|
997 |
|
|
{
|
998 |
|
|
gen_scale (ax, aop_mul, value1->type);
|
999 |
|
|
ax_simple (ax, aop_sub);
|
1000 |
|
|
gen_extend (ax, value1->type); /* Catch overflow. */
|
1001 |
|
|
value->type = value1->type;
|
1002 |
|
|
}
|
1003 |
|
|
|
1004 |
|
|
/* Is it PTR - PTR? Strictly speaking, the types ought to
|
1005 |
|
|
match, but this is what the normal GDB expression evaluator
|
1006 |
|
|
tests for. */
|
1007 |
|
|
else if (TYPE_CODE (value2->type) == TYPE_CODE_PTR
|
1008 |
|
|
&& (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
|
1009 |
|
|
== TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type))))
|
1010 |
|
|
{
|
1011 |
|
|
ax_simple (ax, aop_sub);
|
1012 |
|
|
gen_scale (ax, aop_div_unsigned, value1->type);
|
1013 |
|
|
value->type = builtin_type_long; /* FIXME --- should be ptrdiff_t */
|
1014 |
|
|
}
|
1015 |
|
|
else
|
1016 |
|
|
error ("\
|
1017 |
|
|
First argument of `-' is a pointer, but second argument is neither\n\
|
1018 |
|
|
an integer nor a pointer of the same type.");
|
1019 |
|
|
}
|
1020 |
|
|
|
1021 |
|
|
/* Must be number + number. */
|
1022 |
|
|
else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
|
1023 |
|
|
&& TYPE_CODE (value2->type) == TYPE_CODE_INT)
|
1024 |
|
|
{
|
1025 |
|
|
ax_simple (ax, aop_sub);
|
1026 |
|
|
gen_extend (ax, value1->type); /* Catch overflow. */
|
1027 |
|
|
value->type = value1->type;
|
1028 |
|
|
}
|
1029 |
|
|
|
1030 |
|
|
else
|
1031 |
|
|
error ("Illegal combination of types in subtraction.");
|
1032 |
|
|
|
1033 |
|
|
value->kind = axs_rvalue;
|
1034 |
|
|
}
|
1035 |
|
|
|
1036 |
|
|
/* Generate code for a binary operator that doesn't do pointer magic.
|
1037 |
|
|
We set VALUE to describe the result value; we assume VALUE1 and
|
1038 |
|
|
VALUE2 describe the two operands, and that they've undergone the
|
1039 |
|
|
usual binary conversions. MAY_CARRY should be non-zero iff the
|
1040 |
|
|
result needs to be extended. NAME is the English name of the
|
1041 |
|
|
operator, used in error messages */
|
1042 |
|
|
static void
|
1043 |
|
|
gen_binop (struct agent_expr *ax, struct axs_value *value,
|
1044 |
|
|
struct axs_value *value1, struct axs_value *value2, enum agent_op op,
|
1045 |
|
|
enum agent_op op_unsigned, int may_carry, char *name)
|
1046 |
|
|
{
|
1047 |
|
|
/* We only handle INT op INT. */
|
1048 |
|
|
if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
|
1049 |
|
|
|| (TYPE_CODE (value2->type) != TYPE_CODE_INT))
|
1050 |
|
|
error ("Illegal combination of types in %s.", name);
|
1051 |
|
|
|
1052 |
|
|
ax_simple (ax,
|
1053 |
|
|
TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
|
1054 |
|
|
if (may_carry)
|
1055 |
|
|
gen_extend (ax, value1->type); /* catch overflow */
|
1056 |
|
|
value->type = value1->type;
|
1057 |
|
|
value->kind = axs_rvalue;
|
1058 |
|
|
}
|
1059 |
|
|
|
1060 |
|
|
|
1061 |
|
|
static void
|
1062 |
|
|
gen_logical_not (struct agent_expr *ax, struct axs_value *value)
|
1063 |
|
|
{
|
1064 |
|
|
if (TYPE_CODE (value->type) != TYPE_CODE_INT
|
1065 |
|
|
&& TYPE_CODE (value->type) != TYPE_CODE_PTR)
|
1066 |
|
|
error ("Illegal type of operand to `!'.");
|
1067 |
|
|
|
1068 |
|
|
gen_usual_unary (ax, value);
|
1069 |
|
|
ax_simple (ax, aop_log_not);
|
1070 |
|
|
value->type = builtin_type_int;
|
1071 |
|
|
}
|
1072 |
|
|
|
1073 |
|
|
|
1074 |
|
|
static void
|
1075 |
|
|
gen_complement (struct agent_expr *ax, struct axs_value *value)
|
1076 |
|
|
{
|
1077 |
|
|
if (TYPE_CODE (value->type) != TYPE_CODE_INT)
|
1078 |
|
|
error ("Illegal type of operand to `~'.");
|
1079 |
|
|
|
1080 |
|
|
gen_usual_unary (ax, value);
|
1081 |
|
|
gen_integral_promotions (ax, value);
|
1082 |
|
|
ax_simple (ax, aop_bit_not);
|
1083 |
|
|
gen_extend (ax, value->type);
|
1084 |
|
|
}
|
1085 |
|
|
|
1086 |
|
|
|
1087 |
|
|
|
1088 |
|
|
/* Generating bytecode from GDB expressions: * & . -> @ sizeof */
|
1089 |
|
|
|
1090 |
|
|
/* Dereference the value on the top of the stack. */
|
1091 |
|
|
static void
|
1092 |
|
|
gen_deref (struct agent_expr *ax, struct axs_value *value)
|
1093 |
|
|
{
|
1094 |
|
|
/* The caller should check the type, because several operators use
|
1095 |
|
|
this, and we don't know what error message to generate. */
