1 |
199 |
simons |
/************************************************************************
|
2 |
|
|
* raid1.c : Multiple Devices driver for Linux
|
3 |
|
|
* Copyright (C) 1996 Ingo Molnar, Miguel de Icaza, Gadi Oxman
|
4 |
|
|
*
|
5 |
|
|
* RAID-1 management functions.
|
6 |
|
|
*
|
7 |
|
|
* This program is free software; you can redistribute it and/or modify
|
8 |
|
|
* it under the terms of the GNU General Public License as published by
|
9 |
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
10 |
|
|
* any later version.
|
11 |
|
|
*
|
12 |
|
|
* You should have received a copy of the GNU General Public License
|
13 |
|
|
* (for example /usr/src/linux/COPYING); if not, write to the Free
|
14 |
|
|
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
15 |
|
|
*/
|
16 |
|
|
|
17 |
|
|
#include <linux/module.h>
|
18 |
|
|
#include <linux/locks.h>
|
19 |
|
|
#include <linux/malloc.h>
|
20 |
|
|
#include <linux/md.h>
|
21 |
|
|
#include <linux/raid1.h>
|
22 |
|
|
#include <asm/bitops.h>
|
23 |
|
|
#include <asm/atomic.h>
|
24 |
|
|
|
25 |
|
|
#define MAJOR_NR MD_MAJOR
|
26 |
|
|
#define MD_DRIVER
|
27 |
|
|
#define MD_PERSONALITY
|
28 |
|
|
|
29 |
|
|
/*
|
30 |
|
|
* The following can be used to debug the driver
|
31 |
|
|
*/
|
32 |
|
|
/*#define RAID1_DEBUG*/
|
33 |
|
|
#ifdef RAID1_DEBUG
|
34 |
|
|
#define PRINTK(x) do { printk x; } while (0);
|
35 |
|
|
#else
|
36 |
|
|
#define PRINTK(x) do { ; } while (0);
|
37 |
|
|
#endif
|
38 |
|
|
|
39 |
|
|
|
40 |
|
|
static struct md_personality raid1_personality;
|
41 |
|
|
static struct md_thread *raid1_thread = NULL;
|
42 |
|
|
struct buffer_head *raid1_retry_list = NULL;
|
43 |
|
|
|
44 |
|
|
static int __raid1_map (struct md_dev *mddev, kdev_t *rdev,
|
45 |
|
|
unsigned long *rsector, unsigned long size)
|
46 |
|
|
{
|
47 |
|
|
struct raid1_data *raid_conf = (struct raid1_data *) mddev->private;
|
48 |
|
|
int i, n = raid_conf->raid_disks;
|
49 |
|
|
|
50 |
|
|
/*
|
51 |
|
|
* Later we do read balancing on the read side
|
52 |
|
|
* now we use the first available disk.
|
53 |
|
|
*/
|
54 |
|
|
|
55 |
|
|
PRINTK(("raid1_map().\n"));
|
56 |
|
|
|
57 |
|
|
for (i=0; i<n; i++) {
|
58 |
|
|
if (raid_conf->mirrors[i].operational) {
|
59 |
|
|
*rdev = raid_conf->mirrors[i].dev;
|
60 |
|
|
return (0);
|
61 |
|
|
}
|
62 |
|
|
}
|
63 |
|
|
|
64 |
|
|
printk (KERN_ERR "raid1_map(): huh, no more operational devices?\n");
|
65 |
|
|
return (-1);
|
66 |
|
|
}
|
67 |
|
|
|
68 |
|
|
static int raid1_map (struct md_dev *mddev, kdev_t *rdev,
|
69 |
|
|
unsigned long *rsector, unsigned long size)
|
70 |
|
|
{
|
71 |
|
|
return 0;
|
72 |
|
|
}
|
73 |
|
|
|
74 |
|
|
void raid1_reschedule_retry (struct buffer_head *bh)
|
75 |
|
|
{
|
76 |
|
|
struct raid1_bh * r1_bh = (struct raid1_bh *)(bh->private_bh);
|
77 |
|
|
|
78 |
|
|
PRINTK(("raid1_reschedule_retry().\n"));
|
79 |
|
|
|
80 |
|
|
r1_bh->next_retry = raid1_retry_list;
|
81 |
|
|
raid1_retry_list = bh;
|
82 |
|
|
md_wakeup_thread(raid1_thread);
|
83 |
|
|
}
|
84 |
|
|
|
85 |
|
|
/*
|
86 |
|
|
* raid1_end_buffer_io() is called when we have finished servicing a mirrored
|
87 |
|
|
* operation and are ready to return a success/failture code to the buffer
|
88 |
|
|
* cache layer.
|
89 |
|
|
*/
|
90 |
|
|
static inline void raid1_end_buffer_io (struct buffer_head *bh, int uptodate)
|
91 |
|
|
{
|
92 |
|
|
/*
|
93 |
|
|
* kfree() can sleep and we try to keep this bh operation atomic.
