OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [tags/] [linux-2.6/] [linux-2.6.24_or32_unified_v2.3/] [kernel/] [time.c] - Blame information for rev 8

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/*
2
 *  linux/kernel/time.c
3
 *
4
 *  Copyright (C) 1991, 1992  Linus Torvalds
5
 *
6
 *  This file contains the interface functions for the various
7
 *  time related system calls: time, stime, gettimeofday, settimeofday,
8
 *                             adjtime
9
 */
10
/*
11
 * Modification history kernel/time.c
12
 *
13
 * 1993-09-02    Philip Gladstone
14
 *      Created file with time related functions from sched.c and adjtimex()
15
 * 1993-10-08    Torsten Duwe
16
 *      adjtime interface update and CMOS clock write code
17
 * 1995-08-13    Torsten Duwe
18
 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
19
 * 1999-01-16    Ulrich Windl
20
 *      Introduced error checking for many cases in adjtimex().
21
 *      Updated NTP code according to technical memorandum Jan '96
22
 *      "A Kernel Model for Precision Timekeeping" by Dave Mills
23
 *      Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24
 *      (Even though the technical memorandum forbids it)
25
 * 2004-07-14    Christoph Lameter
26
 *      Added getnstimeofday to allow the posix timer functions to return
27
 *      with nanosecond accuracy
28
 */
29
 
30
#include <linux/module.h>
31
#include <linux/timex.h>
32
#include <linux/capability.h>
33
#include <linux/clocksource.h>
34
#include <linux/errno.h>
35
#include <linux/syscalls.h>
36
#include <linux/security.h>
37
#include <linux/fs.h>
38
 
39
#include <asm/uaccess.h>
40
#include <asm/unistd.h>
41
 
42
/*
43
 * The timezone where the local system is located.  Used as a default by some
44
 * programs who obtain this value by using gettimeofday.
45
 */
46
struct timezone sys_tz;
47
 
48
EXPORT_SYMBOL(sys_tz);
49
 
50
#ifdef __ARCH_WANT_SYS_TIME
51
 
52
/*
53
 * sys_time() can be implemented in user-level using
54
 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
55
 * why not move it into the appropriate arch directory (for those
56
 * architectures that need it).
57
 */
58
asmlinkage long sys_time(time_t __user * tloc)
59
{
60
        time_t i = get_seconds();
61
 
62
        if (tloc) {
63
                if (put_user(i,tloc))
64
                        i = -EFAULT;
65
        }
66
        return i;
67
}
68
 
69
/*
70
 * sys_stime() can be implemented in user-level using
71
 * sys_settimeofday().  Is this for backwards compatibility?  If so,
72
 * why not move it into the appropriate arch directory (for those
73
 * architectures that need it).
74
 */
75
 
76
asmlinkage long sys_stime(time_t __user *tptr)
77
{
78
        struct timespec tv;
79
        int err;
80
 
81
        if (get_user(tv.tv_sec, tptr))
82
                return -EFAULT;
83
 
84
        tv.tv_nsec = 0;
85
 
86
        err = security_settime(&tv, NULL);
87
        if (err)
88
                return err;
89
 
90
        do_settimeofday(&tv);
91
        return 0;
92
}
93
 
94
#endif /* __ARCH_WANT_SYS_TIME */
95
 
96
asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
97
{
98
        if (likely(tv != NULL)) {
99
                struct timeval ktv;
100
                do_gettimeofday(&ktv);
101
                if (copy_to_user(tv, &ktv, sizeof(ktv)))
102
                        return -EFAULT;
103
        }
104
        if (unlikely(tz != NULL)) {
105
                if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
106
                        return -EFAULT;
107
        }
108
        return 0;
109
}
110
 
111
/*
112
 * Adjust the time obtained from the CMOS to be UTC time instead of
113
 * local time.
114
 *
115
 * This is ugly, but preferable to the alternatives.  Otherwise we
116
 * would either need to write a program to do it in /etc/rc (and risk
117
 * confusion if the program gets run more than once; it would also be
118
 * hard to make the program warp the clock precisely n hours)  or
119
 * compile in the timezone information into the kernel.  Bad, bad....
120
 *
121
 *                                              - TYT, 1992-01-01
122
 *
123
 * The best thing to do is to keep the CMOS clock in universal time (UTC)
124
 * as real UNIX machines always do it. This avoids all headaches about
125
 * daylight saving times and warping kernel clocks.
126
 */
127
static inline void warp_clock(void)
128
{
129
        write_seqlock_irq(&xtime_lock);
130
        wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
131
        xtime.tv_sec += sys_tz.tz_minuteswest * 60;
132
        write_sequnlock_irq(&xtime_lock);
133
        clock_was_set();
134
}
135
 