|
1096 |
|
|
if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
|
1097 |
|
|
internal_error (__FILE__, __LINE__,
|
1098 |
|
|
"gen_deref: expected a pointer");
|
1099 |
|
|
|
1100 |
|
|
/* We've got an rvalue now, which is a pointer. We want to yield an
|
1101 |
|
|
lvalue, whose address is exactly that pointer. So we don't
|
1102 |
|
|
actually emit any code; we just change the type from "Pointer to
|
1103 |
|
|
T" to "T", and mark the value as an lvalue in memory. Leave it
|
1104 |
|
|
to the consumer to actually dereference it. */
|
1105 |
|
|
value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
|
1106 |
|
|
value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
|
1107 |
|
|
? axs_rvalue : axs_lvalue_memory);
|
1108 |
|
|
}
|
1109 |
|
|
|
1110 |
|
|
|
1111 |
|
|
/* Produce the address of the lvalue on the top of the stack. */
|
1112 |
|
|
static void
|
1113 |
|
|
gen_address_of (struct agent_expr *ax, struct axs_value *value)
|
1114 |
|
|
{
|
1115 |
|
|
/* Special case for taking the address of a function. The ANSI
|
1116 |
|
|
standard describes this as a special case, too, so this
|
1117 |
|
|
arrangement is not without motivation. */
|
1118 |
|
|
if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
|
1119 |
|
|
/* The value's already an rvalue on the stack, so we just need to
|
1120 |
|
|
change the type. */
|
1121 |
|
|
value->type = lookup_pointer_type (value->type);
|
1122 |
|
|
else
|
1123 |
|
|
switch (value->kind)
|
1124 |
|
|
{
|
1125 |
|
|
case axs_rvalue:
|
1126 |
|
|
error ("Operand of `&' is an rvalue, which has no address.");
|
1127 |
|
|
|
1128 |
|
|
case axs_lvalue_register:
|
1129 |
|
|
error ("Operand of `&' is in a register, and has no address.");
|
1130 |
|
|
|
1131 |
|
|
case axs_lvalue_memory:
|
1132 |
|
|
value->kind = axs_rvalue;
|
1133 |
|
|
value->type = lookup_pointer_type (value->type);
|
1134 |
|
|
break;
|
1135 |
|
|
}
|
1136 |
|
|
}
|
1137 |
|
|
|
1138 |
|
|
|
1139 |
|
|
/* A lot of this stuff will have to change to support C++. But we're
|
1140 |
|
|
not going to deal with that at the moment. */
|
1141 |
|
|
|
1142 |
|
|
/* Find the field in the structure type TYPE named NAME, and return
|
1143 |
|
|
its index in TYPE's field array. */
|
1144 |
|
|
static int
|
1145 |
|
|
find_field (struct type *type, char *name)
|
1146 |
|
|
{
|
1147 |
|
|
int i;
|
1148 |
|
|
|
1149 |
|
|
CHECK_TYPEDEF (type);
|
1150 |
|
|
|
1151 |
|
|
/* Make sure this isn't C++. */
|
1152 |
|
|
if (TYPE_N_BASECLASSES (type) != 0)
|
1153 |
|
|
internal_error (__FILE__, __LINE__,
|
1154 |
|
|
"find_field: derived classes supported");
|
1155 |
|
|
|
1156 |
|
|
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
1157 |
|
|
{
|
1158 |
|
|
char *this_name = TYPE_FIELD_NAME (type, i);
|
1159 |
|
|
|
1160 |
|
|
if (this_name && STREQ (name, this_name))
|
1161 |
|
|
return i;
|
1162 |
|
|
|
1163 |
|
|
if (this_name[0] == '\0')
|
1164 |
|
|
internal_error (__FILE__, __LINE__,
|
1165 |
|
|
"find_field: anonymous unions not supported");
|
1166 |
|
|
}
|
1167 |
|
|
|
1168 |
|
|
error ("Couldn't find member named `%s' in struct/union `%s'",
|
1169 |
|
|
name, TYPE_TAG_NAME (type));
|
1170 |
|
|
|
1171 |
|
|
return 0;
|
1172 |
|
|
}
|
1173 |
|
|
|
1174 |
|
|
|
1175 |
|
|
/* Generate code to push the value of a bitfield of a structure whose
|
1176 |
|
|
address is on the top of the stack. START and END give the
|
1177 |
|
|
starting and one-past-ending *bit* numbers of the field within the
|
1178 |
|
|
structure. */
|
1179 |
|
|
static void
|
1180 |
|
|
gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
|
1181 |
|
|
struct type *type, int start, int end)
|
1182 |
|
|
{
|
1183 |
|
|
/* Note that ops[i] fetches 8 << i bits. */
|
1184 |
|
|
static enum agent_op ops[]
|
1185 |
|
|
=
|
1186 |
|
|
{aop_ref8, aop_ref16, aop_ref32, aop_ref64};
|
1187 |
|
|
static int num_ops = (sizeof (ops) / sizeof (ops[0]));
|
1188 |
|
|
|
1189 |
|
|
/* We don't want to touch any byte that the bitfield doesn't
|
1190 |
|
|
actually occupy; we shouldn't make any accesses we're not
|
1191 |
|
|
explicitly permitted to. We rely here on the fact that the
|
1192 |
|
|
bytecode `ref' operators work on unaligned addresses.