|
94 |
|
|
*/
|
95 |
|
|
struct raid1_bh * tmp = (struct raid1_bh *) bh->private_bh;
|
96 |
|
|
|
97 |
|
|
clear_bit (BH_MD, &bh->b_state);
|
98 |
|
|
bh->private_bh = NULL;
|
99 |
|
|
bh->personality = NULL;
|
100 |
|
|
mark_buffer_uptodate(bh, uptodate);
|
101 |
|
|
unlock_buffer(bh);
|
102 |
|
|
kfree(tmp);
|
103 |
|
|
}
|
104 |
|
|
|
105 |
|
|
void raid1_end_request (struct buffer_head *bh, int uptodate)
|
106 |
|
|
{
|
107 |
|
|
struct raid1_bh * r1_bh = (struct raid1_bh *)(bh->private_bh);
|
108 |
|
|
unsigned long flags;
|
109 |
|
|
|
110 |
|
|
save_flags(flags);
|
111 |
|
|
cli();
|
112 |
|
|
PRINTK(("raid1_end_request().\n"));
|
113 |
|
|
|
114 |
|
|
/*
|
115 |
|
|
* this branch is our 'one mirror IO has finished' event handler:
|
116 |
|
|
*/
|
117 |
|
|
if (!uptodate)
|
118 |
|
|
md_error (bh->b_dev, bh->b_rdev);
|
119 |
|
|
else {
|
120 |
|
|
/*
|
121 |
|
|
* Set BH_Uptodate in our master buffer_head, so that
|
122 |
|
|
* we will return a good error code for to the higher
|
123 |
|
|
* levels even if IO on some other mirrored buffer fails.
|
124 |
|
|
*
|
125 |
|
|
* The 'master' represents the complex operation to
|
126 |
|
|
* user-side. So if something waits for IO, then it will
|
127 |
|
|
* wait for the 'master' buffer_head.
|
128 |
|
|
*/
|
129 |
|
|
set_bit (BH_Uptodate, &r1_bh->state);
|
130 |
|
|
}
|
131 |
|
|
|
132 |
|
|
/*
|
133 |
|
|
* We split up the read and write side, imho they are
|
134 |
|
|
* conceptually different.
|
135 |
|
|
*/
|
136 |
|
|
|
137 |
|
|
if ( (r1_bh->cmd == READ) || (r1_bh->cmd == READA) ) {
|
138 |
|
|
|
139 |
|
|
PRINTK(("raid1_end_request(), read branch.\n"));
|
140 |
|
|
|
141 |
|
|
/*
|
142 |
|
|
* we have only one buffer_head on the read side
|
143 |
|
|
*/
|
144 |
|
|
if (uptodate) {
|
145 |
|
|
PRINTK(("raid1_end_request(), read branch, uptodate.\n"));
|
146 |
|
|
raid1_end_buffer_io (bh, uptodate);
|
147 |
|
|
restore_flags(flags);
|
148 |
|
|
return;
|
149 |
|
|
}
|
150 |
|
|
/*
|
151 |
|
|
* oops, read error:
|
152 |
|
|
*/
|
153 |
|
|
printk(KERN_ERR "raid1: %s: rescheduling block %lu\n",
|
154 |
|
|
kdevname(bh->b_dev), bh->b_blocknr);
|
155 |
|
|
raid1_reschedule_retry (bh);
|
156 |
|
|
restore_flags(flags);
|
157 |
|
|
return;
|
158 |
|
|
}
|
159 |
|
|
|
160 |
|
|
/*
|
161 |
|
|
* WRITE or WRITEA.
|
162 |
|
|
*/
|
163 |
|
|
PRINTK(("raid1_end_request(), write branch.\n"));
|
164 |
|
|
|
165 |
|
|
/*
|
166 |
|
|
* lets see if all mirrored write operations have finished
|
167 |
|
|
* already [we have irqs off, so we can decrease]:
|
168 |
|
|
*/
|
169 |
|
|
|
170 |
|
|
if (!--r1_bh->remaining) {
|
171 |
|
|
struct md_dev *mddev = r1_bh->mddev;
|
172 |
|
|
struct raid1_data *raid_conf = (struct raid1_data *) mddev->private;
|
173 |
|
|
int i, n = raid_conf->raid_disks;
|
174 |
|
|
|
175 |
|
|
PRINTK(("raid1_end_request(), remaining == 0.\n"));
|
176 |
|
|
|
177 |
|
|
/*
|
178 |
|
|
* kfree() can sleep? really? if yes then we are
|
179 |
|
|
* doomed here ...
|
180 |
|
|
*/
|
181 |
|
|
for ( i=0; i<n; i++) {
|
182 |
|
|
if (r1_bh->mirror_bh[i]) kfree(r1_bh->mirror_bh[i]);
|
183 |
|
|
}
|
184 |
|
|
|
185 |
|
|
/*
|
186 |
|
|
* the 'master' bh is the one that is used in page IO,
|
187 |
|
|
* perhaps someone is waiting on it. Lets erase all
|
188 |
|
|
* signs of mirroring, and lets finish the bh operation:
|
189 |
|
|
*
|
190 |
|
|
* In particular, the "uptodate" value which we return
|
191 |
|
|
* to the higher level represents the entire mirror set.
|
192 |
|
|
*
|
193 |
|
|
* yes, and this is why i want to use the 'master' bh as
|
194 |
|
|
* a 'representative'. Thats why i think it's not clean to
|
195 |
|
|
* use the master bh for real IO. We mix concepts, which
|
196 |
|
|
* isnt too good.
|
197 |
|
|
*
|
198 |
|
|
* a buffer_head is basically a user-side file buffer.
|
199 |
|
|
* Normally it has direct relationship with the physical
|
200 |
|
|
* device, but as in this case, we have an abstract mapping
|
201 |
|
|
* between the file buffer and the physical layout. So i've
|
202 |
|
|
* reverted all changes that do this mixing.
|
203 |
|
|
*
|
204 |
|
|
* we 'waste' about 76 bytes for the one more buffer_head,
|
205 |
|
|
* but note that we will do the mirror bh allocation at once
|
206 |
|
|
* in the future, so this isnt really a valid point, i think.
