OpenCores
URL https://opencores.org/ocsvn/or1k_old/or1k_old/trunk

Subversion Repositories or1k_old

[/] [or1k_old/] [trunk/] [rc203soc/] [sw/] [uClinux/] [arch/] [sparc/] [lib/] [udiv.S] - Blame information for rev 1765

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1624 jcastillo
/* $Id: udiv.S,v 1.1 2005-12-20 09:50:47 jcastillo Exp $
2
 * udiv.S:      This routine was taken from glibc-1.09 and is covered
3
 *              by the GNU Library General Public License Version 2.
4
 */
5
 
6
 
7
/* This file is generated from divrem.m4; DO NOT EDIT! */
8
/*
9
 * Division and remainder, from Appendix E of the Sparc Version 8
10
 * Architecture Manual, with fixes from Gordon Irlam.
11
 */
12
 
13
/*
14
 * Input: dividend and divisor in %o0 and %o1 respectively.
15
 *
16
 * m4 parameters:
17
 *  .udiv       name of function to generate
18
 *  div         div=div => %o0 / %o1; div=rem => %o0 % %o1
19
 *  false               false=true => signed; false=false => unsigned
20
 *
21
 * Algorithm parameters:
22
 *  N           how many bits per iteration we try to get (4)
23
 *  WORDSIZE    total number of bits (32)
24
 *
25
 * Derived constants:
26
 *  TOPBITS     number of bits in the top decade of a number
27
 *
28
 * Important variables:
29
 *  Q           the partial quotient under development (initially 0)
30
 *  R           the remainder so far, initially the dividend
31
 *  ITER        number of main division loop iterations required;
32
 *              equal to ceil(log2(quotient) / N).  Note that this
33
 *              is the log base (2^N) of the quotient.
34
 *  V           the current comparand, initially divisor*2^(ITER*N-1)
35
 *
36
 * Cost:
37
 *  Current estimate for non-large dividend is
38
 *      ceil(log2(quotient) / N) * (10 + 7N/2) + C
39
 *  A large dividend is one greater than 2^(31-TOPBITS) and takes a
40
 *  different path, as the upper bits of the quotient must be developed
41
 *  one bit at a time.
42
 */
43
 
44
 
45
        .globl .udiv
46
.udiv:
47
 
48
        ! Ready to divide.  Compute size of quotient; scale comparand.
49
        orcc    %o1, %g0, %o5
50
        bne     1f
51
        mov     %o0, %o3
52
 
53
                ! Divide by zero trap.  If it returns, return 0 (about as
54
                ! wrong as possible, but that is what SunOS does...).
55
                ta      ST_DIV0
56
                retl
57
                clr     %o0
58
 
59
1:
60
        cmp     %o3, %o5                        ! if %o1 exceeds %o0, done
61
        blu     Lgot_result             ! (and algorithm fails otherwise)
62
        clr     %o2
63
        sethi   %hi(1 << (32 - 4 - 1)), %g1
64
        cmp     %o3, %g1
65
        blu     Lnot_really_big
66
        clr     %o4
67
 
68
        ! Here the dividend is >= 2**(31-N) or so.  We must be careful here,
69
        ! as our usual N-at-a-shot divide step will cause overflow and havoc.
70
        ! The number of bits in the result here is N*ITER+SC, where SC <= N.
71
        ! Compute ITER in an unorthodox manner: know we need to shift V into
72
        ! the top decade: so do not even bother to compare to R.
73
        1:
74
                cmp     %o5, %g1
75
                bgeu    3f
76
                mov     1, %g7
77
                sll     %o5, 4, %o5
78
                b       1b
79
                add     %o4, 1, %o4
80
 
81
        ! Now compute %g7.
82
        2:      addcc   %o5, %o5, %o5
83
                bcc     Lnot_too_big
84
                add     %g7, 1, %g7
85
 
86
                ! We get here if the %o1 overflowed while shifting.
87
                ! This means that %o3 has the high-order bit set.
88
                ! Restore %o5 and subtract from %o3.
89
                sll     %g1, 4, %g1     ! high order bit
90
                srl     %o5, 1, %o5             ! rest of %o5
91
                add     %o5, %g1, %o5
92
                b       Ldo_single_div
93
                sub     %g7, 1, %g7
94
 
