OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [tags/] [linux-2.6/] [linux-2.6.24_or32_unified_v2.3/] [arch/] [parisc/] [mm/] [fault.c] - Blame information for rev 8

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/* $Id: fault.c,v 1.5 2000/01/26 16:20:29 jsm Exp $
2
 *
3
 * This file is subject to the terms and conditions of the GNU General Public
4
 * License.  See the file "COPYING" in the main directory of this archive
5
 * for more details.
6
 *
7
 *
8
 * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
9
 * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
10
 * Copyright 1999 Hewlett Packard Co.
11
 *
12
 */
13
 
14
#include <linux/mm.h>
15
#include <linux/ptrace.h>
16
#include <linux/sched.h>
17
#include <linux/interrupt.h>
18
#include <linux/module.h>
19
 
20
#include <asm/uaccess.h>
21
#include <asm/traps.h>
22
 
23
#define PRINT_USER_FAULTS /* (turn this on if you want user faults to be */
24
                         /*  dumped to the console via printk)          */
25
 
26
 
27
/* Various important other fields */
28
#define bit22set(x)             (x & 0x00000200)
29
#define bits23_25set(x)         (x & 0x000001c0)
30
#define isGraphicsFlushRead(x)  ((x & 0xfc003fdf) == 0x04001a80)
31
                                /* extended opcode is 0x6a */
32
 
33
#define BITSSET         0x1c0   /* for identifying LDCW */
34
 
35
 
36
DEFINE_PER_CPU(struct exception_data, exception_data);
37
 
38
/*
39
 * parisc_acctyp(unsigned int inst) --
40
 *    Given a PA-RISC memory access instruction, determine if the
41
 *    the instruction would perform a memory read or memory write
42
 *    operation.
43
 *
44
 *    This function assumes that the given instruction is a memory access
45
 *    instruction (i.e. you should really only call it if you know that
46
 *    the instruction has generated some sort of a memory access fault).
47
 *
48
 * Returns:
49
 *   VM_READ  if read operation
50
 *   VM_WRITE if write operation
51
 *   VM_EXEC  if execute operation
52
 */
53
static unsigned long
54
parisc_acctyp(unsigned long code, unsigned int inst)
55
{
56
        if (code == 6 || code == 16)
57
            return VM_EXEC;
58
 
59
        switch (inst & 0xf0000000) {
60
        case 0x40000000: /* load */
61
        case 0x50000000: /* new load */
62
                return VM_READ;
63
 
64
        case 0x60000000: /* store */
65
        case 0x70000000: /* new store */
66
                return VM_WRITE;
67
 
68
        case 0x20000000: /* coproc */
69
        case 0x30000000: /* coproc2 */
70
                if (bit22set(inst))
71
                        return VM_WRITE;
72
 
73
        case 0x0: /* indexed/memory management */
74
                if (bit22set(inst)) {
75
                        /*
76
                         * Check for the 'Graphics Flush Read' instruction.
77
                         * It resembles an FDC instruction, except for bits
78
                         * 20 and 21. Any combination other than zero will
79
                         * utilize the block mover functionality on some
80
                         * older PA-RISC platforms.  The case where a block
81
                         * move is performed from VM to graphics IO space
82
                         * should be treated as a READ.
83
                         *
84
                         * The significance of bits 20,21 in the FDC
85
                         * instruction is:
86
                         *
87
                         *   00  Flush data cache (normal instruction behavior)
88
                         *   01  Graphics flush write  (IO space -> VM)
89
                         *   10  Graphics flush read   (VM -> IO space)
90
                         *   11  Graphics flush read/write (VM <-> IO space)
91
                         */
92
                        if (isGraphicsFlushRead(inst))
93
                                return VM_READ;
94
                        return VM_WRITE;
95
                } else {
96
                        /*
97
                         * Check for LDCWX and LDCWS (semaphore instructions).
98
                         * If bits 23 through 25 are all 1's it is one of
99
                         * the above two instructions and is a write.
100
                         *
101
                         * Note: With the limited bits we are looking at,
102
                         * this will also catch PROBEW and PROBEWI. However,
103
                         * these should never get in here because they don't
104
                         * generate exceptions of the type:
105
                         *   Data TLB miss fault/data page fault
106
                         *   Data memory protection trap
107
                         */
108
                        if (bits23_25set(inst) == BITSSET)
109
                                return VM_WRITE;
110
                }
111
                return VM_READ; /* Default */
112
        }
113
        return VM_READ; /* Default */
114
}
115
 
116
#undef bit22set
117
#undef bits23_25set
118
#undef isGraphicsFlushRead
119
#undef BITSSET
120
 