136
/*
137
 * In case for some reason the CMOS clock has not already been running
138
 * in UTC, but in some local time: The first time we set the timezone,
139
 * we will warp the clock so that it is ticking UTC time instead of
140
 * local time. Presumably, if someone is setting the timezone then we
141
 * are running in an environment where the programs understand about
142
 * timezones. This should be done at boot time in the /etc/rc script,
143
 * as soon as possible, so that the clock can be set right. Otherwise,
144
 * various programs will get confused when the clock gets warped.
145
 */
146
 
147
int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
148
{
149
        static int firsttime = 1;
150
        int error = 0;
151
 
152
        if (tv && !timespec_valid(tv))
153
                return -EINVAL;
154
 
155
        error = security_settime(tv, tz);
156
        if (error)
157
                return error;
158
 
159
        if (tz) {
160
                /* SMP safe, global irq locking makes it work. */
161
                sys_tz = *tz;
162
                update_vsyscall_tz();
163
                if (firsttime) {
164
                        firsttime = 0;
165
                        if (!tv)
166
                                warp_clock();
167
                }
168
        }
169
        if (tv)
170
        {
171
                /* SMP safe, again the code in arch/foo/time.c should
172
                 * globally block out interrupts when it runs.
173
                 */
174
                return do_settimeofday(tv);
175
        }
176
        return 0;
177
}
178
 
179
asmlinkage long sys_settimeofday(struct timeval __user *tv,
180
                                struct timezone __user *tz)
181
{
182
        struct timeval user_tv;
183
        struct timespec new_ts;
184
        struct timezone new_tz;
185
 
186
        if (tv) {
187
                if (copy_from_user(&user_tv, tv, sizeof(*tv)))
188
                        return -EFAULT;
189
                new_ts.tv_sec = user_tv.tv_sec;
190
                new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
191
        }
192
        if (tz) {
193
                if (copy_from_user(&new_tz, tz, sizeof(*tz)))
194
                        return -EFAULT;
195
        }
196
 
197
        return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
198
}
199
 
200
asmlinkage long sys_adjtimex(struct timex __user *txc_p)
201
{
202
        struct timex txc;               /* Local copy of parameter */
203
        int ret;
204
 
205
        /* Copy the user data space into the kernel copy
206
         * structure. But bear in mind that the structures
207
         * may change
208
         */
209
        if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
210
                return -EFAULT;
211
        ret = do_adjtimex(&txc);
212
        return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
213
}
214
 
215
/**
216
 * current_fs_time - Return FS time
217
 * @sb: Superblock.
218
 *
219
 * Return the current time truncated to the time granularity supported by
220
 * the fs.
221
 */
222
struct timespec current_fs_time(struct super_block *sb)
223
{
224
        struct timespec now = current_kernel_time();
225
        return timespec_trunc(now, sb->s_time_gran);
226
}
227
EXPORT_SYMBOL(current_fs_time);
228
 
229
/*
230
 * Convert jiffies to milliseconds and back.
231
 *
232
 * Avoid unnecessary multiplications/divisions in the
233
 * two most common HZ cases:
234
 */
235
unsigned int inline jiffies_to_msecs(const unsigned long j)
236
{
237
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
238
        return (MSEC_PER_SEC / HZ) * j;
239
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
240
        return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
241
#else
242
        return (j * MSEC_PER_SEC) / HZ;
243
#endif
244
}
245
EXPORT_SYMBOL(jiffies_to_msecs);
246
 
247
unsigned int inline jiffies_to_usecs(const unsigned long j)
248
{
249
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
250
        return (USEC_PER_SEC / HZ) * j;
251
#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
252
        return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
253
#else
254
        return (j * USEC_PER_SEC) / HZ;
255
#endif
256
}
257
EXPORT_SYMBOL(jiffies_to_usecs);
258
 
259
/**
260
 * timespec_trunc - Truncate timespec to a granularity
261
 * @t: Timespec
262
 * @gran: Granularity in ns.
263
 *
264
 * Truncate a timespec to a granularity. gran must be smaller than a second.
265
 * Always rounds down.
266
 *
267
 * This function should be only used for timestamps returned by
268
 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
269
 * it doesn't handle the better resolution of the later.
270
 */
271
struct timespec timespec_trunc(struct timespec t, unsigned gran)
272
{
273
        /*
274
         * Division is pretty slow so avoid it for common cases.
275
         * Currently current_kernel_time() never returns better than
276
         * jiffies resolution. Exploit that.
277
         */
278
        if (gran <= jiffies_to_usecs(1) * 1000) {
279
                /* nothing */
280
        } else if (gran == 1000000000) {
281
                t.tv_nsec = 0;
282
        } else {
283
                t.tv_nsec -= t.tv_nsec % gran;
284
        }
285
        return t;
286
}
287
EXPORT_SYMBOL(timespec_trunc);
288
 
289
#ifndef CONFIG_GENERIC_TIME
290
/*
291
 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
292
 * and therefore only yields usec accuracy
293
 */
294
void getnstimeofday(struct timespec *tv)
295
{
296
        struct timeval x;
297
 