|
1193 |
|
|
|
1194 |
|
|
It takes some fancy footwork to get the stack to work the way
|
1195 |
|
|
we'd like. Say we're retrieving a bitfield that requires three
|
1196 |
|
|
fetches. Initially, the stack just contains the address:
|
1197 |
|
|
addr
|
1198 |
|
|
For the first fetch, we duplicate the address
|
1199 |
|
|
addr addr
|
1200 |
|
|
then add the byte offset, do the fetch, and shift and mask as
|
1201 |
|
|
needed, yielding a fragment of the value, properly aligned for
|
1202 |
|
|
the final bitwise or:
|
1203 |
|
|
addr frag1
|
1204 |
|
|
then we swap, and repeat the process:
|
1205 |
|
|
frag1 addr --- address on top
|
1206 |
|
|
frag1 addr addr --- duplicate it
|
1207 |
|
|
frag1 addr frag2 --- get second fragment
|
1208 |
|
|
frag1 frag2 addr --- swap again
|
1209 |
|
|
frag1 frag2 frag3 --- get third fragment
|
1210 |
|
|
Notice that, since the third fragment is the last one, we don't
|
1211 |
|
|
bother duplicating the address this time. Now we have all the
|
1212 |
|
|
fragments on the stack, and we can simply `or' them together,
|
1213 |
|
|
yielding the final value of the bitfield. */
|
1214 |
|
|
|
1215 |
|
|
/* The first and one-after-last bits in the field, but rounded down
|
1216 |
|
|
and up to byte boundaries. */
|
1217 |
|
|
int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
|
1218 |
|
|
int bound_end = (((end + TARGET_CHAR_BIT - 1)
|
1219 |
|
|
/ TARGET_CHAR_BIT)
|
1220 |
|
|
* TARGET_CHAR_BIT);
|
1221 |
|
|
|
1222 |
|
|
/* current bit offset within the structure */
|
1223 |
|
|
int offset;
|
1224 |
|
|
|
1225 |
|
|
/* The index in ops of the opcode we're considering. */
|
1226 |
|
|
int op;
|
1227 |
|
|
|
1228 |
|
|
/* The number of fragments we generated in the process. Probably
|
1229 |
|
|
equal to the number of `one' bits in bytesize, but who cares? */
|
1230 |
|
|
int fragment_count;
|
1231 |
|
|
|
1232 |
|
|
/* Dereference any typedefs. */
|
1233 |
|
|
type = check_typedef (type);
|
1234 |
|
|
|
1235 |
|
|
/* Can we fetch the number of bits requested at all? */
|
1236 |
|
|
if ((end - start) > ((1 << num_ops) * 8))
|
1237 |
|
|
internal_error (__FILE__, __LINE__,
|
1238 |
|
|
"gen_bitfield_ref: bitfield too wide");
|
1239 |
|
|
|
1240 |
|
|
/* Note that we know here that we only need to try each opcode once.
|
1241 |
|
|
That may not be true on machines with weird byte sizes. */
|
1242 |
|
|
offset = bound_start;
|
1243 |
|
|
fragment_count = 0;
|
1244 |
|
|
for (op = num_ops - 1; op >= 0; op--)
|
1245 |
|
|
{
|
1246 |
|
|
/* number of bits that ops[op] would fetch */
|
1247 |
|
|
int op_size = 8 << op;
|
1248 |
|
|
|
1249 |
|
|
/* The stack at this point, from bottom to top, contains zero or
|
1250 |
|
|
more fragments, then the address. */
|
1251 |
|
|
|
1252 |
|
|
/* Does this fetch fit within the bitfield? */
|
1253 |
|
|
if (offset + op_size <= bound_end)
|
1254 |
|
|
{
|
1255 |
|
|
/* Is this the last fragment? */
|
1256 |
|
|
int last_frag = (offset + op_size == bound_end);
|
1257 |
|
|
|
1258 |
|
|
if (!last_frag)
|
1259 |
|
|
ax_simple (ax, aop_dup); /* keep a copy of the address */
|
1260 |
|
|
|
1261 |
|
|
/* Add the offset. */
|
1262 |
|
|
gen_offset (ax, offset / TARGET_CHAR_BIT);
|
1263 |
|
|
|
1264 |
|
|
if (trace_kludge)
|
1265 |
|
|
{
|
1266 |
|
|
/* Record the area of memory we're about to fetch. */
|
1267 |
|
|
ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
|
1268 |
|
|
}
|
1269 |
|
|
|
1270 |
|
|
/* Perform the fetch. */
|
1271 |
|
|
ax_simple (ax, ops[op]);
|
1272 |
|
|
|
1273 |
|
|
/* Shift the bits we have to their proper position.
|
1274 |
|
|
gen_left_shift will generate right shifts when the operand
|
1275 |
|
|
is negative.
|
1276 |
|
|
|
1277 |
|
|
A big-endian field diagram to ponder:
|
1278 |
|
|
byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
|
1279 |
|
|
+------++------++------++------++------++------++------++------+
|
1280 |
|
|
xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
|
1281 |
|
|
^ ^ ^ ^
|
1282 |
|
|
bit number 16 32 48 53
|
1283 |
|
|
These are bit numbers as supplied by GDB. Note that the
|
1284 |
|
|
bit numbers run from right to left once you've fetched the
|
1285 |
|
|
value!
|
1286 |
|
|
|
1287 |
|
|
A little-endian field diagram to ponder:
|
1288 |
|
|
byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
|
1289 |
|
|
+------++------++------++------++------++------++------++------+
|
1290 |
|
|
xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
|
1291 |
|
|
^ ^ ^ ^ ^
|
1292 |
|
|
bit number 48 32 16 4 0
|
1293 |
|
|
|
1294 |
|
|
In both cases, the most significant end is on the left
|
1295 |
|
|
(i.e. normal numeric writing order), which means that you
|
1296 |
|
|
don't go crazy thinking about `left' and `right' shifts.
|
1297 |
|
|
|
1298 |
|
|
We don't have to worry about masking yet:
|
1299 |
|
|
- If they contain garbage off the least significant end, then we
|
1300 |
|
|
must be looking at the low end of the field, and the right
|
1301 |
|
|
shift will wipe them out.
|
1302 |
|
|
- If they contain garbage off the most significant end, then we
|
1303 |
|
|
must be looking at the most significant end of the word, and
|
1304 |
|
|
the sign/zero extension will wipe them out.