|
207 |
|
|
*
|
208 |
|
|
* Also i dont like the current way of mixing the user-side buffer
|
209 |
|
|
* concept with the 'real' physical layout like raid0.c does
|
210 |
|
|
* now: it increases the size of buffer_head even for nonstriped
|
211 |
|
|
* devices, etc.
|
212 |
|
|
*
|
213 |
|
|
* IMHO, in the future, we should have a lightweight buffer_head
|
214 |
|
|
* structure, which holds almost no physical device information.
|
215 |
|
|
|
216 |
|
|
* Abstract relationship between buffers:
|
217 |
|
|
* =====================================
|
218 |
|
|
*
|
219 |
|
|
* [user]
|
220 |
|
|
* |
|
221 |
|
|
* |
|
222 |
|
|
* ['master' buffer_head] + [private_buffer_head]
|
223 |
|
|
* |
|
224 |
|
|
* |
|
225 |
|
|
* |
|
226 |
|
|
* [additional 'sub'-buffer_heads]
|
227 |
|
|
* | | |
|
228 |
|
|
* [dev1] [dev2] [dev3]
|
229 |
|
|
*
|
230 |
|
|
|
231 |
|
|
* In this scheme it's not clean to use the 'master' as one of
|
232 |
|
|
* the 'sub' buffer_heads. If you think about it, currently we can
|
233 |
|
|
* do this only because raid0 introduced it's own private_buffer_head
|
234 |
|
|
* structure in buffer_head: rdev,rsector. And raid0 has a 1:1
|
235 |
|
|
* relationship to the physical device. But this is really just a
|
236 |
|
|
* special case. Once we have our megafast bh pools running, we could
|
237 |
|
|
* clean up raid0.c too :))
|
238 |
|
|
*
|
239 |
|
|
* Not that it isnt clean, it is lethal if in the future we insert our
|
240 |
|
|
* sub buffer_heads into the global block cache. The master request
|
241 |
|
|
* should be an IO operation label for the complex operation, nothing
|
242 |
|
|
* more.
|
243 |
|
|
*
|
244 |
|
|
* So we have almost no performance arguments, and alot of cleanness
|
245 |
|
|
* arguments.
|
246 |
|
|
*
|
247 |
|
|
* Comments? Gonna change it back to your way again if you can convince
|
248 |
|
|
* me :)) --mingo
|
249 |
|
|
*
|
250 |
|
|
*/
|
251 |
|
|
raid1_end_buffer_io ( r1_bh->master_bh,
|
252 |
|
|
test_bit (BH_Uptodate, &r1_bh->state));
|
253 |
|
|
}
|
254 |
|
|
else PRINTK(("raid1_end_request(), remaining == %u.\n", r1_bh->remaining));
|
255 |
|
|
restore_flags(flags);
|
256 |
|
|
}
|
257 |
|
|
|
258 |
|
|
/* This routine checks if the undelying device is an md device and in that
|
259 |
|
|
* case it maps the blocks before putting the request on the queue
|
260 |
|
|
*/
|
261 |
|
|
static inline void
|
262 |
|
|
map_and_make_request (int rw, struct buffer_head *bh)
|
263 |
|
|
{
|
264 |
|
|
if (MAJOR (bh->b_rdev) == MD_MAJOR){
|
265 |
|
|
md_map (MINOR (bh->b_rdev), &bh->b_rdev, &bh->b_rsector, bh->b_size >> 9);
|
266 |
|
|
}
|
267 |
|
|
make_request (MAJOR (bh->b_rdev), rw, bh);
|
268 |
|
|
}
|
269 |
|
|
|
270 |
|
|
static int
|
271 |
|
|
raid1_make_request (struct md_dev *mddev, int rw, struct buffer_head * bh)
|
272 |
|
|
{
|
273 |
|
|
|
274 |
|
|
struct raid1_data *raid_conf = (struct raid1_data *) mddev->private;
|
275 |
|
|
struct buffer_head *mirror_bh[MD_SB_DISKS];
|
276 |
|
|
struct raid1_bh * r1_bh;
|
277 |
|
|
int n = raid_conf->raid_disks, i, sum_bhs = 0, switch_disks = 0, sectors;
|
278 |
|
|
struct mirror_info *mirror;
|
279 |
|
|
|
280 |
|
|
PRINTK(("raid1_make_request().\n"));
|
281 |
|
|
|
282 |
|
|
/*
|
283 |
|
|
* We put allocations at the beginning, to avoid sleeping while doing
|
284 |
|
|
* atomic operations of buffer heads. This might or might not make much
|
285 |
|
|
* difference, but lets rather be careful.
|
286 |
|
|
*
|
287 |
|
|
* but this has two side effects (probably non harmless):
|
288 |
|
|
*
|
289 |
|
|
* 1. The buffer will not be locked while we sleep.
|
290 |
|
|
* 2. The rest of the kernel will see BH_Req without
|
291 |
|
|
* BH_Lock.
|
292 |
|
|
*/
|
293 |
|
|
while (!( /* FIXME: now we are rather fault tolerant than nice */
|
294 |
|
|
r1_bh = kmalloc (sizeof (struct raid1_bh), GFP_KERNEL)
|
295 |
|
|
) )
|
296 |
|
|
printk ("raid1_make_request(#1): out of memory\n");
|
297 |
|
|
memset (r1_bh, 0, sizeof (struct raid1_bh));
|
298 |
|
|
/*
|
299 |
|
|
* make_request() can abort the operation when READA or WRITEA are being
|
300 |
|
|
* used and no empty request is available.
|
301 |
|
|
*
|
302 |
|
|
* Currently, just replace the command with READ/WRITE.
