1 |
1325 |
phoenix |
/* @(#)e_pow.c 5.1 93/09/24 */
|
2 |
|
|
/*
|
3 |
|
|
* ====================================================
|
4 |
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
5 |
|
|
*
|
6 |
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
7 |
|
|
* Permission to use, copy, modify, and distribute this
|
8 |
|
|
* software is freely granted, provided that this notice
|
9 |
|
|
* is preserved.
|
10 |
|
|
* ====================================================
|
11 |
|
|
*/
|
12 |
|
|
|
13 |
|
|
#if defined(LIBM_SCCS) && !defined(lint)
|
14 |
|
|
static char rcsid[] = "$NetBSD: e_pow.c,v 1.9 1995/05/12 04:57:32 jtc Exp $";
|
15 |
|
|
#endif
|
16 |
|
|
|
17 |
|
|
/* __ieee754_pow(x,y) return x**y
|
18 |
|
|
*
|
19 |
|
|
* n
|
20 |
|
|
* Method: Let x = 2 * (1+f)
|
21 |
|
|
* 1. Compute and return log2(x) in two pieces:
|
22 |
|
|
* log2(x) = w1 + w2,
|
23 |
|
|
* where w1 has 53-24 = 29 bit trailing zeros.
|
24 |
|
|
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
|
25 |
|
|
* arithmetic, where |y'|<=0.5.
|
26 |
|
|
* 3. Return x**y = 2**n*exp(y'*log2)
|
27 |
|
|
*
|
28 |
|
|
* Special cases:
|
29 |
|
|
* 1. (anything) ** 0 is 1
|
30 |
|
|
* 2. (anything) ** 1 is itself
|
31 |
|
|
* 3. (anything) ** NAN is NAN
|
32 |
|
|
* 4. NAN ** (anything except 0) is NAN
|
33 |
|
|
* 5. +-(|x| > 1) ** +INF is +INF
|
34 |
|
|
* 6. +-(|x| > 1) ** -INF is +0
|
35 |
|
|
* 7. +-(|x| < 1) ** +INF is +0
|
36 |
|
|
* 8. +-(|x| < 1) ** -INF is +INF
|
37 |
|
|
* 9. +-1 ** +-INF is NAN
|
38 |
|
|
* 10. +0 ** (+anything except 0, NAN) is +0
|
39 |
|
|
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
|
40 |
|
|
* 12. +0 ** (-anything except 0, NAN) is +INF
|
41 |
|
|
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
|
42 |
|
|
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
|
43 |
|
|
* 15. +INF ** (+anything except 0,NAN) is +INF
|
44 |
|
|
* 16. +INF ** (-anything except 0,NAN) is +0
|
45 |
|
|
* 17. -INF ** (anything) = -0 ** (-anything)
|
46 |
|
|
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
|
47 |
|
|
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
|
48 |
|
|
*
|
49 |
|
|
* Accuracy:
|
50 |
|
|
* pow(x,y) returns x**y nearly rounded. In particular
|
51 |
|
|
* pow(integer,integer)
|
52 |
|
|
* always returns the correct integer provided it is
|
53 |
|
|
* representable.
|
54 |
|
|
*
|
55 |
|
|
* Constants :
|
56 |
|
|
* The hexadecimal values are the intended ones for the following
|
57 |
|
|
* constants. The decimal values may be used, provided that the
|
58 |
|
|
* compiler will convert from decimal to binary accurately enough
|
59 |
|
|
* to produce the hexadecimal values shown.