121
 
122
#if 0
123
/* This is the treewalk to find a vma which is the highest that has
124
 * a start < addr.  We're using find_vma_prev instead right now, but
125
 * we might want to use this at some point in the future.  Probably
126
 * not, but I want it committed to CVS so I don't lose it :-)
127
 */
128
                        while (tree != vm_avl_empty) {
129
                                if (tree->vm_start > addr) {
130
                                        tree = tree->vm_avl_left;
131
                                } else {
132
                                        prev = tree;
133
                                        if (prev->vm_next == NULL)
134
                                                break;
135
                                        if (prev->vm_next->vm_start > addr)
136
                                                break;
137
                                        tree = tree->vm_avl_right;
138
                                }
139
                        }
140
#endif
141
 
142
void do_page_fault(struct pt_regs *regs, unsigned long code,
143
                              unsigned long address)
144
{
145
        struct vm_area_struct *vma, *prev_vma;
146
        struct task_struct *tsk = current;
147
        struct mm_struct *mm = tsk->mm;
148
        const struct exception_table_entry *fix;
149
        unsigned long acc_type;
150
        int fault;
151
 
152
        if (in_atomic() || !mm)
153
                goto no_context;
154
 
155
        down_read(&mm->mmap_sem);
156
        vma = find_vma_prev(mm, address, &prev_vma);
157
        if (!vma || address < vma->vm_start)
158
                goto check_expansion;
159
/*
160
 * Ok, we have a good vm_area for this memory access. We still need to
161
 * check the access permissions.
162
 */
163
 
164
good_area:
165
 
166
        acc_type = parisc_acctyp(code,regs->iir);
167
 
168
        if ((vma->vm_flags & acc_type) != acc_type)
169
                goto bad_area;
170
 
171
        /*
172
         * If for any reason at all we couldn't handle the fault, make
173
         * sure we exit gracefully rather than endlessly redo the
174
         * fault.
175
         */
176
 
177
        fault = handle_mm_fault(mm, vma, address, (acc_type & VM_WRITE) != 0);
178
        if (unlikely(fault & VM_FAULT_ERROR)) {
179
                /*
180
                 * We hit a shared mapping outside of the file, or some
181
                 * other thing happened to us that made us unable to
182
                 * handle the page fault gracefully.
183
                 */
184
                if (fault & VM_FAULT_OOM)
185
                        goto out_of_memory;
186
                else if (fault & VM_FAULT_SIGBUS)
187
                        goto bad_area;
188
                BUG();
189
        }
190
        if (fault & VM_FAULT_MAJOR)
191
                current->maj_flt++;
192
        else
193
                current->min_flt++;
194
        up_read(&mm->mmap_sem);
195
        return;
196
 
197
check_expansion:
198
        vma = prev_vma;
199
        if (vma && (expand_stack(vma, address) == 0))
200
                goto good_area;
201
 
202
/*
203
 * Something tried to access memory that isn't in our memory map..
204
 */
205
bad_area:
206
        up_read(&mm->mmap_sem);
207
 
208
        if (user_mode(regs)) {
209
                struct siginfo si;
210
 
211
#ifdef PRINT_USER_FAULTS
212
                printk(KERN_DEBUG "\n");
213
                printk(KERN_DEBUG "do_page_fault() pid=%d command='%s' type=%lu address=0x%08lx\n",
214
                    task_pid_nr(tsk), tsk->comm, code, address);
215
                if (vma) {
216
                        printk(KERN_DEBUG "vm_start = 0x%08lx, vm_end = 0x%08lx\n",
217
                                        vma->vm_start, vma->vm_end);
218
                }
219
                show_regs(regs);
220
#endif
221
                /* FIXME: actually we need to get the signo and code correct */
222
                si.si_signo = SIGSEGV;
223
                si.si_errno = 0;
224
                si.si_code = SEGV_MAPERR;
225
                si.si_addr = (void __user *) address;
226
                force_sig_info(SIGSEGV, &si, current);
227
                return;
228
        }
229
 
230
no_context:
231
 
232
        if (!user_mode(regs)) {
233
                fix = search_exception_tables(regs->iaoq[0]);
234
 
235
                if (fix) {
236
                        struct exception_data *d;
237
 
238
                        d = &__get_cpu_var(exception_data);
239
                        d->fault_ip = regs->iaoq[0];
240
                        d->fault_space = regs->isr;
241
                        d->fault_addr = regs->ior;
242
 
243
                        regs->iaoq[0] = ((fix->fixup) & ~3);
244
 
245
                        /*
246
                         * NOTE: In some cases the faulting instruction
247
                         * may be in the delay slot of a branch. We
248
                         * don't want to take the branch, so we don't
249
                         * increment iaoq[1], instead we set it to be
250
                         * iaoq[0]+4, and clear the B bit in the PSW
251
                         */
252
 
253
                        regs->iaoq[1] = regs->iaoq[0] + 4;
254
                        regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */
255
 
256
                        return;
257
                }
258
        }
259
 
260
        parisc_terminate("Bad Address (null pointer deref?)", regs, code, address);
261
 
262
  out_of_memory:
263
        up_read(&mm->mmap_sem);
264
        printk(KERN_CRIT "VM: killing process %s\n", current->comm);
265
        if (user_mode(regs))
266
                do_group_exit(SIGKILL);
267
        goto no_context;
268
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.