|
303 |
|
|
*/
|
304 |
|
|
if (rw == READA) rw = READ;
|
305 |
|
|
if (rw == WRITEA) rw = WRITE;
|
306 |
|
|
|
307 |
|
|
if (rw == WRITE || rw == WRITEA)
|
308 |
|
|
mark_buffer_clean(bh); /* Too early ? */
|
309 |
|
|
|
310 |
|
|
/*
|
311 |
|
|
* i think the read and write branch should be separated completely, since we want
|
312 |
|
|
* to do read balancing on the read side for example. Comments? :) --mingo
|
313 |
|
|
*/
|
314 |
|
|
|
315 |
|
|
r1_bh->master_bh=bh;
|
316 |
|
|
r1_bh->mddev=mddev;
|
317 |
|
|
r1_bh->cmd = rw;
|
318 |
|
|
|
319 |
|
|
set_bit (BH_MD, &bh->b_state);
|
320 |
|
|
bh->personality = &raid1_personality;
|
321 |
|
|
bh->private_bh = (void*)(r1_bh);
|
322 |
|
|
|
323 |
|
|
if (rw==READ || rw==READA) {
|
324 |
|
|
int last_used = raid_conf->last_used;
|
325 |
|
|
PRINTK(("raid1_make_request(), read branch.\n"));
|
326 |
|
|
mirror = raid_conf->mirrors + last_used;
|
327 |
|
|
bh->b_rdev = mirror->dev;
|
328 |
|
|
sectors = bh->b_size >> 9;
|
329 |
|
|
if (bh->b_blocknr * sectors == raid_conf->next_sect) {
|
330 |
|
|
raid_conf->sect_count += sectors;
|
331 |
|
|
if (raid_conf->sect_count >= mirror->sect_limit)
|
332 |
|
|
switch_disks = 1;
|
333 |
|
|
} else
|
334 |
|
|
switch_disks = 1;
|
335 |
|
|
raid_conf->next_sect = (bh->b_blocknr + 1) * sectors;
|
336 |
|
|
if (switch_disks) {
|
337 |
|
|
PRINTK(("read-balancing: switching %d -> %d (%d sectors)\n", last_used, mirror->next, raid_conf->sect_count));
|
338 |
|
|
raid_conf->sect_count = 0;
|
339 |
|
|
raid_conf->last_used = mirror->next;
|
340 |
|
|
}
|
341 |
|
|
PRINTK (("raid1 read queue: %d %d\n", MAJOR (bh->b_rdev), MINOR (bh->b_rdev)));
|
342 |
|
|
|
343 |
|
|
clear_bit (BH_Lock, &bh->b_state);
|
344 |
|
|
map_and_make_request (rw, bh);
|
345 |
|
|
return 0;
|
346 |
|
|
}
|
347 |
|
|
|
348 |
|
|
/*
|
349 |
|
|
* WRITE or WRITEA.
|
350 |
|
|
*/
|
351 |
|
|
/*
|
352 |
|
|
* btw, we have no more master disk. 'slave' is gone too :) [i hate that word :))]
|
353 |
|
|
*
|
354 |
|
|
* We are now using the master bh for a real IO. It seems important that:
|
355 |
|
|
*
|
356 |
|
|
* 1. lock_buffer() will be called when we start to handle the request,
|
357 |
|
|
* before we do anything (done by ll_rw_blk.c).
|
358 |
|
|
*
|
359 |
|
|
* 2. It seems that Linus took great care to set mark_buffer_clean()
|
360 |
|
|
* atomically with cli() in effect just when the buffer was placed
|
361 |
|
|
* into the queue. To be compatible with this behavior, it would be
|
362 |
|
|
* best to lock the buffer *first*, but mark it clean *last*, and to
|
363 |
|
|
* do this by passing through the exact logic in ll_rw_blk.c.
|
364 |
|
|
*
|
365 |
|
|
* Note: i've reverted this #3 thing, see the big comment in this file.
|
366 |
|
|
*
|
367 |
|
|
* 3. We are now called from within make_request(), so the real bh
|
368 |
|
|
* will be automatically handled last when we return, so we only need
|
369 |
|
|
* to add the rest of the buffers (but remember to include the
|
370 |
|
|
* master bh in the remaining count).