|
60 |
|
|
*/
|
61 |
|
|
|
62 |
|
|
#include "math.h"
|
63 |
|
|
#include "math_private.h"
|
64 |
|
|
|
65 |
|
|
#ifdef __STDC__
|
66 |
|
|
static const double
|
67 |
|
|
#else
|
68 |
|
|
static double
|
69 |
|
|
#endif
|
70 |
|
|
bp[] = {1.0, 1.5,},
|
71 |
|
|
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
|
72 |
|
|
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
|
73 |
|
|
zero = 0.0,
|
74 |
|
|
one = 1.0,
|
75 |
|
|
two = 2.0,
|
76 |
|
|
two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
|
77 |
|
|
huge = 1.0e300,
|
78 |
|
|
tiny = 1.0e-300,
|
79 |
|
|
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
|
80 |
|
|
L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
|
81 |
|
|
L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
|
82 |
|
|
L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
|
83 |
|
|
L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
|
84 |
|
|
L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
|
85 |
|
|
L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
|
86 |
|
|
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
|
87 |
|
|
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
|
88 |
|
|
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
|
89 |
|
|
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
|
90 |
|
|
P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
|
91 |
|
|
lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
|
92 |
|
|
lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
|
93 |
|
|
lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
|
94 |
|
|
ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
|
95 |
|
|
cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
|
96 |
|
|
cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
|
97 |
|
|
cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
|
98 |
|
|
ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
|
99 |
|
|
ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
|
100 |
|
|
ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
|
101 |
|
|
|
102 |
|
|
#ifdef __STDC__
|
103 |
|
|
double __ieee754_pow(double x, double y)
|
104 |
|
|
#else
|
105 |
|
|
double __ieee754_pow(x,y)
|
106 |
|
|
double x, y;
|
107 |
|
|
#endif
|
108 |
|
|
{
|
109 |
|
|
double z,ax,z_h,z_l,p_h,p_l;
|
110 |
|
|
double y1,t1,t2,r,s,t,u,v,w;
|
111 |
|
|
int32_t i,j,k,yisint,n;
|
112 |
|
|
int32_t hx,hy,ix,iy;
|
113 |
|
|
u_int32_t lx,ly;
|
114 |
|
|
|
115 |
|
|
EXTRACT_WORDS(hx,lx,x);
|
116 |
|
|
EXTRACT_WORDS(hy,ly,y);
|
117 |
|
|
ix = hx&0x7fffffff; iy = hy&0x7fffffff;
|
118 |
|
|
|
119 |
|
|
/* y==zero: x**0 = 1 */
|
120 |
|
|
if((iy|ly)==0) return one;
|
121 |
|
|
|
122 |
|
|
/* +-NaN return x+y */
|
123 |
|
|
if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
|
124 |
|
|
iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
|
125 |
|
|
return x+y;
|
126 |
|
|
|
127 |
|
|
/* determine if y is an odd int when x < 0
|
128 |
|
|
* yisint = 0 ... y is not an integer
|
129 |
|
|
* yisint = 1 ... y is an odd int
|
130 |
|
|
* yisint = 2 ... y is an even int
|
131 |
|
|
*/
|
132 |
|
|
yisint = 0;
|
133 |
|
|
if(hx<0) {
|
134 |
|
|
if(iy>=0x43400000) yisint = 2; /* even integer y */
|
135 |
|
|
else if(iy>=0x3ff00000) {
|
136 |
|
|
k = (iy>>20)-0x3ff; /* exponent */
