OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [tags/] [linux-2.6/] [linux-2.6.24_or32_unified_v2.3/] [Documentation/] [lguest/] [lguest.c] - Blame information for rev 8

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/*P:100 This is the Launcher code, a simple program which lays out the
2
 * "physical" memory for the new Guest by mapping the kernel image and the
3
 * virtual devices, then reads repeatedly from /dev/lguest to run the Guest.
4
:*/
5
#define _LARGEFILE64_SOURCE
6
#define _GNU_SOURCE
7
#include <stdio.h>
8
#include <string.h>
9
#include <unistd.h>
10
#include <err.h>
11
#include <stdint.h>
12
#include <stdlib.h>
13
#include <elf.h>
14
#include <sys/mman.h>
15
#include <sys/param.h>
16
#include <sys/types.h>
17
#include <sys/stat.h>
18
#include <sys/wait.h>
19
#include <fcntl.h>
20
#include <stdbool.h>
21
#include <errno.h>
22
#include <ctype.h>
23
#include <sys/socket.h>
24
#include <sys/ioctl.h>
25
#include <sys/time.h>
26
#include <time.h>
27
#include <netinet/in.h>
28
#include <net/if.h>
29
#include <linux/sockios.h>
30
#include <linux/if_tun.h>
31
#include <sys/uio.h>
32
#include <termios.h>
33
#include <getopt.h>
34
#include <zlib.h>
35
#include <assert.h>
36
#include <sched.h>
37
#include "linux/lguest_launcher.h"
38
#include "linux/virtio_config.h"
39
#include "linux/virtio_net.h"
40
#include "linux/virtio_blk.h"
41
#include "linux/virtio_console.h"
42
#include "linux/virtio_ring.h"
43
#include "asm-x86/bootparam.h"
44
/*L:110 We can ignore the 38 include files we need for this program, but I do
45
 * want to draw attention to the use of kernel-style types.
46
 *
47
 * As Linus said, "C is a Spartan language, and so should your naming be."  I
48
 * like these abbreviations, so we define them here.  Note that u64 is always
49
 * unsigned long long, which works on all Linux systems: this means that we can
50
 * use %llu in printf for any u64. */
51
typedef unsigned long long u64;
52
typedef uint32_t u32;
53
typedef uint16_t u16;
54
typedef uint8_t u8;
55
/*:*/
56
 
57
#define PAGE_PRESENT 0x7        /* Present, RW, Execute */
58
#define NET_PEERNUM 1
59
#define BRIDGE_PFX "bridge:"
60
#ifndef SIOCBRADDIF
61
#define SIOCBRADDIF     0x89a2          /* add interface to bridge      */
62
#endif
63
/* We can have up to 256 pages for devices. */
64
#define DEVICE_PAGES 256
65
/* This will occupy 2 pages: it must be a power of 2. */
66
#define VIRTQUEUE_NUM 128
67
 
68
/*L:120 verbose is both a global flag and a macro.  The C preprocessor allows
69
 * this, and although I wouldn't recommend it, it works quite nicely here. */
70
static bool verbose;
71
#define verbose(args...) \
72
        do { if (verbose) printf(args); } while(0)
73
/*:*/
74
 
75
/* The pipe to send commands to the waker process */
76
static int waker_fd;
77
/* The pointer to the start of guest memory. */
78
static void *guest_base;
79
/* The maximum guest physical address allowed, and maximum possible. */
80
static unsigned long guest_limit, guest_max;
81
 
82
/* This is our list of devices. */
83
struct device_list
84
{
85
        /* Summary information about the devices in our list: ready to pass to
86
         * select() to ask which need servicing.*/
87
        fd_set infds;
88
        int max_infd;
89
 
90
        /* Counter to assign interrupt numbers. */
91
        unsigned int next_irq;
92
 
93
        /* Counter to print out convenient device numbers. */
94
        unsigned int device_num;
95
 
96
        /* The descriptor page for the devices. */
97
        u8 *descpage;
98
 
99
        /* The tail of the last descriptor. */
100
        unsigned int desc_used;
101
 
102
        /* A single linked list of devices. */
103
        struct device *dev;
104
        /* ... And an end pointer so we can easily append new devices */
105
        struct device **lastdev;
106
};
107
 
108
/* The list of Guest devices, based on command line arguments. */
109
static struct device_list devices;
110
 
111
/* The device structure describes a single device. */
112
struct device
113
{
114
        /* The linked-list pointer. */
115
        struct device *next;
116
 
117
        /* The this device's descriptor, as mapped into the Guest. */
118
        struct lguest_device_desc *desc;
119
 
120
        /* The name of this device, for --verbose. */
121
        const char *name;
122
 
123
        /* If handle_input is set, it wants to be called when this file
124
         * descriptor is ready. */
125
        int fd;
126
        bool (*handle_input)(int fd, struct device *me);
127
 
128
        /* Any queues attached to this device */
129
        struct virtqueue *vq;
130
 
131
        /* Device-specific data. */
132
        void *priv;
133
};
134
 
135
/* The virtqueue structure describes a queue attached to a device. */
136
struct virtqueue
137
{
138
        struct virtqueue *next;
139
 
140
        /* Which device owns me. */
141
        struct device *dev;
142
 
143
        /* The configuration for this queue. */
144
        struct lguest_vqconfig config;
145
 
146
        /* The actual ring of buffers. */
147
        struct vring vring;
148
 
149
        /* Last available index we saw. */
150
        u16 last_avail_idx;
151
 
152
        /* The routine to call when the Guest pings us. */
153
        void (*handle_output)(int fd, struct virtqueue *me);
154
};
155
 
156
/* Since guest is UP and we don't run at the same time, we don't need barriers.
157
 * But I include them in the code in case others copy it. */
158
#define wmb()
159
 
160
/* Convert an iovec element to the given type.
161
 *
162
 * This is a fairly ugly trick: we need to know the size of the type and
163
 * alignment requirement to check the pointer is kosher.  It's also nice to
164
 * have the name of the type in case we report failure.
165
 *
166
 * Typing those three things all the time is cumbersome and error prone, so we
167
 * have a macro which sets them all up and passes to the real function. */
168
#define convert(iov, type) \
169
        ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
170
 
171
static void *_convert(struct iovec *iov, size_t size, size_t align,
172
                      const char *name)
173
{
174
        if (iov->iov_len != size)
175
                errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
176
        if ((unsigned long)iov->iov_base % align != 0)
177
                errx(1, "Bad alignment %p for %s", iov->iov_base, name);
178
        return iov->iov_base;
179
}
180
 
181
/* The virtio configuration space is defined to be little-endian.  x86 is
182
 * little-endian too, but it's nice to be explicit so we have these helpers. */
183
#define cpu_to_le16(v16) (v16)
184
#define cpu_to_le32(v32) (v32)
185
#define cpu_to_le64(v64) (v64)
186
#define le16_to_cpu(v16) (v16)
187
#define le32_to_cpu(v32) (v32)
188
#define le64_to_cpu(v32) (v64)
189
 
190
/*L:100 The Launcher code itself takes us out into userspace, that scary place
191
 * where pointers run wild and free!  Unfortunately, like most userspace
192
 * programs, it's quite boring (which is why everyone likes to hack on the
193
 * kernel!).  Perhaps if you make up an Lguest Drinking Game at this point, it
194
 * will get you through this section.  Or, maybe not.
195
 *
196
 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
197
 * memory and stores it in "guest_base".  In other words, Guest physical ==
198
 * Launcher virtual with an offset.
199
 *
200
 * This can be tough to get your head around, but usually it just means that we
201
 * use these trivial conversion functions when the Guest gives us it's
202
 * "physical" addresses: */
203
static void *from_guest_phys(unsigned long addr)
204
{
205
        return guest_base + addr;
206
}
207
 
208
static unsigned long to_guest_phys(const void *addr)
209
{
210
        return (addr - guest_base);
211
}
212
 
213
/*L:130
214
 * Loading the Kernel.
215
 *
216
 * We start with couple of simple helper routines.  open_or_die() avoids
217
 * error-checking code cluttering the callers: */
218
static int open_or_die(const char *name, int flags)
219
{
220
        int fd = open(name, flags);
221
        if (fd < 0)
222
                err(1, "Failed to open %s", name);
223
        return fd;
224
}
225
 