|
371 |
|
|
*/
|
372 |
|
|
PRINTK(("raid1_make_request(n=%d), write branch.\n",n));
|
373 |
|
|
|
374 |
|
|
for (i = 0; i < n; i++) {
|
375 |
|
|
|
376 |
|
|
if (!raid_conf->mirrors [i].operational) {
|
377 |
|
|
/*
|
378 |
|
|
* the r1_bh->mirror_bh[i] pointer remains NULL
|
379 |
|
|
*/
|
380 |
|
|
mirror_bh[i] = NULL;
|
381 |
|
|
continue;
|
382 |
|
|
}
|
383 |
|
|
|
384 |
|
|
/*
|
385 |
|
|
* We should use a private pool (size depending on NR_REQUEST),
|
386 |
|
|
* to avoid writes filling up the memory with bhs
|
387 |
|
|
*
|
388 |
|
|
* Such pools are much faster than kmalloc anyways (so we waste almost
|
389 |
|
|
* nothing by not using the master bh when writing and win alot of cleanness)
|
390 |
|
|
*
|
391 |
|
|
* but for now we are cool enough. --mingo
|
392 |
|
|
*
|
393 |
|
|
* It's safe to sleep here, buffer heads cannot be used in a shared
|
394 |
|
|
* manner in the write branch. Look how we lock the buffer at the beginning
|
395 |
|
|
* of this function to grok the difference ;)
|
396 |
|
|
*/
|
397 |
|
|
while (!( /* FIXME: now we are rather fault tolerant than nice */
|
398 |
|
|
mirror_bh[i] = kmalloc (sizeof (struct buffer_head), GFP_KERNEL)
|
399 |
|
|
) )
|
400 |
|
|
printk ("raid1_make_request(#2): out of memory\n");
|
401 |
|
|
memset (mirror_bh[i], 0, sizeof (struct buffer_head));
|
402 |
|
|
|
403 |
|
|
/*
|
404 |
|
|
* prepare mirrored bh (fields ordered for max mem throughput):
|
405 |
|
|
*/
|
406 |
|
|
mirror_bh [i]->b_blocknr = bh->b_blocknr;
|
407 |
|
|
mirror_bh [i]->b_dev = bh->b_dev;
|
408 |
|
|
mirror_bh [i]->b_rdev = raid_conf->mirrors [i].dev;
|
409 |
|
|
mirror_bh [i]->b_rsector = bh->b_rsector;
|
410 |
|
|
mirror_bh [i]->b_state = (1<<BH_MD) | (1<<BH_Req) |
|
411 |
|
|
(1<<BH_Touched) | (1<<BH_Dirty);
|
412 |
|
|
mirror_bh [i]->b_count = 1;
|
413 |
|
|
mirror_bh [i]->b_size = bh->b_size;
|
414 |
|
|
mirror_bh [i]->b_data = bh->b_data;
|
415 |
|
|
mirror_bh [i]->b_list = BUF_LOCKED;
|
416 |
|
|
mirror_bh [i]->personality = &raid1_personality;
|
417 |
|
|
mirror_bh [i]->private_bh = (void*)(r1_bh);
|
418 |
|
|
|
419 |
|
|
r1_bh->mirror_bh[i] = mirror_bh[i];
|
420 |
|
|
sum_bhs++;
|
421 |
|
|
}
|
422 |
|
|
|
423 |
|
|
r1_bh->remaining = sum_bhs;
|
424 |
|
|
|
425 |
|
|
PRINTK(("raid1_make_request(), write branch, sum_bhs=%d.\n",sum_bhs));
|
426 |
|
|
|
427 |
|
|
/*
|
428 |
|
|
* We have to be a bit careful about the semaphore above, thats why we
|
429 |
|
|
* start the requests separately. Since kmalloc() could fail, sleep and
|
430 |
|
|
* make_request() can sleep too, this is the safer solution. Imagine,
|
431 |
|
|
* end_request decreasing the semaphore before we could have set it up ...
|
432 |
|
|
* We could play tricks with the semaphore (presetting it and correcting
|
433 |
|
|
* at the end if sum_bhs is not 'n' but we have to do end_request by hand
|
434 |
|
|
* if all requests finish until we had a chance to set up the semaphore
|
435 |
|
|
* correctly ... lots of races).
|
436 |
|
|
*/
|
437 |
|
|
for (i = 0; i < n; i++)
|
438 |
|
|
if (mirror_bh [i] != NULL)
|
439 |
|
|
map_and_make_request (rw, mirror_bh [i]);
|
440 |
|
|
|
441 |
|
|
return (0);
|
442 |
|
|
}
|
443 |
|
|
|
444 |
|
|
static int raid1_status (char *page, int minor, struct md_dev *mddev)
|
445 |
|
|
{
|
446 |
|
|
struct raid1_data *raid_conf = (struct raid1_data *) mddev->private;
|
447 |
|
|
int sz = 0, i;
|
448 |
|
|
|
449 |
|
|
sz += sprintf (page+sz, " [%d/%d] [", raid_conf->raid_disks, raid_conf->working_disks);
|
450 |
|
|
for (i = 0; i < raid_conf->raid_disks; i++)
|
451 |
|
|
sz += sprintf (page+sz, "%s", raid_conf->mirrors [i].operational ? "U" : "_");
|
452 |
|
|
sz += sprintf (page+sz, "]");
|
453 |
|
|
return sz;
|
454 |
|
|
}
|
455 |
|
|
|
456 |
|
|
static void raid1_fix_links (struct raid1_data *raid_conf, int failed_index)
|
457 |
|
|
{
|
458 |
|
|
int disks = raid_conf->raid_disks;
|
459 |
|
|
int j;
|
460 |
|
|
|
461 |
|
|
for (j = 0; j < disks; j++)
|
462 |
|
|
if (raid_conf->mirrors [j].next == failed_index)
|
463 |
|
|
raid_conf->mirrors [j].next = raid_conf->mirrors [failed_index].next;
|
464 |
|
|
}
|
465 |
|
|
|
466 |
|
|
static int raid1_error (struct md_dev *mddev, kdev_t dev)
|
467 |
|
|
{
|
468 |
|
|
struct raid1_data *raid_conf = (struct raid1_data *) mddev->private;
|
469 |
|
|
struct mirror_info *mirror;
|
470 |
|
|
md_superblock_t *sb = mddev->sb;
|
471 |
|
|
int disks = raid_conf->raid_disks;
|
472 |
|
|
int i;
|
473 |
|
|
|
474 |
|
|
PRINTK(("raid1_error called\n"));
|
475 |
|
|
|
476 |
|
|
if (raid_conf->working_disks == 1) {
|
477 |
|
|
/*
|
478 |
|
|
* Uh oh, we can do nothing if this is our last disk, but
|
479 |
|
|
* first check if this is a queued request for a device
|
480 |
|
|
* which has just failed.