|
137 |
|
|
if(k>20) {
|
138 |
|
|
j = ly>>(52-k);
|
139 |
|
|
if((j<<(52-k))==ly) yisint = 2-(j&1);
|
140 |
|
|
} else if(ly==0) {
|
141 |
|
|
j = iy>>(20-k);
|
142 |
|
|
if((j<<(20-k))==iy) yisint = 2-(j&1);
|
143 |
|
|
}
|
144 |
|
|
}
|
145 |
|
|
}
|
146 |
|
|
|
147 |
|
|
/* special value of y */
|
148 |
|
|
if(ly==0) {
|
149 |
|
|
if (iy==0x7ff00000) { /* y is +-inf */
|
150 |
|
|
if(((ix-0x3ff00000)|lx)==0)
|
151 |
|
|
return y - y; /* inf**+-1 is NaN */
|
152 |
|
|
else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
|
153 |
|
|
return (hy>=0)? y: zero;
|
154 |
|
|
else /* (|x|<1)**-,+inf = inf,0 */
|
155 |
|
|
return (hy<0)?-y: zero;
|
156 |
|
|
}
|
157 |
|
|
if(iy==0x3ff00000) { /* y is +-1 */
|
158 |
|
|
if(hy<0) return one/x; else return x;
|
159 |
|
|
}
|
160 |
|
|
if(hy==0x40000000) return x*x; /* y is 2 */
|
161 |
|
|
if(hy==0x3fe00000) { /* y is 0.5 */
|
162 |
|
|
if(hx>=0) /* x >= +0 */
|
163 |
|
|
return __ieee754_sqrt(x);
|
164 |
|
|
}
|
165 |
|
|
}
|
166 |
|
|
|
167 |
|
|
ax = fabs(x);
|
168 |
|
|
/* special value of x */
|
169 |
|
|
if(lx==0) {
|
170 |
|
|
if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
|
171 |
|
|
z = ax; /*x is +-0,+-inf,+-1*/
|
172 |
|
|
if(hy<0) z = one/z; /* z = (1/|x|) */
|
173 |
|
|
if(hx<0) {
|
174 |
|
|
if(((ix-0x3ff00000)|yisint)==0) {
|
175 |
|
|
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
|
176 |
|
|
} else if(yisint==1)
|
177 |
|
|
z = -z; /* (x<0)**odd = -(|x|**odd) */
|
178 |
|
|
}
|
179 |
|
|
return z;
|
180 |
|
|
}
|
181 |
|
|
}
|
182 |
|
|
|
183 |
|
|
/* (x<0)**(non-int) is NaN */
|
184 |
|
|
if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
|
185 |
|
|
|
186 |
|
|
/* |y| is huge */
|
187 |
|
|
if(iy>0x41e00000) { /* if |y| > 2**31 */
|
188 |
|
|
if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
|
189 |
|
|
if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
|
190 |
|
|
if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
|
191 |
|
|
}
|
192 |
|
|
/* over/underflow if x is not close to one */
|
193 |
|
|
if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
|
194 |
|
|
if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
|
195 |
|
|
/* now |1-x| is tiny <= 2**-20, suffice to compute
|
196 |
|
|
log(x) by x-x^2/2+x^3/3-x^4/4 */
|
197 |
|
|
t = x-1; /* t has 20 trailing zeros */
|
198 |
|
|
w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
|
199 |
|
|
u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
|
200 |
|
|
v = t*ivln2_l-w*ivln2;
|
201 |
|
|
t1 = u+v;
|
202 |
|
|
SET_LOW_WORD(t1,0);
|
203 |
|
|
t2 = v-(t1-u);
|
204 |
|
|
} else {
|
205 |
|
|
double s2,s_h,s_l,t_h,t_l;
|
206 |
|
|
n = 0;
|
207 |
|
|
/* take care subnormal number */
|
208 |
|
|
if(ix<0x00100000)
|
209 |
|
|
{ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
|
210 |
|
|
n += ((ix)>>20)-0x3ff;
|
211 |
|
|
j = ix&0x000fffff;
|
212 |
|
|
/* determine interval */
|
213 |
|
|
ix = j|0x3ff00000; /* normalize ix */
|
214 |
|
|
if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
|
215 |
|
|
else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
|
216 |
|
|
else {k=0;n+=1;ix -= 0x00100000;}
|
217 |
|
|
SET_HIGH_WORD(ax,ix);
|
218 |
|
|
|
219 |
|
|
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