|
1305 |
|
|
- If we're in the interior of the word, then there is no garbage
|
1306 |
|
|
on either end, because the ref operators zero-extend. */
|
1307 |
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
1308 |
|
|
gen_left_shift (ax, end - (offset + op_size));
|
1309 |
|
|
else
|
1310 |
|
|
gen_left_shift (ax, offset - start);
|
1311 |
|
|
|
1312 |
|
|
if (!last_frag)
|
1313 |
|
|
/* Bring the copy of the address up to the top. */
|
1314 |
|
|
ax_simple (ax, aop_swap);
|
1315 |
|
|
|
1316 |
|
|
offset += op_size;
|
1317 |
|
|
fragment_count++;
|
1318 |
|
|
}
|
1319 |
|
|
}
|
1320 |
|
|
|
1321 |
|
|
/* Generate enough bitwise `or' operations to combine all the
|
1322 |
|
|
fragments we left on the stack. */
|
1323 |
|
|
while (fragment_count-- > 1)
|
1324 |
|
|
ax_simple (ax, aop_bit_or);
|
1325 |
|
|
|
1326 |
|
|
/* Sign- or zero-extend the value as appropriate. */
|
1327 |
|
|
((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
|
1328 |
|
|
|
1329 |
|
|
/* This is *not* an lvalue. Ugh. */
|
1330 |
|
|
value->kind = axs_rvalue;
|
1331 |
|
|
value->type = type;
|
1332 |
|
|
}
|
1333 |
|
|
|
1334 |
|
|
|
1335 |
|
|
/* Generate code to reference the member named FIELD of a structure or
|
1336 |
|
|
union. The top of the stack, as described by VALUE, should have
|
1337 |
|
|
type (pointer to a)* struct/union. OPERATOR_NAME is the name of
|
1338 |
|
|
the operator being compiled, and OPERAND_NAME is the kind of thing
|
1339 |
|
|
it operates on; we use them in error messages. */
|
1340 |
|
|
static void
|
1341 |
|
|
gen_struct_ref (struct agent_expr *ax, struct axs_value *value, char *field,
|
1342 |
|
|
char *operator_name, char *operand_name)
|
1343 |
|
|
{
|
1344 |
|
|
struct type *type;
|
1345 |
|
|
int i;
|
1346 |
|
|
|
1347 |
|
|
/* Follow pointers until we reach a non-pointer. These aren't the C
|
1348 |
|
|
semantics, but they're what the normal GDB evaluator does, so we
|
1349 |
|
|
should at least be consistent. */
|
1350 |
|
|
while (TYPE_CODE (value->type) == TYPE_CODE_PTR)
|
1351 |
|
|
{
|
1352 |
|
|
gen_usual_unary (ax, value);
|
1353 |
|
|
gen_deref (ax, value);
|
1354 |
|
|
}
|
1355 |
|
|
type = check_typedef (value->type);
|
1356 |
|
|
|
1357 |
|
|
/* This must yield a structure or a union. */
|
1358 |
|
|
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
|
1359 |
|
|
&& TYPE_CODE (type) != TYPE_CODE_UNION)
|
1360 |
|
|
error ("The left operand of `%s' is not a %s.",
|
1361 |
|
|
operator_name, operand_name);
|
1362 |
|
|
|
1363 |
|
|
/* And it must be in memory; we don't deal with structure rvalues,
|
1364 |
|
|
or structures living in registers. */
|
1365 |
|
|
if (value->kind != axs_lvalue_memory)
|
1366 |
|
|
error ("Structure does not live in memory.");
|
1367 |
|
|
|
1368 |
|
|
i = find_field (type, field);
|
1369 |
|
|
|
1370 |
|
|
/* Is this a bitfield? */
|
1371 |
|
|
if (TYPE_FIELD_PACKED (type, i))
|
1372 |
|
|
gen_bitfield_ref (ax, value, TYPE_FIELD_TYPE (type, i),
|
1373 |
|
|
TYPE_FIELD_BITPOS (type, i),
|
1374 |
|
|
(TYPE_FIELD_BITPOS (type, i)
|
1375 |
|
|
+ TYPE_FIELD_BITSIZE (type, i)));
|
1376 |
|
|
else
|
1377 |
|
|
{
|
1378 |
|
|
gen_offset (ax, TYPE_FIELD_BITPOS (type, i) / TARGET_CHAR_BIT);
|
1379 |
|
|
value->kind = axs_lvalue_memory;
|
1380 |
|
|
value->type = TYPE_FIELD_TYPE (type, i);
|
1381 |
|
|
}
|
1382 |
|
|
}
|
1383 |
|
|
|
1384 |
|
|
|
1385 |
|
|
/* Generate code for GDB's magical `repeat' operator.
|
1386 |
|
|
LVALUE @ INT creates an array INT elements long, and whose elements
|
1387 |
|
|
have the same type as LVALUE, located in memory so that LVALUE is
|
1388 |
|
|
its first element. For example, argv[0]@argc gives you the array
|
1389 |
|
|
of command-line arguments.
|
1390 |
|
|
|
1391 |
|
|
Unfortunately, because we have to know the types before we actually
|
1392 |
|
|
have a value for the expression, we can't implement this perfectly
|
1393 |
|
|
without changing the type system, having values that occupy two
|
1394 |
|
|
stack slots, doing weird things with sizeof, etc. So we require
|
1395 |
|
|
the right operand to be a constant expression. */
|
1396 |
|
|
static void
|
1397 |
|
|
gen_repeat (union exp_element **pc, struct agent_expr *ax,
|
1398 |
|
|
struct axs_value *value)
|
1399 |
|
|
{
|
1400 |
|
|
struct axs_value value1;
|
1401 |
|
|
/* We don't want to turn this into an rvalue, so no conversions
|
1402 |
|
|
here. */
|
1403 |
|
|
gen_expr (pc, ax, &value1);
|
1404 |
|
|
if (value1.kind != axs_lvalue_memory)
|
1405 |
|
|
error ("Left operand of `@' must be an object in memory.");
|
1406 |
|
|
|
1407 |
|
|
/* Evaluate the length; it had better be a constant. */
|
1408 |
|
|
{
|
1409 |
|
|
struct value *v = const_expr (pc);
|
1410 |
|
|
int length;
|
1411 |
|
|
|
1412 |
|
|
if (!v)
|
1413 |
|
|
error ("Right operand of `@' must be a constant, in agent expressions.");
|
1414 |
|
|
if (TYPE_CODE (v->type) != TYPE_CODE_INT)
|
1415 |
|
|
error ("Right operand of `@' must be an integer.");
|
1416 |
|
|
length = value_as_long (v);
|
1417 |
|
|
if (length <= 0)
|
1418 |
|
|
error ("Right operand of `@' must be positive.");
|
1419 |
|
|
|
1420 |
|
|
/* The top of the stack is already the address of the object, so
|
1421 |
|
|
all we need to do is frob the type of the lvalue. */
|
1422 |
|
|
{
|
1423 |
|
|
/* FIXME-type-allocation: need a way to free this type when we are
|
1424 |
|
|
done with it. */
|
1425 |
|
|
struct type *range
|
1426 |
|
|
= create_range_type (0, builtin_type_int, 0, length - 1);
|
1427 |
|
|
struct type *array = create_array_type (0, value1.type, range);
|
1428 |
|
|
|
1429 |
|
|
value->kind = axs_lvalue_memory;
|
1430 |
|
|
value->type = array;
|
1431 |
|
|
}
|
1432 |
|
|
}
|
1433 |
|
|
}
|
1434 |
|
|
|
1435 |
|
|
|
1436 |
|
|
/* Emit code for the `sizeof' operator.