|
481 |
|
|
*/
|
482 |
|
|
for (i = 0, mirror = raid_conf->mirrors; i < disks; i++, mirror++)
|
483 |
|
|
if (mirror->dev == dev && !mirror->operational)
|
484 |
|
|
return 0;
|
485 |
|
|
printk (KERN_ALERT "RAID1: only one disk left and IO error.\n");
|
486 |
|
|
return 0;
|
487 |
|
|
}
|
488 |
|
|
|
489 |
|
|
/* Mark disk as unusable */
|
490 |
|
|
for (i = 0, mirror = raid_conf->mirrors; i < disks; i++, mirror++) {
|
491 |
|
|
if (mirror->dev == dev && mirror->operational){
|
492 |
|
|
mirror->operational = 0;
|
493 |
|
|
raid1_fix_links (raid_conf, i);
|
494 |
|
|
sb->disks[mirror->number].state |= (1 << MD_FAULTY_DEVICE);
|
495 |
|
|
sb->disks[mirror->number].state &= ~(1 << MD_SYNC_DEVICE);
|
496 |
|
|
sb->disks[mirror->number].state &= ~(1 << MD_ACTIVE_DEVICE);
|
497 |
|
|
sb->active_disks--;
|
498 |
|
|
sb->working_disks--;
|
499 |
|
|
sb->failed_disks++;
|
500 |
|
|
mddev->sb_dirty = 1;
|
501 |
|
|
md_wakeup_thread(raid1_thread);
|
502 |
|
|
raid_conf->working_disks--;
|
503 |
|
|
printk (KERN_ALERT
|
504 |
|
|
"RAID1: Disk failure on %s, disabling device."
|
505 |
|
|
"Operation continuing on %d devices\n",
|
506 |
|
|
kdevname (dev), raid_conf->working_disks);
|
507 |
|
|
}
|
508 |
|
|
}
|
509 |
|
|
|
510 |
|
|
return 0;
|
511 |
|
|
}
|
512 |
|
|
|
513 |
|
|
/*
|
514 |
|
|
* This is a kernel thread which:
|
515 |
|
|
*
|
516 |
|
|
* 1. Retries failed read operations on working mirrors.
|
517 |
|
|
* 2. Updates the raid superblock when problems are encountered.
|
518 |
|
|
*/
|
519 |
|
|
void raid1d (void *data)
|
520 |
|
|
{
|
521 |
|
|
struct buffer_head *bh;
|
522 |
|
|
kdev_t dev;
|
523 |
|
|
unsigned long flags;
|
524 |
|
|
struct raid1_bh * r1_bh;
|
525 |
|
|
struct md_dev *mddev;
|
526 |
|
|
|
527 |
|
|
PRINTK(("raid1d() active\n"));
|
528 |
|
|
save_flags(flags);
|
529 |
|
|
cli();
|
530 |
|
|
while (raid1_retry_list) {
|
531 |
|
|
bh = raid1_retry_list;
|
532 |
|
|
r1_bh = (struct raid1_bh *)(bh->private_bh);
|
533 |
|
|
raid1_retry_list = r1_bh->next_retry;
|
534 |
|
|
restore_flags(flags);
|
535 |
|
|
|
536 |
|
|
mddev = md_dev + MINOR(bh->b_dev);
|
537 |
|
|
if (mddev->sb_dirty) {
|
538 |
|
|
mddev->sb_dirty = 0;
|
539 |
|
|
md_update_sb(MINOR(bh->b_dev));
|
540 |
|
|
}
|
541 |
|
|
dev = bh->b_rdev;
|
542 |
|
|
__raid1_map (md_dev + MINOR(bh->b_dev), &bh->b_rdev, &bh->b_rsector, bh->b_size >> 9);
|
543 |
|
|
if (bh->b_rdev == dev) {
|
544 |
|
|
printk (KERN_ALERT
|
545 |
|
|
"raid1: %s: unrecoverable I/O read error for block %lu\n",
|
546 |
|
|
kdevname(bh->b_dev), bh->b_blocknr);
|
547 |
|
|
raid1_end_buffer_io (bh, 0);
|
548 |
|
|
} else {
|
549 |
|
|
printk (KERN_ERR "raid1: %s: redirecting sector %lu to another mirror\n",
|
550 |
|
|
kdevname(bh->b_dev), bh->b_blocknr);
|
551 |
|
|
clear_bit (BH_Lock, &bh->b_state);
|
552 |
|
|
map_and_make_request (r1_bh->cmd, bh);
|
553 |
|
|
}
|
554 |
|
|
cli();
|
555 |
|
|
}
|
556 |
|
|
restore_flags(flags);
|
557 |
|
|
|
558 |
|
|
}
|
559 |
|
|
|
560 |
|
|
/*
|
561 |
|
|
* This will catch the scenario in which one of the mirrors was
|
562 |
|
|
* mounted as a normal device rather than as a part of a raid set.