226
/* map_zeroed_pages() takes a number of pages. */
227
static void *map_zeroed_pages(unsigned int num)
228
{
229
        int fd = open_or_die("/dev/zero", O_RDONLY);
230
        void *addr;
231
 
232
        /* We use a private mapping (ie. if we write to the page, it will be
233
         * copied). */
234
        addr = mmap(NULL, getpagesize() * num,
235
                    PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
236
        if (addr == MAP_FAILED)
237
                err(1, "Mmaping %u pages of /dev/zero", num);
238
 
239
        return addr;
240
}
241
 
242
/* Get some more pages for a device. */
243
static void *get_pages(unsigned int num)
244
{
245
        void *addr = from_guest_phys(guest_limit);
246
 
247
        guest_limit += num * getpagesize();
248
        if (guest_limit > guest_max)
249
                errx(1, "Not enough memory for devices");
250
        return addr;
251
}
252
 
253
/* This routine is used to load the kernel or initrd.  It tries mmap, but if
254
 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
255
 * it falls back to reading the memory in. */
256
static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
257
{
258
        ssize_t r;
259
 
260
        /* We map writable even though for some segments are marked read-only.
261
         * The kernel really wants to be writable: it patches its own
262
         * instructions.
263
         *
264
         * MAP_PRIVATE means that the page won't be copied until a write is
265
         * done to it.  This allows us to share untouched memory between
266
         * Guests. */
267
        if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
268
                 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
269
                return;
270
 
271
        /* pread does a seek and a read in one shot: saves a few lines. */
272
        r = pread(fd, addr, len, offset);
273
        if (r != len)
274
                err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
275
}
276
 
277
/* This routine takes an open vmlinux image, which is in ELF, and maps it into
278
 * the Guest memory.  ELF = Embedded Linking Format, which is the format used
279
 * by all modern binaries on Linux including the kernel.
280
 *
281
 * The ELF headers give *two* addresses: a physical address, and a virtual
282
 * address.  We use the physical address; the Guest will map itself to the
283
 * virtual address.
284
 *
285
 * We return the starting address. */
286
static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
287
{
288
        Elf32_Phdr phdr[ehdr->e_phnum];
289
        unsigned int i;
290
 
291
        /* Sanity checks on the main ELF header: an x86 executable with a
292
         * reasonable number of correctly-sized program headers. */
293
        if (ehdr->e_type != ET_EXEC
294
            || ehdr->e_machine != EM_386
295
            || ehdr->e_phentsize != sizeof(Elf32_Phdr)
296
            || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
297
                errx(1, "Malformed elf header");
298
 
299
        /* An ELF executable contains an ELF header and a number of "program"
300
         * headers which indicate which parts ("segments") of the program to
301
         * load where. */
302
 
303
        /* We read in all the program headers at once: */
304
        if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
305
                err(1, "Seeking to program headers");
306
        if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
307
                err(1, "Reading program headers");
308
 
309
        /* Try all the headers: there are usually only three.  A read-only one,
310
         * a read-write one, and a "note" section which isn't loadable. */
311
        for (i = 0; i < ehdr->e_phnum; i++) {
312
                /* If this isn't a loadable segment, we ignore it */
313
                if (phdr[i].p_type != PT_LOAD)
314
                        continue;
315
 
316
                verbose("Section %i: size %i addr %p\n",
317
                        i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
318
 
319
                /* We map this section of the file at its physical address. */
320
                map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
321
                       phdr[i].p_offset, phdr[i].p_filesz);
322
        }
323
 
324
        /* The entry point is given in the ELF header. */
325
        return ehdr->e_entry;
326
}
327
 
328
/*L:150 A bzImage, unlike an ELF file, is not meant to be loaded.  You're
329
 * supposed to jump into it and it will unpack itself.  We used to have to
330
 * perform some hairy magic because the unpacking code scared me.
331
 *
332
 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
333
 * a small patch to jump over the tricky bits in the Guest, so now we just read
334
 * the funky header so we know where in the file to load, and away we go! */
335
static unsigned long load_bzimage(int fd)
336
{
337
        struct boot_params boot;
338
        int r;
339
        /* Modern bzImages get loaded at 1M. */
340
        void *p = from_guest_phys(0x100000);
341
 
342
        /* Go back to the start of the file and read the header.  It should be
343
         * a Linux boot header (see Documentation/i386/boot.txt) */
344
        lseek(fd, 0, SEEK_SET);
345
        read(fd, &boot, sizeof(boot));
346
 
347
        /* Inside the setup_hdr, we expect the magic "HdrS" */
348
        if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
349
                errx(1, "This doesn't look like a bzImage to me");
350
 
351
        /* Skip over the extra sectors of the header. */
352
        lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
353
 
354
        /* Now read everything into memory. in nice big chunks. */
355
        while ((r = read(fd, p, 65536)) > 0)
356
                p += r;
357
 
358
        /* Finally, code32_start tells us where to enter the kernel. */
359
        return boot.hdr.code32_start;
360
}
361
 
362
/*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
363
 * come wrapped up in the self-decompressing "bzImage" format.  With a little
364
 * work, we can load those, too. */
365
static unsigned long load_kernel(int fd)
366
{
367
        Elf32_Ehdr hdr;
368
 
369
        /* Read in the first few bytes. */
370
        if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
371
                err(1, "Reading kernel");
372
 
373
        /* If it's an ELF file, it starts with "\177ELF" */
374
        if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
375
                return map_elf(fd, &hdr);
376
 
377
        /* Otherwise we assume it's a bzImage, and try to unpack it */
378
        return load_bzimage(fd);
379
}
380
 
381
/* This is a trivial little helper to align pages.  Andi Kleen hated it because
382
 * it calls getpagesize() twice: "it's dumb code."
383
 *
384
 * Kernel guys get really het up about optimization, even when it's not
385
 * necessary.  I leave this code as a reaction against that. */
386
static inline unsigned long page_align(unsigned long addr)
387
{
388
        /* Add upwards and truncate downwards. */
389
        return ((addr + getpagesize()-1) & ~(getpagesize()-1));
390
}
391
 
392
/*L:180 An "initial ram disk" is a disk image loaded into memory along with
393
 * the kernel which the kernel can use to boot from without needing any
394
 * drivers.  Most distributions now use this as standard: the initrd contains
395
 * the code to load the appropriate driver modules for the current machine.
396
 *
397
 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
398
 * kernels.  He sent me this (and tells me when I break it). */
399
static unsigned long load_initrd(const char *name, unsigned long mem)
400
{
401
        int ifd;
402
        struct stat st;
403
        unsigned long len;
404
 
405
        ifd = open_or_die(name, O_RDONLY);
406
        /* fstat() is needed to get the file size. */
407
        if (fstat(ifd, &st) < 0)
408
                err(1, "fstat() on initrd '%s'", name);
409
 
410
        /* We map the initrd at the top of memory, but mmap wants it to be
411
         * page-aligned, so we round the size up for that. */
412
        len = page_align(st.st_size);
413
        map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
414
        /* Once a file is mapped, you can close the file descriptor.  It's a
415
         * little odd, but quite useful. */
416
        close(ifd);
417
        verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
418
 
419
        /* We return the initrd size. */
420
        return len;
421
}
422
 
423
/* Once we know how much memory we have, we can construct simple linear page
424
 * tables which set virtual == physical which will get the Guest far enough
425
 * into the boot to create its own.
426
 *
427
 * We lay them out of the way, just below the initrd (which is why we need to
428
 * know its size). */
429
static unsigned long setup_pagetables(unsigned long mem,
430
                                      unsigned long initrd_size)
431
{
432
        unsigned long *pgdir, *linear;
433
        unsigned int mapped_pages, i, linear_pages;
434
        unsigned int ptes_per_page = getpagesize()/sizeof(void *);
435
 
436
        mapped_pages = mem/getpagesize();
437
 
438
        /* Each PTE page can map ptes_per_page pages: how many do we need? */
439
        linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
440
 
441
        /* We put the toplevel page directory page at the top of memory. */
442
        pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
443
 
444
        /* Now we use the next linear_pages pages as pte pages */
445
        linear = (void *)pgdir - linear_pages*getpagesize();
446
 
447
        /* Linear mapping is easy: put every page's address into the mapping in
448
         * order.  PAGE_PRESENT contains the flags Present, Writable and
449
         * Executable. */
450
        for (i = 0; i < mapped_pages; i++)
451
                linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
452
 