|
1437 |
|
|
*PC should point at the start of the operand expression; we advance it
|
1438 |
|
|
to the first instruction after the operand. */
|
1439 |
|
|
static void
|
1440 |
|
|
gen_sizeof (union exp_element **pc, struct agent_expr *ax,
|
1441 |
|
|
struct axs_value *value)
|
1442 |
|
|
{
|
1443 |
|
|
/* We don't care about the value of the operand expression; we only
|
1444 |
|
|
care about its type. However, in the current arrangement, the
|
1445 |
|
|
only way to find an expression's type is to generate code for it.
|
1446 |
|
|
So we generate code for the operand, and then throw it away,
|
1447 |
|
|
replacing it with code that simply pushes its size. */
|
1448 |
|
|
int start = ax->len;
|
1449 |
|
|
gen_expr (pc, ax, value);
|
1450 |
|
|
|
1451 |
|
|
/* Throw away the code we just generated. */
|
1452 |
|
|
ax->len = start;
|
1453 |
|
|
|
1454 |
|
|
ax_const_l (ax, TYPE_LENGTH (value->type));
|
1455 |
|
|
value->kind = axs_rvalue;
|
1456 |
|
|
value->type = builtin_type_int;
|
1457 |
|
|
}
|
1458 |
|
|
|
1459 |
|
|
|
1460 |
|
|
/* Generating bytecode from GDB expressions: general recursive thingy */
|
1461 |
|
|
|
1462 |
|
|
/* A gen_expr function written by a Gen-X'er guy.
|
1463 |
|
|
Append code for the subexpression of EXPR starting at *POS_P to AX. */
|
1464 |
|
|
static void
|
1465 |
|
|
gen_expr (union exp_element **pc, struct agent_expr *ax,
|
1466 |
|
|
struct axs_value *value)
|
1467 |
|
|
{
|
1468 |
|
|
/* Used to hold the descriptions of operand expressions. */
|
1469 |
|
|
struct axs_value value1, value2;
|
1470 |
|
|
enum exp_opcode op = (*pc)[0].opcode;
|
1471 |
|
|
|
1472 |
|
|
/* If we're looking at a constant expression, just push its value. */
|
1473 |
|
|
{
|
1474 |
|
|
struct value *v = maybe_const_expr (pc);
|
1475 |
|
|
|
1476 |
|
|
if (v)
|
1477 |
|
|
{
|
1478 |
|
|
ax_const_l (ax, value_as_long (v));
|
1479 |
|
|
value->kind = axs_rvalue;
|
1480 |
|
|
value->type = check_typedef (VALUE_TYPE (v));
|
1481 |
|
|
return;
|
1482 |
|
|
}
|
1483 |
|
|
}
|
1484 |
|
|
|
1485 |
|
|
/* Otherwise, go ahead and generate code for it. */
|
1486 |
|
|
switch (op)
|
1487 |
|
|
{
|
1488 |
|
|
/* Binary arithmetic operators. */
|
1489 |
|
|
case BINOP_ADD:
|
1490 |
|
|
case BINOP_SUB:
|
1491 |
|
|
case BINOP_MUL:
|
1492 |
|
|
case BINOP_DIV:
|
1493 |
|
|
case BINOP_REM:
|
1494 |
|
|
case BINOP_SUBSCRIPT:
|
1495 |
|
|
case BINOP_BITWISE_AND:
|
1496 |
|
|
case BINOP_BITWISE_IOR:
|
1497 |
|
|
case BINOP_BITWISE_XOR:
|
1498 |
|
|
(*pc)++;
|
1499 |
|
|
gen_expr (pc, ax, &value1);
|
1500 |
|
|
gen_usual_unary (ax, &value1);
|
1501 |
|
|
gen_expr (pc, ax, &value2);
|
1502 |
|
|
gen_usual_unary (ax, &value2);
|
1503 |
|
|
gen_usual_arithmetic (ax, &value1, &value2);
|
1504 |
|
|
switch (op)
|
1505 |
|
|
{
|
1506 |
|
|
case BINOP_ADD:
|
1507 |
|
|
gen_add (ax, value, &value1, &value2, "addition");
|
1508 |
|
|
break;
|
1509 |
|
|
case BINOP_SUB:
|
1510 |
|
|
gen_sub (ax, value, &value1, &value2);
|
1511 |
|
|
break;
|
1512 |
|
|
case BINOP_MUL:
|
1513 |
|
|
gen_binop (ax, value, &value1, &value2,
|
1514 |
|
|
aop_mul, aop_mul, 1, "multiplication");
|
1515 |
|
|
break;
|
1516 |
|
|
case BINOP_DIV:
|
1517 |
|
|
gen_binop (ax, value, &value1, &value2,
|
1518 |
|
|
aop_div_signed, aop_div_unsigned, 1, "division");
|
1519 |
|
|
break;
|
1520 |
|
|
case BINOP_REM:
|
1521 |
|
|
gen_binop (ax, value, &value1, &value2,
|
1522 |
|
|
aop_rem_signed, aop_rem_unsigned, 1, "remainder");
|
1523 |
|
|
break;
|
1524 |
|
|
case BINOP_SUBSCRIPT:
|
1525 |
|
|
gen_add (ax, value, &value1, &value2, "array subscripting");
|
1526 |
|
|
if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
|
1527 |
|
|
error ("Illegal combination of types in array subscripting.");
|
1528 |
|
|
gen_deref (ax, value);
|
1529 |
|
|
break;
|
1530 |
|
|
case BINOP_BITWISE_AND:
|
1531 |
|
|
gen_binop (ax, value, &value1, &value2,
|
1532 |
|
|
aop_bit_and, aop_bit_and, 0, "bitwise and");
|
1533 |
|
|
break;
|
1534 |
|
|
|
1535 |
|
|
case BINOP_BITWISE_IOR:
|
1536 |
|
|
gen_binop (ax, value, &value1, &value2,
|
1537 |
|
|
aop_bit_or, aop_bit_or, 0, "bitwise or");
|
1538 |
|
|
break;
|
1539 |
|
|
|
1540 |
|
|
case BINOP_BITWISE_XOR:
|
1541 |
|
|
gen_binop (ax, value, &value1, &value2,
|
1542 |
|
|
aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
|
1543 |
|
|
break;
|
1544 |
|
|
|
1545 |
|
|
default:
|
1546 |
|
|
/* We should only list operators in the outer case statement
|
1547 |
|
|
that we actually handle in the inner case statement. */
|
1548 |
|
|
internal_error (__FILE__, __LINE__,
|
1549 |
|
|
"gen_expr: op case sets don't match");
|
1550 |
|
|
}
|
1551 |
|
|
break;
|
1552 |
|
|
|
1553 |
|
|
/* Note that we need to be a little subtle about generating code
|
1554 |
|
|
for comma. In C, we can do some optimizations here because
|
1555 |
|
|
we know the left operand is only being evaluated for effect.