|
563 |
|
|
*/
|
564 |
|
|
static int check_consistenty (struct md_dev *mddev)
|
565 |
|
|
{
|
566 |
|
|
struct raid1_data *raid_conf = mddev->private;
|
567 |
|
|
kdev_t dev;
|
568 |
|
|
struct buffer_head *bh = NULL;
|
569 |
|
|
int i, rc = 0;
|
570 |
|
|
char *buffer = NULL;
|
571 |
|
|
|
572 |
|
|
for (i = 0; i < raid_conf->raid_disks; i++) {
|
573 |
|
|
if (!raid_conf->mirrors[i].operational)
|
574 |
|
|
continue;
|
575 |
|
|
dev = raid_conf->mirrors[i].dev;
|
576 |
|
|
set_blocksize(dev, 4096);
|
577 |
|
|
if ((bh = bread(dev, 0, 4096)) == NULL)
|
578 |
|
|
break;
|
579 |
|
|
if (!buffer) {
|
580 |
|
|
buffer = (char *) __get_free_page(GFP_KERNEL);
|
581 |
|
|
if (!buffer)
|
582 |
|
|
break;
|
583 |
|
|
memcpy(buffer, bh->b_data, 4096);
|
584 |
|
|
} else if (memcmp(buffer, bh->b_data, 4096)) {
|
585 |
|
|
rc = 1;
|
586 |
|
|
break;
|
587 |
|
|
}
|
588 |
|
|
bforget(bh);
|
589 |
|
|
fsync_dev(dev);
|
590 |
|
|
invalidate_buffers(dev);
|
591 |
|
|
bh = NULL;
|
592 |
|
|
}
|
593 |
|
|
if (buffer)
|
594 |
|
|
free_page((unsigned long) buffer);
|
595 |
|
|
if (bh) {
|
596 |
|
|
dev = bh->b_dev;
|
597 |
|
|
bforget(bh);
|
598 |
|
|
fsync_dev(dev);
|
599 |
|
|
invalidate_buffers(dev);
|
600 |
|
|
}
|
601 |
|
|
return rc;
|
602 |
|
|
}
|
603 |
|
|
|
604 |
|
|
static int raid1_run (int minor, struct md_dev *mddev)
|
605 |
|
|
{
|
606 |
|
|
struct raid1_data *raid_conf;
|
607 |
|
|
int i, j, raid_disk;
|
608 |
|
|
md_superblock_t *sb = mddev->sb;
|
609 |
|
|
md_descriptor_t *descriptor;
|
610 |
|
|
struct real_dev *realdev;
|
611 |
|
|
|
612 |
|
|
MOD_INC_USE_COUNT;
|
613 |
|
|
|
614 |
|
|
if (sb->level != 1) {
|
615 |
|
|
printk("raid1: %s: raid level not set to mirroring (%d)\n", kdevname(MKDEV(MD_MAJOR, minor)), sb->level);
|
616 |
|
|
MOD_DEC_USE_COUNT;
|
617 |
|
|
return -EIO;
|
618 |
|
|
}
|
619 |
|
|
/****
|
620 |
|
|
* copy the now verified devices into our private RAID1 bookkeeping area:
|
621 |
|
|
*
|
622 |
|
|
* [whatever we allocate in raid1_run(), should be freed in raid1_stop()]
|
623 |
|
|
*/
|
624 |
|
|
|
625 |
|
|
while (!( /* FIXME: now we are rather fault tolerant than nice */
|
626 |
|
|
mddev->private = kmalloc (sizeof (struct raid1_data), GFP_KERNEL)
|
627 |
|
|
) )
|
628 |
|
|
printk ("raid1_run(): out of memory\n");
|
629 |
|
|
raid_conf = mddev->private;
|
630 |
|
|
memset(raid_conf, 0, sizeof(*raid_conf));
|
631 |
|
|
|
632 |
|
|
PRINTK(("raid1_run(%d) called.\n", minor));
|
633 |
|
|
|
634 |
|
|
for (i = 0; i < mddev->nb_dev; i++) {
|
635 |
|
|
realdev = &mddev->devices[i];
|
636 |
|
|
if (!realdev->sb) {
|
637 |
|
|
printk(KERN_ERR "raid1: disabled mirror %s (couldn't access raid superblock)\n", kdevname(realdev->dev));
|
638 |
|
|
continue;
|
639 |
|
|
}
|
640 |
|
|
|
641 |
|
|
/*
|
642 |
|
|
* This is important -- we are using the descriptor on
|
643 |
|
|
* the disk only to get a pointer to the descriptor on
|
644 |
|
|
* the main superblock, which might be more recent.
|
645 |
|
|
*/
|
646 |
|
|
descriptor = &sb->disks[realdev->sb->descriptor.number];
|
647 |
|
|
if (descriptor->state & (1 << MD_FAULTY_DEVICE)) {
|
648 |
|
|
printk(KERN_ERR "raid1: disabled mirror %s (errors detected)\n", kdevname(realdev->dev));
|
649 |
|
|
continue;
|
650 |
|
|
}
|
651 |
|
|
if (descriptor->state & (1 << MD_ACTIVE_DEVICE)) {
|
652 |
|
|
if (!(descriptor->state & (1 << MD_SYNC_DEVICE))) {
|
653 |
|
|
printk(KERN_ERR "raid1: disabled mirror %s (not in sync)\n", kdevname(realdev->dev));
|
654 |
|
|
continue;
|
655 |
|
|
}
|
656 |
|
|
raid_disk = descriptor->raid_disk;
|
657 |
|
|
if (descriptor->number > sb->nr_disks || raid_disk > sb->raid_disks) {
|
658 |
|
|
printk(KERN_ERR "raid1: disabled mirror %s (inconsistent descriptor)\n", kdevname(realdev->dev));
|
659 |
|
|
continue;
|
660 |
|
|
}
|
661 |
|
|
if (raid_conf->mirrors[raid_disk].operational) {
|
662 |