453
        /* The top level points to the linear page table pages above. */
454
        for (i = 0; i < mapped_pages; i += ptes_per_page) {
455
                pgdir[i/ptes_per_page]
456
                        = ((to_guest_phys(linear) + i*sizeof(void *))
457
                           | PAGE_PRESENT);
458
        }
459
 
460
        verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
461
                mapped_pages, linear_pages, to_guest_phys(linear));
462
 
463
        /* We return the top level (guest-physical) address: the kernel needs
464
         * to know where it is. */
465
        return to_guest_phys(pgdir);
466
}
467
/*:*/
468
 
469
/* Simple routine to roll all the commandline arguments together with spaces
470
 * between them. */
471
static void concat(char *dst, char *args[])
472
{
473
        unsigned int i, len = 0;
474
 
475
        for (i = 0; args[i]; i++) {
476
                strcpy(dst+len, args[i]);
477
                strcat(dst+len, " ");
478
                len += strlen(args[i]) + 1;
479
        }
480
        /* In case it's empty. */
481
        dst[len] = '\0';
482
}
483
 
484
/*L:185 This is where we actually tell the kernel to initialize the Guest.  We
485
 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
486
 * the base of Guest "physical" memory, the top physical page to allow, the
487
 * top level pagetable and the entry point for the Guest. */
488
static int tell_kernel(unsigned long pgdir, unsigned long start)
489
{
490
        unsigned long args[] = { LHREQ_INITIALIZE,
491
                                 (unsigned long)guest_base,
492
                                 guest_limit / getpagesize(), pgdir, start };
493
        int fd;
494
 
495
        verbose("Guest: %p - %p (%#lx)\n",
496
                guest_base, guest_base + guest_limit, guest_limit);
497
        fd = open_or_die("/dev/lguest", O_RDWR);
498
        if (write(fd, args, sizeof(args)) < 0)
499
                err(1, "Writing to /dev/lguest");
500
 
501
        /* We return the /dev/lguest file descriptor to control this Guest */
502
        return fd;
503
}
504
/*:*/
505
 
506
static void add_device_fd(int fd)
507
{
508
        FD_SET(fd, &devices.infds);
509
        if (fd > devices.max_infd)
510
                devices.max_infd = fd;
511
}
512
 
513
/*L:200
514
 * The Waker.
515
 *
516
 * With console, block and network devices, we can have lots of input which we
517
 * need to process.  We could try to tell the kernel what file descriptors to
518
 * watch, but handing a file descriptor mask through to the kernel is fairly
519
 * icky.
520
 *
521
 * Instead, we fork off a process which watches the file descriptors and writes
522
 * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
523
 * stop running the Guest.  This causes the Launcher to return from the
524
 * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
525
 * the LHREQ_BREAK and wake us up again.
526
 *
527
 * This, of course, is merely a different *kind* of icky.
528
 */
529
static void wake_parent(int pipefd, int lguest_fd)
530
{
531
        /* Add the pipe from the Launcher to the fdset in the device_list, so
532
         * we watch it, too. */
533
        add_device_fd(pipefd);
534
 
535
        for (;;) {
536
                fd_set rfds = devices.infds;
537
                unsigned long args[] = { LHREQ_BREAK, 1 };
538
 
539
                /* Wait until input is ready from one of the devices. */
540
                select(devices.max_infd+1, &rfds, NULL, NULL, NULL);
541
                /* Is it a message from the Launcher? */
542
                if (FD_ISSET(pipefd, &rfds)) {
543
                        int fd;
544
                        /* If read() returns 0, it means the Launcher has
545
                         * exited.  We silently follow. */
546
                        if (read(pipefd, &fd, sizeof(fd)) == 0)
547
                                exit(0);
548
                        /* Otherwise it's telling us to change what file
549
                         * descriptors we're to listen to.  Positive means
550
                         * listen to a new one, negative means stop
551
                         * listening. */
552
                        if (fd >= 0)
553
                                FD_SET(fd, &devices.infds);
554
                        else
555
                                FD_CLR(-fd - 1, &devices.infds);
556
                } else /* Send LHREQ_BREAK command. */
557
                        write(lguest_fd, args, sizeof(args));
558
        }
559
}
560
 
561
/* This routine just sets up a pipe to the Waker process. */
562
static int setup_waker(int lguest_fd)
563
{
564
        int pipefd[2], child;
565
 
566
        /* We create a pipe to talk to the Waker, and also so it knows when the
567
         * Launcher dies (and closes pipe). */
568
        pipe(pipefd);
569
        child = fork();
570
        if (child == -1)
571
                err(1, "forking");
572
 
573
        if (child == 0) {
574
                /* We are the Waker: close the "writing" end of our copy of the
575
                 * pipe and start waiting for input. */
576
                close(pipefd[1]);
577
                wake_parent(pipefd[0], lguest_fd);
578
        }
579
        /* Close the reading end of our copy of the pipe. */
580
        close(pipefd[0]);
581
 
582
        /* Here is the fd used to talk to the waker. */
583
        return pipefd[1];
584
}
585
 
586
/*
587
 * Device Handling.
588
 *
589
 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
590
 * We need to make sure it's not trying to reach into the Launcher itself, so
591
 * we have a convenient routine which checks it and exits with an error message
592
 * if something funny is going on:
593
 */
594
static void *_check_pointer(unsigned long addr, unsigned int size,
595
                            unsigned int line)
596
{
597
        /* We have to separately check addr and addr+size, because size could
598
         * be huge and addr + size might wrap around. */
599
        if (addr >= guest_limit || addr + size >= guest_limit)
600
                errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
601
        /* We return a pointer for the caller's convenience, now we know it's
602
         * safe to use. */
603
        return from_guest_phys(addr);
604
}
605
/* A macro which transparently hands the line number to the real function. */
606
#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
607
 
608
/* Each buffer in the virtqueues is actually a chain of descriptors.  This
609
 * function returns the next descriptor in the chain, or vq->vring.num if we're
610
 * at the end. */
611
static unsigned next_desc(struct virtqueue *vq, unsigned int i)
612
{
613
        unsigned int next;
614
 
615
        /* If this descriptor says it doesn't chain, we're done. */
616
        if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
617
                return vq->vring.num;
618
 
619
        /* Check they're not leading us off end of descriptors. */
620
        next = vq->vring.desc[i].next;
621
        /* Make sure compiler knows to grab that: we don't want it changing! */
622
        wmb();
623
 
624
        if (next >= vq->vring.num)
625
                errx(1, "Desc next is %u", next);
626
 
627
        return next;
628
}
629
 
630
/* This looks in the virtqueue and for the first available buffer, and converts
631
 * it to an iovec for convenient access.  Since descriptors consist of some
632
 * number of output then some number of input descriptors, it's actually two
633
 * iovecs, but we pack them into one and note how many of each there were.
634
 *
635
 * This function returns the descriptor number found, or vq->vring.num (which
636
 * is never a valid descriptor number) if none was found. */
637
static unsigned get_vq_desc(struct virtqueue *vq,
638
                            struct iovec iov[],
639
                            unsigned int *out_num, unsigned int *in_num)
640
{
641
        unsigned int i, head;
642
 
643
        /* Check it isn't doing very strange things with descriptor numbers. */
644
        if ((u16)(vq->vring.avail->idx - vq->last_avail_idx) > vq->vring.num)
645
                errx(1, "Guest moved used index from %u to %u",
646
                     vq->last_avail_idx, vq->vring.avail->idx);
647
 
648
        /* If there's nothing new since last we looked, return invalid. */
649
        if (vq->vring.avail->idx == vq->last_avail_idx)
650
                return vq->vring.num;
651
 
652
        /* Grab the next descriptor number they're advertising, and increment
653
         * the index we've seen. */
654
        head = vq->vring.avail->ring[vq->last_avail_idx++ % vq->vring.num];
655
 
656
        /* If their number is silly, that's a fatal mistake. */
657
        if (head >= vq->vring.num)
658
                errx(1, "Guest says index %u is available", head);
659
 
660
        /* When we start there are none of either input nor output. */
661
        *out_num = *in_num = 0;
662
 