95
        Lnot_too_big:
96
        3:      cmp     %o5, %o3
97
                blu     2b
98
                nop
99
                be      Ldo_single_div
100
                nop
101
        /* NB: these are commented out in the V8-Sparc manual as well */
102
        /* (I do not understand this) */
103
        ! %o5 > %o3: went too far: back up 1 step
104
        !       srl     %o5, 1, %o5
105
        !       dec     %g7
106
        ! do single-bit divide steps
107
        !
108
        ! We have to be careful here.  We know that %o3 >= %o5, so we can do the
109
        ! first divide step without thinking.  BUT, the others are conditional,
110
        ! and are only done if %o3 >= 0.  Because both %o3 and %o5 may have the high-
111
        ! order bit set in the first step, just falling into the regular
112
        ! division loop will mess up the first time around.
113
        ! So we unroll slightly...
114
        Ldo_single_div:
115
                subcc   %g7, 1, %g7
116
                bl      Lend_regular_divide
117
                nop
118
                sub     %o3, %o5, %o3
119
                mov     1, %o2
120
                b       Lend_single_divloop
121
                nop
122
        Lsingle_divloop:
123
                sll     %o2, 1, %o2
124
                bl      1f
125
                srl     %o5, 1, %o5
126
                ! %o3 >= 0
127
                sub     %o3, %o5, %o3
128
                b       2f
129
                add     %o2, 1, %o2
130
        1:      ! %o3 < 0
131
                add     %o3, %o5, %o3
132
                sub     %o2, 1, %o2
133
        2:
134
        Lend_single_divloop:
135
                subcc   %g7, 1, %g7
136
                bge     Lsingle_divloop
137
                tst     %o3
138
                b,a     Lend_regular_divide
139
 
140
Lnot_really_big:
141
1:
142
        sll     %o5, 4, %o5
143
        cmp     %o5, %o3
144
        bleu    1b
145
        addcc   %o4, 1, %o4
146
        be      Lgot_result
147
        sub     %o4, 1, %o4
148
 
149
        tst     %o3     ! set up for initial iteration
150
Ldivloop:
151
        sll     %o2, 4, %o2
152
                ! depth 1, accumulated bits 0
153
        bl      L.1.16
154
        srl     %o5,1,%o5
155
        ! remainder is positive
156
        subcc   %o3,%o5,%o3
157
                        ! depth 2, accumulated bits 1
158
        bl      L.2.17
159
        srl     %o5,1,%o5
160
        ! remainder is positive
161
        subcc   %o3,%o5,%o3
162
                        ! depth 3, accumulated bits 3
163
        bl      L.3.19
164
        srl     %o5,1,%o5
165
        ! remainder is positive
166
        subcc   %o3,%o5,%o3
167
                        ! depth 4, accumulated bits 7
168
        bl      L.4.23
169
        srl     %o5,1,%o5
170
        ! remainder is positive
171
        subcc   %o3,%o5,%o3
172
                b       9f
173
                add     %o2, (7*2+1), %o2
174
 
175
L.4.23:
176
        ! remainder is negative
177
        addcc   %o3,%o5,%o3
178
                b       9f
179
                add     %o2, (7*2-1), %o2
180
 
181
 
182
L.3.19:
183
        ! remainder is negative
184
        addcc   %o3,%o5,%o3
185
                        ! depth 4, accumulated bits 5
186
        bl      L.4.21
187
        srl     %o5,1,%o5
188
        ! remainder is positive
189
        subcc   %o3,%o5,%o3
190
                b       9f
191
                add     %o2, (5*2+1), %o2
192
 
193
L.4.21:
194
        ! remainder is negative
195
        addcc   %o3,%o5,%o3
196
                b       9f
197
                add     %o2, (5*2-1), %o2
198
 
199
 
200
 
201
L.2.17:
202
        ! remainder is negative
203
        addcc   %o3,%o5,%o3
204
                        ! depth 3, accumulated bits 1
205
        bl      L.3.17
206
        srl     %o5,1,%o5
207
        ! remainder is positive
208
        subcc   %o3,%o5,%o3
209
                        ! depth 4, accumulated bits 3
210
        bl      L.4.19
211
        srl     %o5,1,%o5
212
        ! remainder is positive
213
        subcc   %o3,%o5,%o3
214
                b       9f
215
                add     %o2, (3*2+1), %o2
216
 