|
|
printk(KERN_ERR "raid1: disabled mirror %s (mirror %d already operational)\n", kdevname(realdev->dev), raid_disk);
|
663 |
|
|
continue;
|
664 |
|
|
}
|
665 |
|
|
printk(KERN_INFO "raid1: device %s operational as mirror %d\n", kdevname(realdev->dev), raid_disk);
|
666 |
|
|
raid_conf->mirrors[raid_disk].number = descriptor->number;
|
667 |
|
|
raid_conf->mirrors[raid_disk].raid_disk = raid_disk;
|
668 |
|
|
raid_conf->mirrors[raid_disk].dev = mddev->devices [i].dev;
|
669 |
|
|
raid_conf->mirrors[raid_disk].operational = 1;
|
670 |
|
|
raid_conf->mirrors[raid_disk].sect_limit = 128;
|
671 |
|
|
raid_conf->working_disks++;
|
672 |
|
|
}
|
673 |
|
|
}
|
674 |
|
|
if (!raid_conf->working_disks) {
|
675 |
|
|
printk(KERN_ERR "raid1: no operational mirrors for %s\n", kdevname(MKDEV(MD_MAJOR, minor)));
|
676 |
|
|
kfree(raid_conf);
|
677 |
|
|
mddev->private = NULL;
|
678 |
|
|
MOD_DEC_USE_COUNT;
|
679 |
|
|
return -EIO;
|
680 |
|
|
}
|
681 |
|
|
|
682 |
|
|
raid_conf->raid_disks = sb->raid_disks;
|
683 |
|
|
raid_conf->mddev = mddev;
|
684 |
|
|
|
685 |
|
|
for (j = 0; !raid_conf->mirrors[j].operational; j++);
|
686 |
|
|
raid_conf->last_used = j;
|
687 |
|
|
for (i = raid_conf->raid_disks - 1; i >= 0; i--) {
|
688 |
|
|
if (raid_conf->mirrors[i].operational) {
|
689 |
|
|
PRINTK(("raid_conf->mirrors[%d].next == %d\n", i, j));
|
690 |
|
|
raid_conf->mirrors[i].next = j;
|
691 |
|
|
j = i;
|
692 |
|
|
}
|
693 |
|
|
}
|
694 |
|
|
|
695 |
|
|
if (check_consistenty(mddev)) {
|
696 |
|
|
printk(KERN_ERR "raid1: detected mirror differences -- run ckraid\n");
|
697 |
|
|
sb->state |= 1 << MD_SB_ERRORS;
|
698 |
|
|
kfree(raid_conf);
|
699 |
|
|
mddev->private = NULL;
|
700 |
|
|
MOD_DEC_USE_COUNT;
|
701 |
|
|
return -EIO;
|
702 |
|
|
}
|
703 |
|
|
|
704 |
|
|
/*
|
705 |
|
|
* Regenerate the "device is in sync with the raid set" bit for
|
706 |
|
|
* each device.
|
707 |
|
|
*/
|
708 |
|
|
for (i = 0; i < sb->nr_disks ; i++) {
|
709 |
|
|
sb->disks[i].state &= ~(1 << MD_SYNC_DEVICE);
|
710 |
|
|
for (j = 0; j < sb->raid_disks; j++) {
|
711 |
|
|
if (!raid_conf->mirrors[j].operational)
|
712 |
|
|
continue;
|
713 |
|
|
if (sb->disks[i].number == raid_conf->mirrors[j].number)
|
714 |
|
|
sb->disks[i].state |= 1 << MD_SYNC_DEVICE;
|
715 |
|
|
}
|
716 |
|
|
}
|
717 |
|
|
sb->active_disks = raid_conf->working_disks;
|
718 |
|
|
|
719 |
|
|
printk("raid1: raid set %s active with %d out of %d mirrors\n", kdevname(MKDEV(MD_MAJOR, minor)), sb->active_disks, sb->raid_disks);
|
720 |
|
|
/* Ok, everything is just fine now */
|
721 |
|
|
return (0);
|
722 |
|
|
}
|
723 |
|
|
|
724 |
|
|
static int raid1_stop (int minor, struct md_dev *mddev)
|
725 |
|
|
{
|
726 |
|
|
struct raid1_data *raid_conf = (struct raid1_data *) mddev->private;
|
727 |
|
|
|
728 |
|
|
kfree (raid_conf);
|
729 |
|
|
mddev->private = NULL;
|
730 |
|
|
MOD_DEC_USE_COUNT;
|
731 |
|
|
return 0;
|
732 |
|
|
}
|
733 |
|
|
|
734 |
|
|
static struct md_personality raid1_personality=
|
735 |
|
|
{
|
736 |
|
|
"raid1",
|
737 |
|
|
raid1_map,
|
738 |
|
|
raid1_make_request,
|
739 |
|
|
raid1_end_request,
|
740 |
|
|
raid1_run,
|
741 |
|
|
raid1_stop,
|
742 |
|
|
raid1_status,
|
743 |
|
|
NULL, /* no ioctls */
|
744 |
|
|
0,
|
745 |
|
|
raid1_error
|
746 |
|
|
};
|
747 |
|
|
|
748 |
|
|
int raid1_init (void)
|
749 |
|
|
{
|
750 |
|
|
if ((raid1_thread = md_register_thread(raid1d, NULL)) == NULL)
|
751 |
|
|
return -EBUSY;
|
752 |
|
|
return register_md_personality (RAID1, &raid1_personality);
|
753 |
|
|
}
|
754 |
|
|
|
755 |
|
|
#ifdef MODULE
|
756 |
|
|
int init_module (void)
|
757 |
|
|
{
|
758 |
|
|
return raid1_init();
|
759 |
|
|
}
|
760 |
|
|
|
761 |
|
|
void cleanup_module (void)
|
762 |
|
|
{
|
763 |
|
|
md_unregister_thread (raid1_thread);
|
764 |
|
|
unregister_md_personality (RAID1);
|
765 |
|
|
}
|
766 |
|
|
#endif
|