663
        i = head;
664
        do {
665
                /* Grab the first descriptor, and check it's OK. */
666
                iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
667
                iov[*out_num + *in_num].iov_base
668
                        = check_pointer(vq->vring.desc[i].addr,
669
                                        vq->vring.desc[i].len);
670
                /* If this is an input descriptor, increment that count. */
671
                if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
672
                        (*in_num)++;
673
                else {
674
                        /* If it's an output descriptor, they're all supposed
675
                         * to come before any input descriptors. */
676
                        if (*in_num)
677
                                errx(1, "Descriptor has out after in");
678
                        (*out_num)++;
679
                }
680
 
681
                /* If we've got too many, that implies a descriptor loop. */
682
                if (*out_num + *in_num > vq->vring.num)
683
                        errx(1, "Looped descriptor");
684
        } while ((i = next_desc(vq, i)) != vq->vring.num);
685
 
686
        return head;
687
}
688
 
689
/* After we've used one of their buffers, we tell them about it.  We'll then
690
 * want to send them an interrupt, using trigger_irq(). */
691
static void add_used(struct virtqueue *vq, unsigned int head, int len)
692
{
693
        struct vring_used_elem *used;
694
 
695
        /* The virtqueue contains a ring of used buffers.  Get a pointer to the
696
         * next entry in that used ring. */
697
        used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
698
        used->id = head;
699
        used->len = len;
700
        /* Make sure buffer is written before we update index. */
701
        wmb();
702
        vq->vring.used->idx++;
703
}
704
 
705
/* This actually sends the interrupt for this virtqueue */
706
static void trigger_irq(int fd, struct virtqueue *vq)
707
{
708
        unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
709
 
710
        /* If they don't want an interrupt, don't send one. */
711
        if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
712
                return;
713
 
714
        /* Send the Guest an interrupt tell them we used something up. */
715
        if (write(fd, buf, sizeof(buf)) != 0)
716
                err(1, "Triggering irq %i", vq->config.irq);
717
}
718
 
719
/* And here's the combo meal deal.  Supersize me! */
720
static void add_used_and_trigger(int fd, struct virtqueue *vq,
721
                                 unsigned int head, int len)
722
{
723
        add_used(vq, head, len);
724
        trigger_irq(fd, vq);
725
}
726
 
727
/*
728
 * The Console
729
 *
730
 * Here is the input terminal setting we save, and the routine to restore them
731
 * on exit so the user gets their terminal back. */
732
static struct termios orig_term;
733
static void restore_term(void)
734
{
735
        tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
736
}
737
 
738
/* We associate some data with the console for our exit hack. */
739
struct console_abort
740
{
741
        /* How many times have they hit ^C? */
742
        int count;
743
        /* When did they start? */
744
        struct timeval start;
745
};
746
 
747
/* This is the routine which handles console input (ie. stdin). */
748
static bool handle_console_input(int fd, struct device *dev)
749
{
750
        int len;
751
        unsigned int head, in_num, out_num;
752
        struct iovec iov[dev->vq->vring.num];
753
        struct console_abort *abort = dev->priv;
754
 
755
        /* First we need a console buffer from the Guests's input virtqueue. */
756
        head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
757
 
758
        /* If they're not ready for input, stop listening to this file
759
         * descriptor.  We'll start again once they add an input buffer. */
760
        if (head == dev->vq->vring.num)
761
                return false;
762
 
763
        if (out_num)
764
                errx(1, "Output buffers in console in queue?");
765
 
766
        /* This is why we convert to iovecs: the readv() call uses them, and so
767
         * it reads straight into the Guest's buffer. */
768
        len = readv(dev->fd, iov, in_num);
769
        if (len <= 0) {
770
                /* This implies that the console is closed, is /dev/null, or
771
                 * something went terribly wrong. */
772
                warnx("Failed to get console input, ignoring console.");
773
                /* Put the input terminal back. */
774
                restore_term();
775
                /* Remove callback from input vq, so it doesn't restart us. */
776
                dev->vq->handle_output = NULL;
777
                /* Stop listening to this fd: don't call us again. */
778
                return false;
779
        }
780
 
781
        /* Tell the Guest about the new input. */
782
        add_used_and_trigger(fd, dev->vq, head, len);
783
 
784
        /* Three ^C within one second?  Exit.
785
         *
786
         * This is such a hack, but works surprisingly well.  Each ^C has to be
787
         * in a buffer by itself, so they can't be too fast.  But we check that
788
         * we get three within about a second, so they can't be too slow. */
789
        if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
790
                if (!abort->count++)
791
                        gettimeofday(&abort->start, NULL);
792
                else if (abort->count == 3) {
793
                        struct timeval now;
794
                        gettimeofday(&now, NULL);
795
                        if (now.tv_sec <= abort->start.tv_sec+1) {
796
                                unsigned long args[] = { LHREQ_BREAK, 0 };
797
                                /* Close the fd so Waker will know it has to
798
                                 * exit. */
799
                                close(waker_fd);
800
                                /* Just in case waker is blocked in BREAK, send
801
                                 * unbreak now. */
802
                                write(fd, args, sizeof(args));
803
                                exit(2);
804
                        }
805
                        abort->count = 0;
806
                }
807
        } else
808
                /* Any other key resets the abort counter. */
809
                abort->count = 0;
810
 
811
        /* Everything went OK! */
812
        return true;
813
}
814
 
815
/* Handling output for console is simple: we just get all the output buffers
816
 * and write them to stdout. */
817
static void handle_console_output(int fd, struct virtqueue *vq)
818
{
819
        unsigned int head, out, in;
820
        int len;
821
        struct iovec iov[vq->vring.num];
822
 
823
        /* Keep getting output buffers from the Guest until we run out. */
824
        while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
825
                if (in)
826
                        errx(1, "Input buffers in output queue?");
827
                len = writev(STDOUT_FILENO, iov, out);
828
                add_used_and_trigger(fd, vq, head, len);
829
        }
830
}
831
 
832
/*
833
 * The Network
834
 *
835
 * Handling output for network is also simple: we get all the output buffers
836
 * and write them (ignoring the first element) to this device's file descriptor
837
 * (stdout). */
838
static void handle_net_output(int fd, struct virtqueue *vq)
839
{
840
        unsigned int head, out, in;
841
        int len;
842
        struct iovec iov[vq->vring.num];
843
 
844
        /* Keep getting output buffers from the Guest until we run out. */
845
        while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
846
                if (in)
847
                        errx(1, "Input buffers in output queue?");
848
                /* Check header, but otherwise ignore it (we told the Guest we
849
                 * supported no features, so it shouldn't have anything
850
                 * interesting). */
851
                (void)convert(&iov[0], struct virtio_net_hdr);
852
                len = writev(vq->dev->fd, iov+1, out-1);
853
                add_used_and_trigger(fd, vq, head, len);
854
        }
855
}
856
 
857
/* This is where we handle a packet coming in from the tun device to our
858
 * Guest. */
859
static bool handle_tun_input(int fd, struct device *dev)
860
{
861
        unsigned int head, in_num, out_num;
862
        int len;
863
        struct iovec iov[dev->vq->vring.num];
864
        struct virtio_net_hdr *hdr;
865
 
866
        /* First we need a network buffer from the Guests's recv virtqueue. */
867
        head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
868
        if (head == dev->vq->vring.num) {
869
                /* Now, it's expected that if we try to send a packet too
870
                 * early, the Guest won't be ready yet.  Wait until the device
871
                 * status says it's ready. */
872
                /* FIXME: Actually want DRIVER_ACTIVE here. */
873
                if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK)
874
                        warn("network: no dma buffer!");
875
                /* We'll turn this back on if input buffers are registered. */
876
                return false;
877
        } else if (out_num)
878
                errx(1, "Output buffers in network recv queue?");
879
 
880
        /* First element is the header: we set it to 0 (no features). */
881
        hdr = convert(&iov[0], struct virtio_net_hdr);
882
        hdr->flags = 0;
883
        hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE;
884
 
885
        /* Read the packet from the device directly into the Guest's buffer. */
886
        len = readv(dev->fd, iov+1, in_num-1);
887
        if (len <= 0)
888
                err(1, "reading network");
889
 
890
        /* Tell the Guest about the new packet. */
891
        add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len);
892
 
893
        verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
894
                ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
895
                head != dev->vq->vring.num ? "sent" : "discarded");
896
 