|
1556 |
|
|
However, if the tracing kludge is in effect, then we always
|
1557 |
|
|
need to evaluate the left hand side fully, so that all the
|
1558 |
|
|
variables it mentions get traced. */
|
1559 |
|
|
case BINOP_COMMA:
|
1560 |
|
|
(*pc)++;
|
1561 |
|
|
gen_expr (pc, ax, &value1);
|
1562 |
|
|
/* Don't just dispose of the left operand. We might be tracing,
|
1563 |
|
|
in which case we want to emit code to trace it if it's an
|
1564 |
|
|
lvalue. */
|
1565 |
|
|
gen_traced_pop (ax, &value1);
|
1566 |
|
|
gen_expr (pc, ax, value);
|
1567 |
|
|
/* It's the consumer's responsibility to trace the right operand. */
|
1568 |
|
|
break;
|
1569 |
|
|
|
1570 |
|
|
case OP_LONG: /* some integer constant */
|
1571 |
|
|
{
|
1572 |
|
|
struct type *type = (*pc)[1].type;
|
1573 |
|
|
LONGEST k = (*pc)[2].longconst;
|
1574 |
|
|
(*pc) += 4;
|
1575 |
|
|
gen_int_literal (ax, value, k, type);
|
1576 |
|
|
}
|
1577 |
|
|
break;
|
1578 |
|
|
|
1579 |
|
|
case OP_VAR_VALUE:
|
1580 |
|
|
gen_var_ref (ax, value, (*pc)[2].symbol);
|
1581 |
|
|
(*pc) += 4;
|
1582 |
|
|
break;
|
1583 |
|
|
|
1584 |
|
|
case OP_REGISTER:
|
1585 |
|
|
{
|
1586 |
|
|
int reg = (int) (*pc)[1].longconst;
|
1587 |
|
|
(*pc) += 3;
|
1588 |
|
|
value->kind = axs_lvalue_register;
|
1589 |
|
|
value->u.reg = reg;
|
1590 |
|
|
value->type = REGISTER_VIRTUAL_TYPE (reg);
|
1591 |
|
|
}
|
1592 |
|
|
break;
|
1593 |
|
|
|
1594 |
|
|
case OP_INTERNALVAR:
|
1595 |
|
|
error ("GDB agent expressions cannot use convenience variables.");
|
1596 |
|
|
|
1597 |
|
|
/* Weirdo operator: see comments for gen_repeat for details. */
|
1598 |
|
|
case BINOP_REPEAT:
|
1599 |
|
|
/* Note that gen_repeat handles its own argument evaluation. */
|
1600 |
|
|
(*pc)++;
|
1601 |
|
|
gen_repeat (pc, ax, value);
|
1602 |
|
|
break;
|
1603 |
|
|
|
1604 |
|
|
case UNOP_CAST:
|
1605 |
|
|
{
|
1606 |
|
|
struct type *type = (*pc)[1].type;
|
1607 |
|
|
(*pc) += 3;
|
1608 |
|
|
gen_expr (pc, ax, value);
|
1609 |
|
|
gen_cast (ax, value, type);
|
1610 |
|
|
}
|
1611 |
|
|
break;
|
1612 |
|
|
|
1613 |
|
|
case UNOP_MEMVAL:
|
1614 |
|
|
{
|
1615 |
|
|
struct type *type = check_typedef ((*pc)[1].type);
|
1616 |
|
|
(*pc) += 3;
|
1617 |
|
|
gen_expr (pc, ax, value);
|
1618 |
|
|
/* I'm not sure I understand UNOP_MEMVAL entirely. I think
|
1619 |
|
|
it's just a hack for dealing with minsyms; you take some
|
1620 |
|
|
integer constant, pretend it's the address of an lvalue of
|
1621 |
|
|
the given type, and dereference it. */
|
1622 |
|
|
if (value->kind != axs_rvalue)
|
1623 |
|
|
/* This would be weird. */
|
1624 |
|
|
internal_error (__FILE__, __LINE__,
|
1625 |
|
|
"gen_expr: OP_MEMVAL operand isn't an rvalue???");
|
1626 |
|
|
value->type = type;
|
1627 |
|
|
value->kind = axs_lvalue_memory;
|
1628 |
|
|
}
|
1629 |
|
|
break;
|
1630 |
|
|
|
1631 |
|
|
case UNOP_NEG:
|
1632 |
|
|
(*pc)++;
|
1633 |
|
|
/* -FOO is equivalent to 0 - FOO. */
|
1634 |
|
|
gen_int_literal (ax, &value1, (LONGEST) 0, builtin_type_int);
|
1635 |
|
|
gen_usual_unary (ax, &value1); /* shouldn't do much */
|
1636 |
|
|
gen_expr (pc, ax, &value2);
|
1637 |
|
|
gen_usual_unary (ax, &value2);
|
1638 |
|
|
gen_usual_arithmetic (ax, &value1, &value2);
|
1639 |
|
|
gen_sub (ax, value, &value1, &value2);
|
1640 |
|
|
break;
|
1641 |
|
|
|
1642 |
|
|
case UNOP_LOGICAL_NOT:
|
1643 |
|
|
(*pc)++;
|
1644 |
|
|
gen_expr (pc, ax, value);
|
1645 |
|
|
gen_logical_not (ax, value);
|
1646 |
|
|
break;
|
1647 |
|
|
|