|
220 |
|
|
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
|
221 |
|
|
v = one/(ax+bp[k]);
|
222 |
|
|
s = u*v;
|
223 |
|
|
s_h = s;
|
224 |
|
|
SET_LOW_WORD(s_h,0);
|
225 |
|
|
/* t_h=ax+bp[k] High */
|
226 |
|
|
t_h = zero;
|
227 |
|
|
SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
|
228 |
|
|
t_l = ax - (t_h-bp[k]);
|
229 |
|
|
s_l = v*((u-s_h*t_h)-s_h*t_l);
|
230 |
|
|
/* compute log(ax) */
|
231 |
|
|
s2 = s*s;
|
232 |
|
|
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
|
233 |
|
|
r += s_l*(s_h+s);
|
234 |
|
|
s2 = s_h*s_h;
|
235 |
|
|
t_h = 3.0+s2+r;
|
236 |
|
|
SET_LOW_WORD(t_h,0);
|
237 |
|
|
t_l = r-((t_h-3.0)-s2);
|
238 |
|
|
/* u+v = s*(1+...) */
|
239 |
|
|
u = s_h*t_h;
|
240 |
|
|
v = s_l*t_h+t_l*s;
|
241 |
|
|
/* 2/(3log2)*(s+...) */
|
242 |
|
|
p_h = u+v;
|
243 |
|
|
SET_LOW_WORD(p_h,0);
|
244 |
|
|
p_l = v-(p_h-u);
|
245 |
|
|
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
|
246 |
|
|
z_l = cp_l*p_h+p_l*cp+dp_l[k];
|
247 |
|
|
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
|
248 |
|
|
t = (double)n;
|
249 |
|
|
t1 = (((z_h+z_l)+dp_h[k])+t);
|
250 |
|
|
SET_LOW_WORD(t1,0);
|
251 |
|
|
t2 = z_l-(((t1-t)-dp_h[k])-z_h);
|
252 |
|
|
}
|
253 |
|
|
|
254 |
|
|
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
|
255 |
|
|
if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)
|
256 |
|
|
s = -one;/* (-ve)**(odd int) */
|
257 |
|
|
|
258 |
|
|
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
|
259 |
|
|
y1 = y;
|
260 |
|
|
SET_LOW_WORD(y1,0);
|
261 |
|
|
p_l = (y-y1)*t1+y*t2;
|
262 |
|
|
p_h = y1*t1;
|
263 |
|
|
z = p_l+p_h;
|
264 |
|
|
EXTRACT_WORDS(j,i,z);
|
265 |
|
|
if (j>=0x40900000) { /* z >= 1024 */
|
266 |
|
|
if(((j-0x40900000)|i)!=0) /* if z > 1024 */
|
267 |
|
|
return s*huge*huge; /* overflow */
|
268 |
|
|
else {
|
269 |
|
|
if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
|
270 |
|
|
}
|
271 |
|
|
} else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
|
272 |
|
|
if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
|
273 |
|
|
return s*tiny*tiny; /* underflow */
|
274 |
|
|
else {
|
275 |
|
|
if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
|
276 |
|
|
}
|
277 |
|
|
}
|
278 |
|
|
/*
|
279 |
|
|
* compute 2**(p_h+p_l)
|
280 |
|
|
*/
|
281 |
|
|
i = j&0x7fffffff;
|
282 |
|
|
k = (i>>20)-0x3ff;
|
283 |
|
|
n = 0;
|
284 |
|
|
if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
|
285 |
|
|
n = j+(0x00100000>>(k+1));
|
286 |
|
|
k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
|
287 |
|
|
t = zero;
|
288 |
|
|
SET_HIGH_WORD(t,n&~(0x000fffff>>k));
|
289 |
|
|
n = ((n&0x000fffff)|0x00100000)>>(20-k);
|
290 |
|
|
if(j<0) n = -n;
|
291 |
|
|
p_h -= t;
|
292 |
|
|
}
|
293 |
|
|
t = p_l+p_h;
|
294 |
|
|
SET_LOW_WORD(t,0);
|
295 |
|
|
u = t*lg2_h;
|
296 |
|
|
v = (p_l-(t-p_h))*lg2+t*lg2_l;
|
297 |
|
|
z = u+v;
|
298 |
|
|
w = v-(z-u);
|
299 |
|
|
t = z*z;
|
300 |
|
|
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
301 |
|
|
r = (z*t1)/(t1-two)-(w+z*w);
|
302 |
|
|
z = one-(r-z);
|
303 |
|
|
GET_HIGH_WORD(j,z);
|
304 |
|
|
j += (n<<20);
|
305 |
|
|
if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
|
306 |
|
|
else SET_HIGH_WORD(z,j);
|
307 |
|
|
return s*z;
|
308 |
|
|
}
|