897
        /* All good. */
898
        return true;
899
}
900
 
901
/*L:215 This is the callback attached to the network and console input
902
 * virtqueues: it ensures we try again, in case we stopped console or net
903
 * delivery because Guest didn't have any buffers. */
904
static void enable_fd(int fd, struct virtqueue *vq)
905
{
906
        add_device_fd(vq->dev->fd);
907
        /* Tell waker to listen to it again */
908
        write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd));
909
}
910
 
911
/* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
912
static void handle_output(int fd, unsigned long addr)
913
{
914
        struct device *i;
915
        struct virtqueue *vq;
916
 
917
        /* Check each virtqueue. */
918
        for (i = devices.dev; i; i = i->next) {
919
                for (vq = i->vq; vq; vq = vq->next) {
920
                        if (vq->config.pfn == addr/getpagesize()
921
                            && vq->handle_output) {
922
                                verbose("Output to %s\n", vq->dev->name);
923
                                vq->handle_output(fd, vq);
924
                                return;
925
                        }
926
                }
927
        }
928
 
929
        /* Early console write is done using notify on a nul-terminated string
930
         * in Guest memory. */
931
        if (addr >= guest_limit)
932
                errx(1, "Bad NOTIFY %#lx", addr);
933
 
934
        write(STDOUT_FILENO, from_guest_phys(addr),
935
              strnlen(from_guest_phys(addr), guest_limit - addr));
936
}
937
 
938
/* This is called when the Waker wakes us up: check for incoming file
939
 * descriptors. */
940
static void handle_input(int fd)
941
{
942
        /* select() wants a zeroed timeval to mean "don't wait". */
943
        struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
944
 
945
        for (;;) {
946
                struct device *i;
947
                fd_set fds = devices.infds;
948
 
949
                /* If nothing is ready, we're done. */
950
                if (select(devices.max_infd+1, &fds, NULL, NULL, &poll) == 0)
951
                        break;
952
 
953
                /* Otherwise, call the device(s) which have readable
954
                 * file descriptors and a method of handling them.  */
955
                for (i = devices.dev; i; i = i->next) {
956
                        if (i->handle_input && FD_ISSET(i->fd, &fds)) {
957
                                int dev_fd;
958
                                if (i->handle_input(fd, i))
959
                                        continue;
960
 
961
                                /* If handle_input() returns false, it means we
962
                                 * should no longer service it.  Networking and
963
                                 * console do this when there's no input
964
                                 * buffers to deliver into.  Console also uses
965
                                 * it when it discovers that stdin is
966
                                 * closed. */
967
                                FD_CLR(i->fd, &devices.infds);
968
                                /* Tell waker to ignore it too, by sending a
969
                                 * negative fd number (-1, since 0 is a valid
970
                                 * FD number). */
971
                                dev_fd = -i->fd - 1;
972
                                write(waker_fd, &dev_fd, sizeof(dev_fd));
973
                        }
974
                }
975
        }
976
}
977
 
978
/*L:190
979
 * Device Setup
980
 *
981
 * All devices need a descriptor so the Guest knows it exists, and a "struct
982
 * device" so the Launcher can keep track of it.  We have common helper
983
 * routines to allocate them.
984
 *
985
 * This routine allocates a new "struct lguest_device_desc" from descriptor
986
 * table just above the Guest's normal memory.  It returns a pointer to that
987
 * descriptor. */
988
static struct lguest_device_desc *new_dev_desc(u16 type)
989
{
990
        struct lguest_device_desc *d;
991
 
992
        /* We only have one page for all the descriptors. */
993
        if (devices.desc_used + sizeof(*d) > getpagesize())
994
                errx(1, "Too many devices");
995
 
996
        /* We don't need to set config_len or status: page is 0 already. */
997
        d = (void *)devices.descpage + devices.desc_used;
998
        d->type = type;
999
        devices.desc_used += sizeof(*d);
1000
 
1001
        return d;
1002
}
1003
 
1004
/* Each device descriptor is followed by some configuration information.
1005
 * Each configuration field looks like: u8 type, u8 len, [... len bytes...].
1006
 *
1007
 * This routine adds a new field to an existing device's descriptor.  It only
1008
 * works for the last device, but that's OK because that's how we use it. */
1009
static void add_desc_field(struct device *dev, u8 type, u8 len, const void *c)
1010
{
1011
        /* This is the last descriptor, right? */
1012
        assert(devices.descpage + devices.desc_used
1013
               == (u8 *)(dev->desc + 1) + dev->desc->config_len);
1014
 
1015
        /* We only have one page of device descriptions. */
1016
        if (devices.desc_used + 2 + len > getpagesize())
1017
                errx(1, "Too many devices");
1018
 
1019
        /* Copy in the new config header: type then length. */
1020
        devices.descpage[devices.desc_used++] = type;
1021
        devices.descpage[devices.desc_used++] = len;
1022
        memcpy(devices.descpage + devices.desc_used, c, len);
1023
        devices.desc_used += len;
1024
 
1025
        /* Update the device descriptor length: two byte head then data. */
1026
        dev->desc->config_len += 2 + len;
1027
}
1028
 
1029
/* This routine adds a virtqueue to a device.  We specify how many descriptors
1030
 * the virtqueue is to have. */
1031
static void add_virtqueue(struct device *dev, unsigned int num_descs,
1032
                          void (*handle_output)(int fd, struct virtqueue *me))
1033
{
1034
        unsigned int pages;
1035
        struct virtqueue **i, *vq = malloc(sizeof(*vq));
1036
        void *p;
1037
 
1038
        /* First we need some pages for this virtqueue. */
1039
        pages = (vring_size(num_descs, getpagesize()) + getpagesize() - 1)
1040
                / getpagesize();
1041
        p = get_pages(pages);
1042
 
1043
        /* Initialize the virtqueue */
1044
        vq->next = NULL;
1045
        vq->last_avail_idx = 0;
1046
        vq->dev = dev;
1047
 
1048
        /* Initialize the configuration. */
1049
        vq->config.num = num_descs;
1050
        vq->config.irq = devices.next_irq++;
1051
        vq->config.pfn = to_guest_phys(p) / getpagesize();
1052
 
1053
        /* Initialize the vring. */
1054
        vring_init(&vq->vring, num_descs, p, getpagesize());
1055
 
1056
        /* Add the configuration information to this device's descriptor. */
1057
        add_desc_field(dev, VIRTIO_CONFIG_F_VIRTQUEUE,
1058
                       sizeof(vq->config), &vq->config);
1059
 
1060
        /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1061
         * second.  */
1062
        for (i = &dev->vq; *i; i = &(*i)->next);
1063
        *i = vq;
1064
 
1065
        /* Set the routine to call when the Guest does something to this
1066
         * virtqueue. */
1067
        vq->handle_output = handle_output;
1068
 
1069
        /* Set the "Don't Notify Me" flag if we don't have a handler */
1070
        if (!handle_output)
1071
                vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
1072
}
1073
 
1074
/* This routine does all the creation and setup of a new device, including
1075
 * calling new_dev_desc() to allocate the descriptor and device memory. */
1076
static struct device *new_device(const char *name, u16 type, int fd,
1077
                                 bool (*handle_input)(int, struct device *))
1078
{
1079
        struct device *dev = malloc(sizeof(*dev));
1080
 
1081
        /* Append to device list.  Prepending to a single-linked list is
1082
         * easier, but the user expects the devices to be arranged on the bus
1083
         * in command-line order.  The first network device on the command line
1084
         * is eth0, the first block device /dev/vda, etc. */
1085
        *devices.lastdev = dev;
1086
        dev->next = NULL;
1087
        devices.lastdev = &dev->next;
1088
 
1089
        /* Now we populate the fields one at a time. */
1090
        dev->fd = fd;
1091
        /* If we have an input handler for this file descriptor, then we add it
1092
         * to the device_list's fdset and maxfd. */
1093
        if (handle_input)
1094
                add_device_fd(dev->fd);
1095
        dev->desc = new_dev_desc(type);
1096
        dev->handle_input = handle_input;
1097
        dev->name = name;
1098
        dev->vq = NULL;
1099
        return dev;
1100
}
1101
 
1102
/* Our first setup routine is the console.  It's a fairly simple device, but
1103
 * UNIX tty handling makes it uglier than it could be. */
1104
static void setup_console(void)
1105
{
1106
        struct device *dev;
1107
 