1648 |
|
|
case UNOP_COMPLEMENT:
|
1649 |
|
|
(*pc)++;
|
1650 |
|
|
gen_expr (pc, ax, value);
|
1651 |
|
|
gen_complement (ax, value);
|
1652 |
|
|
break;
|
1653 |
|
|
|
1654 |
|
|
case UNOP_IND:
|
1655 |
|
|
(*pc)++;
|
1656 |
|
|
gen_expr (pc, ax, value);
|
1657 |
|
|
gen_usual_unary (ax, value);
|
1658 |
|
|
if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
|
1659 |
|
|
error ("Argument of unary `*' is not a pointer.");
|
1660 |
|
|
gen_deref (ax, value);
|
1661 |
|
|
break;
|
1662 |
|
|
|
1663 |
|
|
case UNOP_ADDR:
|
1664 |
|
|
(*pc)++;
|
1665 |
|
|
gen_expr (pc, ax, value);
|
1666 |
|
|
gen_address_of (ax, value);
|
1667 |
|
|
break;
|
1668 |
|
|
|
1669 |
|
|
case UNOP_SIZEOF:
|
1670 |
|
|
(*pc)++;
|
1671 |
|
|
/* Notice that gen_sizeof handles its own operand, unlike most
|
1672 |
|
|
of the other unary operator functions. This is because we
|
1673 |
|
|
have to throw away the code we generate. */
|
1674 |
|
|
gen_sizeof (pc, ax, value);
|
1675 |
|
|
break;
|
1676 |
|
|
|
1677 |
|
|
case STRUCTOP_STRUCT:
|
1678 |
|
|
case STRUCTOP_PTR:
|
1679 |
|
|
{
|
1680 |
|
|
int length = (*pc)[1].longconst;
|
1681 |
|
|
char *name = &(*pc)[2].string;
|
1682 |
|
|
|
1683 |
|
|
(*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
|
1684 |
|
|
gen_expr (pc, ax, value);
|
1685 |
|
|
if (op == STRUCTOP_STRUCT)
|
1686 |
|
|
gen_struct_ref (ax, value, name, ".", "structure or union");
|
1687 |
|
|
else if (op == STRUCTOP_PTR)
|
1688 |
|
|
gen_struct_ref (ax, value, name, "->",
|
1689 |
|
|
"pointer to a structure or union");
|
1690 |
|
|
else
|
1691 |
|
|
/* If this `if' chain doesn't handle it, then the case list
|
1692 |
|
|
shouldn't mention it, and we shouldn't be here. */
|
1693 |
|
|
internal_error (__FILE__, __LINE__,
|
1694 |
|
|
"gen_expr: unhandled struct case");
|
1695 |
|
|
}
|
1696 |
|
|
break;
|
1697 |
|
|
|
1698 |
|
|
case OP_TYPE:
|
1699 |
|
|
error ("Attempt to use a type name as an expression.");
|
1700 |
|
|
|
1701 |
|
|
default:
|
1702 |
|
|
error ("Unsupported operator in expression.");
|
1703 |
|
|
}
|
1704 |
|
|
}
|
1705 |
|
|
|
1706 |
|
|
|
1707 |
|
|
|
1708 |
|
|
/* Generating bytecode from GDB expressions: driver */
|
1709 |
|
|
|
1710 |
|
|
/* Given a GDB expression EXPR, produce a string of agent bytecode
|
1711 |
|
|
which computes its value. Return the agent expression, and set
|
1712 |
|
|
*VALUE to describe its type, and whether it's an lvalue or rvalue. */
|
1713 |
|
|
struct agent_expr *
|
1714 |
|
|
expr_to_agent (struct expression *expr, struct axs_value *value)
|
1715 |
|
|
{
|
1716 |
|
|
struct cleanup *old_chain = 0;
|
1717 |
|
|
struct agent_expr *ax = new_agent_expr (0);
|
1718 |
|
|
union exp_element *pc;
|
1719 |
|
|
|
1720 |
|
|
old_chain = make_cleanup_free_agent_expr (ax);
|
1721 |
|
|
|
1722 |
|
|
pc = expr->elts;
|
1723 |
|
|
trace_kludge = 0;
|
1724 |
|
|
gen_expr (&pc, ax, value);
|
1725 |
|
|
|
1726 |
|
|
/* We have successfully built the agent expr, so cancel the cleanup
|
1727 |
|
|
request. If we add more cleanups that we always want done, this
|
1728 |
|
|
will have to get more complicated. */
|
1729 |
|
|
discard_cleanups (old_chain);
|
1730 |
|
|
return ax;
|
1731 |
|
|
}
|
1732 |
|
|
|
1733 |
|
|
|
1734 |
|
|
#if 0 /* not used */
|
1735 |
|
|
/* Given a GDB expression EXPR denoting an lvalue in memory, produce a
|
1736 |
|
|
string of agent bytecode which will leave its address and size on
|
1737 |
|
|
the top of stack. Return the agent expression.