217
L.4.19:
218
        ! remainder is negative
219
        addcc   %o3,%o5,%o3
220
                b       9f
221
                add     %o2, (3*2-1), %o2
222
 
223
 
224
L.3.17:
225
        ! remainder is negative
226
        addcc   %o3,%o5,%o3
227
                        ! depth 4, accumulated bits 1
228
        bl      L.4.17
229
        srl     %o5,1,%o5
230
        ! remainder is positive
231
        subcc   %o3,%o5,%o3
232
                b       9f
233
                add     %o2, (1*2+1), %o2
234
 
235
L.4.17:
236
        ! remainder is negative
237
        addcc   %o3,%o5,%o3
238
                b       9f
239
                add     %o2, (1*2-1), %o2
240
 
241
 
242
 
243
 
244
L.1.16:
245
        ! remainder is negative
246
        addcc   %o3,%o5,%o3
247
                        ! depth 2, accumulated bits -1
248
        bl      L.2.15
249
        srl     %o5,1,%o5
250
        ! remainder is positive
251
        subcc   %o3,%o5,%o3
252
                        ! depth 3, accumulated bits -1
253
        bl      L.3.15
254
        srl     %o5,1,%o5
255
        ! remainder is positive
256
        subcc   %o3,%o5,%o3
257
                        ! depth 4, accumulated bits -1
258
        bl      L.4.15
259
        srl     %o5,1,%o5
260
        ! remainder is positive
261
        subcc   %o3,%o5,%o3
262
                b       9f
263
                add     %o2, (-1*2+1), %o2
264
 
265
L.4.15:
266
        ! remainder is negative
267
        addcc   %o3,%o5,%o3
268
                b       9f
269
                add     %o2, (-1*2-1), %o2
270
 
271
 
272
L.3.15:
273
        ! remainder is negative
274
        addcc   %o3,%o5,%o3
275
                        ! depth 4, accumulated bits -3
276
        bl      L.4.13
277
        srl     %o5,1,%o5
278
        ! remainder is positive
279
        subcc   %o3,%o5,%o3
280
                b       9f
281
                add     %o2, (-3*2+1), %o2
282
 
283
L.4.13:
284
        ! remainder is negative
285
        addcc   %o3,%o5,%o3
286
                b       9f
287
                add     %o2, (-3*2-1), %o2
288
 
289
 
290
 
291
L.2.15:
292
        ! remainder is negative
293
        addcc   %o3,%o5,%o3
294
                        ! depth 3, accumulated bits -3
295
        bl      L.3.13
296
        srl     %o5,1,%o5
297
        ! remainder is positive
298
        subcc   %o3,%o5,%o3
299
                        ! depth 4, accumulated bits -5
300
        bl      L.4.11
301
        srl     %o5,1,%o5
302
        ! remainder is positive
303
        subcc   %o3,%o5,%o3
304
                b       9f
305
                add     %o2, (-5*2+1), %o2
306
 
307
L.4.11:
308
        ! remainder is negative
309
        addcc   %o3,%o5,%o3
310
                b       9f
311
                add     %o2, (-5*2-1), %o2
312
 
313
 
314
L.3.13:
315
        ! remainder is negative
316
        addcc   %o3,%o5,%o3
317
                        ! depth 4, accumulated bits -7
318
        bl      L.4.9
319
        srl     %o5,1,%o5
320
        ! remainder is positive
321
        subcc   %o3,%o5,%o3
322
                b       9f
323
                add     %o2, (-7*2+1), %o2
324
 
325
L.4.9:
326
        ! remainder is negative
327
        addcc   %o3,%o5,%o3
328
                b       9f
329
                add     %o2, (-7*2-1), %o2
330
 
331
 
332
 
333
 
334
        9:
335
Lend_regular_divide:
336
        subcc   %o4, 1, %o4
337
        bge     Ldivloop
338
        tst     %o3
339
        bl,a    Lgot_result
340
        ! non-restoring fixup here (one instruction only!)
341
        sub     %o2, 1, %o2
342
 
343
 
344
Lgot_result:
345
 
346
        retl
347
        mov %o2, %o0

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.