1108
        /* If we can save the initial standard input settings... */
1109
        if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1110
                struct termios term = orig_term;
1111
                /* Then we turn off echo, line buffering and ^C etc.  We want a
1112
                 * raw input stream to the Guest. */
1113
                term.c_lflag &= ~(ISIG|ICANON|ECHO);
1114
                tcsetattr(STDIN_FILENO, TCSANOW, &term);
1115
                /* If we exit gracefully, the original settings will be
1116
                 * restored so the user can see what they're typing. */
1117
                atexit(restore_term);
1118
        }
1119
 
1120
        dev = new_device("console", VIRTIO_ID_CONSOLE,
1121
                         STDIN_FILENO, handle_console_input);
1122
        /* We store the console state in dev->priv, and initialize it. */
1123
        dev->priv = malloc(sizeof(struct console_abort));
1124
        ((struct console_abort *)dev->priv)->count = 0;
1125
 
1126
        /* The console needs two virtqueues: the input then the output.  When
1127
         * they put something the input queue, we make sure we're listening to
1128
         * stdin.  When they put something in the output queue, we write it to
1129
         * stdout. */
1130
        add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1131
        add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
1132
 
1133
        verbose("device %u: console\n", devices.device_num++);
1134
}
1135
/*:*/
1136
 
1137
/*M:010 Inter-guest networking is an interesting area.  Simplest is to have a
1138
 * --sharenet=<name> option which opens or creates a named pipe.  This can be
1139
 * used to send packets to another guest in a 1:1 manner.
1140
 *
1141
 * More sopisticated is to use one of the tools developed for project like UML
1142
 * to do networking.
1143
 *
1144
 * Faster is to do virtio bonding in kernel.  Doing this 1:1 would be
1145
 * completely generic ("here's my vring, attach to your vring") and would work
1146
 * for any traffic.  Of course, namespace and permissions issues need to be
1147
 * dealt with.  A more sophisticated "multi-channel" virtio_net.c could hide
1148
 * multiple inter-guest channels behind one interface, although it would
1149
 * require some manner of hotplugging new virtio channels.
1150
 *
1151
 * Finally, we could implement a virtio network switch in the kernel. :*/
1152
 
1153
static u32 str2ip(const char *ipaddr)
1154
{
1155
        unsigned int byte[4];
1156
 
1157
        sscanf(ipaddr, "%u.%u.%u.%u", &byte[0], &byte[1], &byte[2], &byte[3]);
1158
        return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3];
1159
}
1160
 
1161
/* This code is "adapted" from libbridge: it attaches the Host end of the
1162
 * network device to the bridge device specified by the command line.
1163
 *
1164
 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1165
 * dislike bridging), and I just try not to break it. */
1166
static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1167
{
1168
        int ifidx;
1169
        struct ifreq ifr;
1170
 
1171
        if (!*br_name)
1172
                errx(1, "must specify bridge name");
1173
 
1174
        ifidx = if_nametoindex(if_name);
1175
        if (!ifidx)
1176
                errx(1, "interface %s does not exist!", if_name);
1177
 
1178
        strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1179
        ifr.ifr_ifindex = ifidx;
1180
        if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1181
                err(1, "can't add %s to bridge %s", if_name, br_name);
1182
}
1183
 
1184
/* This sets up the Host end of the network device with an IP address, brings
1185
 * it up so packets will flow, the copies the MAC address into the hwaddr
1186
 * pointer. */
1187
static void configure_device(int fd, const char *devname, u32 ipaddr,
1188
                             unsigned char hwaddr[6])
1189
{
1190
        struct ifreq ifr;
1191
        struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1192
 
1193
        /* Don't read these incantations.  Just cut & paste them like I did! */
1194
        memset(&ifr, 0, sizeof(ifr));
1195
        strcpy(ifr.ifr_name, devname);
1196
        sin->sin_family = AF_INET;
1197
        sin->sin_addr.s_addr = htonl(ipaddr);
1198
        if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1199
                err(1, "Setting %s interface address", devname);
1200
        ifr.ifr_flags = IFF_UP;
1201
        if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1202
                err(1, "Bringing interface %s up", devname);
1203
 
1204
        /* SIOC stands for Socket I/O Control.  G means Get (vs S for Set
1205
         * above).  IF means Interface, and HWADDR is hardware address.
1206
         * Simple! */
1207
        if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
1208
                err(1, "getting hw address for %s", devname);
1209
        memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
1210
}
1211
 
1212
/*L:195 Our network is a Host<->Guest network.  This can either use bridging or
1213
 * routing, but the principle is the same: it uses the "tun" device to inject
1214
 * packets into the Host as if they came in from a normal network card.  We
1215
 * just shunt packets between the Guest and the tun device. */
1216
static void setup_tun_net(const char *arg)
1217
{
1218
        struct device *dev;
1219
        struct ifreq ifr;
1220
        int netfd, ipfd;
1221
        u32 ip;
1222
        const char *br_name = NULL;
1223
        u8 hwaddr[6];
1224
 
1225
        /* We open the /dev/net/tun device and tell it we want a tap device.  A
1226
         * tap device is like a tun device, only somehow different.  To tell
1227
         * the truth, I completely blundered my way through this code, but it
1228
         * works now! */
1229
        netfd = open_or_die("/dev/net/tun", O_RDWR);
1230
        memset(&ifr, 0, sizeof(ifr));
1231
        ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1232
        strcpy(ifr.ifr_name, "tap%d");
1233
        if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1234
                err(1, "configuring /dev/net/tun");
1235
        /* We don't need checksums calculated for packets coming in this
1236
         * device: trust us! */
1237
        ioctl(netfd, TUNSETNOCSUM, 1);
1238
 
1239
        /* First we create a new network device. */
1240
        dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
1241
 
1242
        /* Network devices need a receive and a send queue, just like
1243
         * console. */
1244
        add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1245
        add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
1246
 
1247
        /* We need a socket to perform the magic network ioctls to bring up the
1248
         * tap interface, connect to the bridge etc.  Any socket will do! */
1249
        ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1250
        if (ipfd < 0)
1251
                err(1, "opening IP socket");
1252
 
1253
        /* If the command line was --tunnet=bridge:<name> do bridging. */
1254
        if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1255
                ip = INADDR_ANY;
1256
                br_name = arg + strlen(BRIDGE_PFX);
1257
                add_to_bridge(ipfd, ifr.ifr_name, br_name);
1258
        } else /* It is an IP address to set up the device with */
1259
                ip = str2ip(arg);
1260
 
1261
        /* Set up the tun device, and get the mac address for the interface. */
1262
        configure_device(ipfd, ifr.ifr_name, ip, hwaddr);
1263
 
1264
        /* Tell Guest what MAC address to use. */
1265
        add_desc_field(dev, VIRTIO_CONFIG_NET_MAC_F, sizeof(hwaddr), hwaddr);
1266
 
1267
        /* We don't seed the socket any more; setup is done. */
1268
        close(ipfd);
1269
 
1270
        verbose("device %u: tun net %u.%u.%u.%u\n",
1271
                devices.device_num++,
1272
                (u8)(ip>>24),(u8)(ip>>16),(u8)(ip>>8),(u8)ip);
1273
        if (br_name)
1274
                verbose("attached to bridge: %s\n", br_name);
1275
}
1276
 
1277
/* Our block (disk) device should be really simple: the Guest asks for a block
1278
 * number and we read or write that position in the file.  Unfortunately, that
1279
 * was amazingly slow: the Guest waits until the read is finished before
1280
 * running anything else, even if it could have been doing useful work.
1281
 *
1282
 * We could use async I/O, except it's reputed to suck so hard that characters
1283
 * actually go missing from your code when you try to use it.
1284
 *
1285
 * So we farm the I/O out to thread, and communicate with it via a pipe. */
1286
 
1287
/* This hangs off device->priv. */
1288
struct vblk_info
1289
{
1290
        /* The size of the file. */
1291
        off64_t len;
1292
 
1293
        /* The file descriptor for the file. */
1294
        int fd;
1295
 
1296
        /* IO thread listens on this file descriptor [0]. */
1297
        int workpipe[2];
1298
 
1299
        /* IO thread writes to this file descriptor to mark it done, then
1300
         * Launcher triggers interrupt to Guest. */
1301
        int done_fd;
1302
};
1303
/*:*/
1304
 