|
1738 |
|
|
|
1739 |
|
|
Not sure this function is useful at all. */
|
1740 |
|
|
struct agent_expr *
|
1741 |
|
|
expr_to_address_and_size (struct expression *expr)
|
1742 |
|
|
{
|
1743 |
|
|
struct axs_value value;
|
1744 |
|
|
struct agent_expr *ax = expr_to_agent (expr, &value);
|
1745 |
|
|
|
1746 |
|
|
/* Complain if the result is not a memory lvalue. */
|
1747 |
|
|
if (value.kind != axs_lvalue_memory)
|
1748 |
|
|
{
|
1749 |
|
|
free_agent_expr (ax);
|
1750 |
|
|
error ("Expression does not denote an object in memory.");
|
1751 |
|
|
}
|
1752 |
|
|
|
1753 |
|
|
/* Push the object's size on the stack. */
|
1754 |
|
|
ax_const_l (ax, TYPE_LENGTH (value.type));
|
1755 |
|
|
|
1756 |
|
|
return ax;
|
1757 |
|
|
}
|
1758 |
|
|
#endif
|
1759 |
|
|
|
1760 |
|
|
/* Given a GDB expression EXPR, return bytecode to trace its value.
|
1761 |
|
|
The result will use the `trace' and `trace_quick' bytecodes to
|
1762 |
|
|
record the value of all memory touched by the expression. The
|
1763 |
|
|
caller can then use the ax_reqs function to discover which
|
1764 |
|
|
registers it relies upon. */
|
1765 |
|
|
struct agent_expr *
|
1766 |
|
|
gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
|
1767 |
|
|
{
|
1768 |
|
|
struct cleanup *old_chain = 0;
|
1769 |
|
|
struct agent_expr *ax = new_agent_expr (scope);
|
1770 |
|
|
union exp_element *pc;
|
1771 |
|
|
struct axs_value value;
|
1772 |
|
|
|
1773 |
|
|
old_chain = make_cleanup_free_agent_expr (ax);
|
1774 |
|
|
|
1775 |
|
|
pc = expr->elts;
|
1776 |
|
|
trace_kludge = 1;
|
1777 |
|
|
gen_expr (&pc, ax, &value);
|
1778 |
|
|
|
1779 |
|
|
/* Make sure we record the final object, and get rid of it. */
|
1780 |
|
|
gen_traced_pop (ax, &value);
|
1781 |
|
|
|
1782 |
|
|
/* Oh, and terminate. */
|
1783 |
|
|
ax_simple (ax, aop_end);
|
1784 |
|
|
|
1785 |
|
|
/* We have successfully built the agent expr, so cancel the cleanup
|
1786 |
|
|
request. If we add more cleanups that we always want done, this
|
1787 |
|
|
will have to get more complicated. */
|
1788 |
|
|
discard_cleanups (old_chain);
|
1789 |
|
|
return ax;
|
1790 |
|
|
}
|
1791 |
|
|
|
1792 |
|
|
|
1793 |
|
|
|
1794 |
|
|
/* The "agent" command, for testing: compile and disassemble an expression. */
|
1795 |
|
|
|
1796 |
|
|
static void
|
1797 |
|
|
print_axs_value (struct ui_file *f, struct axs_value *value)
|
1798 |
|
|
{
|
1799 |
|
|
switch (value->kind)
|
1800 |
|
|
{
|
1801 |
|
|
case axs_rvalue:
|
1802 |
|
|
fputs_filtered ("rvalue", f);
|
1803 |
|
|
break;
|
1804 |
|
|
|
1805 |
|
|
case axs_lvalue_memory:
|
1806 |
|
|
fputs_filtered ("memory lvalue", f);
|
1807 |
|
|
break;
|
1808 |
|
|
|
1809 |
|
|
case axs_lvalue_register:
|
1810 |
|
|
fprintf_filtered (f, "register %d lvalue", value->u.reg);
|
1811 |
|
|
break;
|
1812 |
|
|
}
|
1813 |
|
|
|
1814 |
|
|
fputs_filtered (" : ", f);
|
1815 |
|
|
type_print (value->type, "", f, -1);
|
1816 |
|
|
}
|
1817 |
|
|
|
1818 |
|
|
|
1819 |
|
|
static void
|
1820 |
|
|
agent_command (char *exp, int from_tty)
|
1821 |
|
|
{
|
1822 |
|
|
struct cleanup *old_chain = 0;
|
1823 |
|
|
struct expression *expr;
|
1824 |
|
|
struct agent_expr *agent;
|
1825 |
|
|
struct frame_info *fi = get_current_frame (); /* need current scope */
|
1826 |
|
|
|
1827 |
|
|
/* We don't deal with overlay debugging at the moment. We need to
|
1828 |
|
|
think more carefully about this. If you copy this code into
|
1829 |
|
|
another command, change the error message; the user shouldn't
|
1830 |
|
|
have to know anything about agent expressions. */
|
1831 |
|
|
if (overlay_debugging)
|
1832 |
|
|
error ("GDB can't do agent expression translation with overlays.");
|
1833 |
|
|
|
1834 |
|
|
if (exp == 0)
|
1835 |
|
|
error_no_arg ("expression to translate");
|
1836 |
|
|
|
1837 |
|
|
expr = parse_expression (exp);
|
1838 |
|
|
old_chain = make_cleanup (free_current_contents, &expr);
|
1839 |
|
|
agent = gen_trace_for_expr (fi->pc, expr);
|
1840 |
|
|
make_cleanup_free_agent_expr (agent);
|
1841 |
|
|
ax_print (gdb_stdout, agent);
|
1842 |
|
|
|
1843 |
|
|
/* It would be nice to call ax_reqs here to gather some general info
|
1844 |
|
|
about the expression, and then print out the result. */
|
1845 |
|
|
|
1846 |
|
|
do_cleanups (old_chain);
|
1847 |
|
|
dont_repeat ();
|
1848 |
|
|
}
|
1849 |
|
|
|
1850 |
|
|
|
1851 |
|
|
/* Initialization code. */
|
1852 |
|
|
|
1853 |
|
|
void _initialize_ax_gdb (void);
|
1854 |
|
|
void
|
1855 |
|
|
_initialize_ax_gdb (void)
|
1856 |
|
|
{
|
1857 |
|
|
add_cmd ("agent", class_maintenance, agent_command,
|
1858 |
|
|
"Translate an expression into remote agent bytecode.",
|
1859 |
|
|
&maintenancelist);
|
1860 |
|
|
}
|