1305
/*L:210
1306
 * The Disk
1307
 *
1308
 * Remember that the block device is handled by a separate I/O thread.  We head
1309
 * straight into the core of that thread here:
1310
 */
1311
static bool service_io(struct device *dev)
1312
{
1313
        struct vblk_info *vblk = dev->priv;
1314
        unsigned int head, out_num, in_num, wlen;
1315
        int ret;
1316
        struct virtio_blk_inhdr *in;
1317
        struct virtio_blk_outhdr *out;
1318
        struct iovec iov[dev->vq->vring.num];
1319
        off64_t off;
1320
 
1321
        /* See if there's a request waiting.  If not, nothing to do. */
1322
        head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1323
        if (head == dev->vq->vring.num)
1324
                return false;
1325
 
1326
        /* Every block request should contain at least one output buffer
1327
         * (detailing the location on disk and the type of request) and one
1328
         * input buffer (to hold the result). */
1329
        if (out_num == 0 || in_num == 0)
1330
                errx(1, "Bad virtblk cmd %u out=%u in=%u",
1331
                     head, out_num, in_num);
1332
 
1333
        out = convert(&iov[0], struct virtio_blk_outhdr);
1334
        in = convert(&iov[out_num+in_num-1], struct virtio_blk_inhdr);
1335
        off = out->sector * 512;
1336
 
1337
        /* The block device implements "barriers", where the Guest indicates
1338
         * that it wants all previous writes to occur before this write.  We
1339
         * don't have a way of asking our kernel to do a barrier, so we just
1340
         * synchronize all the data in the file.  Pretty poor, no? */
1341
        if (out->type & VIRTIO_BLK_T_BARRIER)
1342
                fdatasync(vblk->fd);
1343
 
1344
        /* In general the virtio block driver is allowed to try SCSI commands.
1345
         * It'd be nice if we supported eject, for example, but we don't. */
1346
        if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1347
                fprintf(stderr, "Scsi commands unsupported\n");
1348
                in->status = VIRTIO_BLK_S_UNSUPP;
1349
                wlen = sizeof(*in);
1350
        } else if (out->type & VIRTIO_BLK_T_OUT) {
1351
                /* Write */
1352
 
1353
                /* Move to the right location in the block file.  This can fail
1354
                 * if they try to write past end. */
1355
                if (lseek64(vblk->fd, off, SEEK_SET) != off)
1356
                        err(1, "Bad seek to sector %llu", out->sector);
1357
 
1358
                ret = writev(vblk->fd, iov+1, out_num-1);
1359
                verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1360
 
1361
                /* Grr... Now we know how long the descriptor they sent was, we
1362
                 * make sure they didn't try to write over the end of the block
1363
                 * file (possibly extending it). */
1364
                if (ret > 0 && off + ret > vblk->len) {
1365
                        /* Trim it back to the correct length */
1366
                        ftruncate64(vblk->fd, vblk->len);
1367
                        /* Die, bad Guest, die. */
1368
                        errx(1, "Write past end %llu+%u", off, ret);
1369
                }
1370
                wlen = sizeof(*in);
1371
                in->status = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1372
        } else {
1373
                /* Read */
1374
 
1375
                /* Move to the right location in the block file.  This can fail
1376
                 * if they try to read past end. */
1377
                if (lseek64(vblk->fd, off, SEEK_SET) != off)
1378
                        err(1, "Bad seek to sector %llu", out->sector);
1379
 
1380
                ret = readv(vblk->fd, iov+1, in_num-1);
1381
                verbose("READ from sector %llu: %i\n", out->sector, ret);
1382
                if (ret >= 0) {
1383
                        wlen = sizeof(*in) + ret;
1384
                        in->status = VIRTIO_BLK_S_OK;
1385
                } else {
1386
                        wlen = sizeof(*in);
1387
                        in->status = VIRTIO_BLK_S_IOERR;
1388
                }
1389
        }
1390
 
1391
        /* We can't trigger an IRQ, because we're not the Launcher.  It does
1392
         * that when we tell it we're done. */
1393
        add_used(dev->vq, head, wlen);
1394
        return true;
1395
}
1396
 
1397
/* This is the thread which actually services the I/O. */
1398
static int io_thread(void *_dev)
1399
{
1400
        struct device *dev = _dev;
1401
        struct vblk_info *vblk = dev->priv;
1402
        char c;
1403
 
1404
        /* Close other side of workpipe so we get 0 read when main dies. */
1405
        close(vblk->workpipe[1]);
1406
        /* Close the other side of the done_fd pipe. */
1407
        close(dev->fd);
1408
 
1409
        /* When this read fails, it means Launcher died, so we follow. */
1410
        while (read(vblk->workpipe[0], &c, 1) == 1) {
1411
                /* We acknowledge each request immediately to reduce latency,
1412
                 * rather than waiting until we've done them all.  I haven't
1413
                 * measured to see if it makes any difference. */
1414
                while (service_io(dev))
1415
                        write(vblk->done_fd, &c, 1);
1416
        }
1417
        return 0;
1418
}
1419
 
1420
/* Now we've seen the I/O thread, we return to the Launcher to see what happens
1421
 * when the thread tells us it's completed some I/O. */
1422
static bool handle_io_finish(int fd, struct device *dev)
1423
{
1424
        char c;
1425
 
1426
        /* If the I/O thread died, presumably it printed the error, so we
1427
         * simply exit. */
1428
        if (read(dev->fd, &c, 1) != 1)
1429
                exit(1);
1430
 
1431
        /* It did some work, so trigger the irq. */
1432
        trigger_irq(fd, dev->vq);
1433
        return true;
1434
}
1435
 
1436
/* When the Guest submits some I/O, we just need to wake the I/O thread. */
1437
static void handle_virtblk_output(int fd, struct virtqueue *vq)
1438
{
1439
        struct vblk_info *vblk = vq->dev->priv;
1440
        char c = 0;
1441
 
1442
        /* Wake up I/O thread and tell it to go to work! */
1443
        if (write(vblk->workpipe[1], &c, 1) != 1)
1444
                /* Presumably it indicated why it died. */
1445
                exit(1);
1446
}
1447
 
1448
/*L:198 This actually sets up a virtual block device. */
1449
static void setup_block_file(const char *filename)
1450
{
1451
        int p[2];
1452
        struct device *dev;
1453
        struct vblk_info *vblk;
1454
        void *stack;
1455
        u64 cap;
1456
        unsigned int val;
1457
 
1458
        /* This is the pipe the I/O thread will use to tell us I/O is done. */
1459
        pipe(p);
1460
 
1461
        /* The device responds to return from I/O thread. */
1462
        dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
1463
 
1464
        /* The device has one virtqueue, where the Guest places requests. */
1465
        add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
1466
 
1467
        /* Allocate the room for our own bookkeeping */
1468
        vblk = dev->priv = malloc(sizeof(*vblk));
1469
 
1470
        /* First we open the file and store the length. */
1471
        vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1472
        vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1473
 
1474
        /* Tell Guest how many sectors this device has. */
1475
        cap = cpu_to_le64(vblk->len / 512);
1476
        add_desc_field(dev, VIRTIO_CONFIG_BLK_F_CAPACITY, sizeof(cap), &cap);
1477
 
1478
        /* Tell Guest not to put in too many descriptors at once: two are used
1479
         * for the in and out elements. */
1480
        val = cpu_to_le32(VIRTQUEUE_NUM - 2);
1481
        add_desc_field(dev, VIRTIO_CONFIG_BLK_F_SEG_MAX, sizeof(val), &val);
1482
 
1483
        /* The I/O thread writes to this end of the pipe when done. */
1484
        vblk->done_fd = p[1];
1485
 
1486
        /* This is the second pipe, which is how we tell the I/O thread about
1487
         * more work. */
1488
        pipe(vblk->workpipe);
1489
 
1490
        /* Create stack for thread and run it */
1491
        stack = malloc(32768);
1492
        if (clone(io_thread, stack + 32768, CLONE_VM, dev) == -1)
1493
                err(1, "Creating clone");
1494
 
1495
        /* We don't need to keep the I/O thread's end of the pipes open. */
1496
        close(vblk->done_fd);
1497
        close(vblk->workpipe[0]);
1498
 
1499
        verbose("device %u: virtblock %llu sectors\n",
1500
                devices.device_num, cap);
1501
}
1502
/* That's the end of device setup. */
1503
 
1504
/*L:220 Finally we reach the core of the Launcher, which runs the Guest, serves
1505
 * its input and output, and finally, lays it to rest. */
1506
static void __attribute__((noreturn)) run_guest(int lguest_fd)
1507
{
1508
        for (;;) {
1509
                unsigned long args[] = { LHREQ_BREAK, 0 };
1510
                unsigned long notify_addr;
1511
                int readval;
1512
 
1513
                /* We read from the /dev/lguest device to run the Guest. */
1514
                readval = read(lguest_fd, &notify_addr, sizeof(notify_addr));
1515
 
1516
                /* One unsigned long means the Guest did HCALL_NOTIFY */
1517
                if (readval == sizeof(notify_addr)) {
1518
                        verbose("Notify on address %#lx\n", notify_addr);
1519
                        handle_output(lguest_fd, notify_addr);
1520
                        continue;
1521
                /* ENOENT means the Guest died.  Reading tells us why. */
1522
                } else if (errno == ENOENT) {
1523
                        char reason[1024] = { 0 };
1524
                        read(lguest_fd, reason, sizeof(reason)-1);
1525
                        errx(1, "%s", reason);
1526
                /* EAGAIN means the Waker wanted us to look at some input.
1527
                 * Anything else means a bug or incompatible change. */
1528
                } else if (errno != EAGAIN)
1529
                        err(1, "Running guest failed");
1530
 
1531
                /* Service input, then unset the BREAK to release the Waker. */
1532
                handle_input(lguest_fd);
1533
                if (write(lguest_fd, args, sizeof(args)) < 0)
1534
                        err(1, "Resetting break");
1535
        }
1536
}
1537
/*
1538
 * This is the end of the Launcher.  The good news: we are over halfway
1539
 * through!  The bad news: the most fiendish part of the code still lies ahead
1540
 * of us.
1541
 *
1542
 * Are you ready?  Take a deep breath and join me in the core of the Host, in
1543
 * "make Host".
1544
 :*/
1545
 
1546
static struct option opts[] = {
1547
        { "verbose", 0, NULL, 'v' },
1548
        { "tunnet", 1, NULL, 't' },
1549
        { "block", 1, NULL, 'b' },
1550
        { "initrd", 1, NULL, 'i' },
1551
        { NULL },
1552
};
1553
static void usage(void)
1554
{
1555
        errx(1, "Usage: lguest [--verbose] "
1556
             "[--tunnet=(<ipaddr>|bridge:<bridgename>)\n"
1557
             "|--block=<filename>|--initrd=<filename>]...\n"
1558
             "<mem-in-mb> vmlinux [args...]");
1559
}
1560
 
1561
/*L:105 The main routine is where the real work begins: */
1562
int main(int argc, char *argv[])
1563
{
1564
        /* Memory, top-level pagetable, code startpoint and size of the
1565
         * (optional) initrd. */
1566
        unsigned long mem = 0, pgdir, start, initrd_size = 0;
1567
        /* Two temporaries and the /dev/lguest file descriptor. */
1568
        int i, c, lguest_fd;
1569
        /* The boot information for the Guest. */
1570
        struct boot_params *boot;
1571
        /* If they specify an initrd file to load. */
1572
        const char *initrd_name = NULL;
1573
 
1574
        /* First we initialize the device list.  Since console and network
1575
         * device receive input from a file descriptor, we keep an fdset
1576
         * (infds) and the maximum fd number (max_infd) with the head of the
1577
         * list.  We also keep a pointer to the last device, for easy appending
1578
         * to the list.  Finally, we keep the next interrupt number to hand out
1579
         * (1: remember that 0 is used by the timer). */
1580
        FD_ZERO(&devices.infds);
1581
        devices.max_infd = -1;
1582
        devices.lastdev = &devices.dev;
1583
        devices.next_irq = 1;
1584
 
1585
        /* We need to know how much memory so we can set up the device
1586
         * descriptor and memory pages for the devices as we parse the command
1587
         * line.  So we quickly look through the arguments to find the amount
1588
         * of memory now. */
1589
        for (i = 1; i < argc; i++) {
1590
                if (argv[i][0] != '-') {
1591
                        mem = atoi(argv[i]) * 1024 * 1024;
1592
                        /* We start by mapping anonymous pages over all of
1593
                         * guest-physical memory range.  This fills it with 0,
1594
                         * and ensures that the Guest won't be killed when it
1595
                         * tries to access it. */
1596
                        guest_base = map_zeroed_pages(mem / getpagesize()
1597
                                                      + DEVICE_PAGES);
1598
                        guest_limit = mem;
1599
                        guest_max = mem + DEVICE_PAGES*getpagesize();
1600
                        devices.descpage = get_pages(1);
1601
                        break;
1602
                }
1603
        }
1604
 
1605
        /* The options are fairly straight-forward */
1606
        while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1607
                switch (c) {
1608
                case 'v':
1609
                        verbose = true;
1610
                        break;
1611
                case 't':
1612
                        setup_tun_net(optarg);
1613
                        break;
1614
                case 'b':
1615
                        setup_block_file(optarg);
1616
                        break;
1617
                case 'i':
1618
                        initrd_name = optarg;
1619
                        break;
1620
                default:
1621
                        warnx("Unknown argument %s", argv[optind]);
1622
                        usage();
1623
                }
1624
        }
1625
        /* After the other arguments we expect memory and kernel image name,
1626
         * followed by command line arguments for the kernel. */
1627
        if (optind + 2 > argc)
1628
                usage();
1629
 
1630
        verbose("Guest base is at %p\n", guest_base);
1631
 
1632
        /* We always have a console device */
1633
        setup_console();
1634
 
1635
        /* Now we load the kernel */
1636
        start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1637
 
1638
        /* Boot information is stashed at physical address 0 */
1639
        boot = from_guest_phys(0);
1640
 
1641
        /* Map the initrd image if requested (at top of physical memory) */
1642
        if (initrd_name) {
1643
                initrd_size = load_initrd(initrd_name, mem);
1644
                /* These are the location in the Linux boot header where the
1645
                 * start and size of the initrd are expected to be found. */
1646
                boot->hdr.ramdisk_image = mem - initrd_size;
1647
                boot->hdr.ramdisk_size = initrd_size;
1648
                /* The bootloader type 0xFF means "unknown"; that's OK. */
1649
                boot->hdr.type_of_loader = 0xFF;
1650
        }
1651
 
1652
        /* Set up the initial linear pagetables, starting below the initrd. */
1653
        pgdir = setup_pagetables(mem, initrd_size);
1654
 
1655
        /* The Linux boot header contains an "E820" memory map: ours is a
1656
         * simple, single region. */
1657
        boot->e820_entries = 1;
1658
        boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
1659
        /* The boot header contains a command line pointer: we put the command
1660
         * line after the boot header. */
1661
        boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
1662
        /* We use a simple helper to copy the arguments separated by spaces. */
1663
        concat((char *)(boot + 1), argv+optind+2);
1664
 
1665
        /* Boot protocol version: 2.07 supports the fields for lguest. */
1666
        boot->hdr.version = 0x207;
1667
 
1668
        /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
1669
        boot->hdr.hardware_subarch = 1;
1670
 
1671
        /* Tell the entry path not to try to reload segment registers. */
1672
        boot->hdr.loadflags |= KEEP_SEGMENTS;
1673
 
1674
        /* We tell the kernel to initialize the Guest: this returns the open
1675
         * /dev/lguest file descriptor. */
1676
        lguest_fd = tell_kernel(pgdir, start);
1677
 
1678
        /* We fork off a child process, which wakes the Launcher whenever one
1679
         * of the input file descriptors needs attention.  Otherwise we would
1680
         * run the Guest until it tries to output something. */
1681
        waker_fd = setup_waker(lguest_fd);
1682
 
1683
        /* Finally, run the Guest.  This doesn't return. */
1684
        run_guest(lguest_fd);
1685
}
1686
/*:*/
1687
 
1688
/*M:999
1689
 * Mastery is done: you now know everything I do.
1690
 *
1691
 * But surely you have seen code, features and bugs in your wanderings which
1692
 * you now yearn to attack?  That is the real game, and I look forward to you
1693
 * patching and forking lguest into the Your-Name-Here-visor.
1694
 *
1695
 * Farewell, and good coding!
1696
 * Rusty Russell.
1697
 */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.