298
        do_gettimeofday(&x);
299
        tv->tv_sec = x.tv_sec;
300
        tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
301
}
302
EXPORT_SYMBOL_GPL(getnstimeofday);
303
#endif
304
 
305
/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
306
 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
307
 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
308
 *
309
 * [For the Julian calendar (which was used in Russia before 1917,
310
 * Britain & colonies before 1752, anywhere else before 1582,
311
 * and is still in use by some communities) leave out the
312
 * -year/100+year/400 terms, and add 10.]
313
 *
314
 * This algorithm was first published by Gauss (I think).
315
 *
316
 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
317
 * machines were long is 32-bit! (However, as time_t is signed, we
318
 * will already get problems at other places on 2038-01-19 03:14:08)
319
 */
320
unsigned long
321
mktime(const unsigned int year0, const unsigned int mon0,
322
       const unsigned int day, const unsigned int hour,
323
       const unsigned int min, const unsigned int sec)
324
{
325
        unsigned int mon = mon0, year = year0;
326
 
327
        /* 1..12 -> 11,12,1..10 */
328
        if (0 >= (int) (mon -= 2)) {
329
                mon += 12;      /* Puts Feb last since it has leap day */
330
                year -= 1;
331
        }
332
 
333
        return ((((unsigned long)
334
                  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
335
                  year*365 - 719499
336
            )*24 + hour /* now have hours */
337
          )*60 + min /* now have minutes */
338
        )*60 + sec; /* finally seconds */
339
}
340
 
341
EXPORT_SYMBOL(mktime);
342
 
343
/**
344
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
345
 *
346
 * @ts:         pointer to timespec variable to be set
347
 * @sec:        seconds to set
348
 * @nsec:       nanoseconds to set
349
 *
350
 * Set seconds and nanoseconds field of a timespec variable and
351
 * normalize to the timespec storage format
352
 *
353
 * Note: The tv_nsec part is always in the range of
354
 *      0 <= tv_nsec < NSEC_PER_SEC
355
 * For negative values only the tv_sec field is negative !
356
 */
357
void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
358
{
359
        while (nsec >= NSEC_PER_SEC) {
360
                nsec -= NSEC_PER_SEC;
361
                ++sec;
362
        }
363
        while (nsec < 0) {
364
                nsec += NSEC_PER_SEC;
365
                --sec;
366
        }
367
        ts->tv_sec = sec;
368
        ts->tv_nsec = nsec;
369
}
370
 
371
/**
372
 * ns_to_timespec - Convert nanoseconds to timespec
373
 * @nsec:       the nanoseconds value to be converted
374
 *
375
 * Returns the timespec representation of the nsec parameter.
376
 */
377
struct timespec ns_to_timespec(const s64 nsec)
378
{
379
        struct timespec ts;
380
 
381
        if (!nsec)
382
                return (struct timespec) {0, 0};
383
 
384
        ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
385
        if (unlikely(nsec < 0))
386
                set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
387
 
388
        return ts;
389
}
390
EXPORT_SYMBOL(ns_to_timespec);
391
 
392
/**
393
 * ns_to_timeval - Convert nanoseconds to timeval
394
 * @nsec:       the nanoseconds value to be converted
395
 *
396
 * Returns the timeval representation of the nsec parameter.
397
 */
398
struct timeval ns_to_timeval(const s64 nsec)
399
{
400
        struct timespec ts = ns_to_timespec(nsec);
401
        struct timeval tv;
402
 
403
        tv.tv_sec = ts.tv_sec;
404
        tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
405
 
406
        return tv;
407
}
408
EXPORT_SYMBOL(ns_to_timeval);
409
 
410
/*
411
 * When we convert to jiffies then we interpret incoming values
412
 * the following way:
413
 *
414
 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
415
 *
416
 * - 'too large' values [that would result in larger than
417
 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
418
 *
419
 * - all other values are converted to jiffies by either multiplying
420
 *   the input value by a factor or dividing it with a factor
421
 *
422
 * We must also be careful about 32-bit overflows.
423
 */
424
unsigned long msecs_to_jiffies(const unsigned int m)
425
{
426
        /*
427
         * Negative value, means infinite timeout:
428
         */
429
        if ((int)m < 0)
430
                return MAX_JIFFY_OFFSET;
431
 
432
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
433
        /*
434
         * HZ is equal to or smaller than 1000, and 1000 is a nice
435
         * round multiple of HZ, divide with the factor between them,
436
         * but round upwards:
437
         */
438
        return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
439
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
440
        /*
441
         * HZ is larger than 1000, and HZ is a nice round multiple of
442
         * 1000 - simply multiply with the factor between them.
443
         *
444
         * But first make sure the multiplication result cannot
445
         * overflow:
446
         */
447
        if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
448
                return MAX_JIFFY_OFFSET;
449
 
450
        return m * (HZ / MSEC_PER_SEC);
451
#else
452
        /*
453
         * Generic case - multiply, round and divide. But first
454
         * check that if we are doing a net multiplication, that
455
         * we wouldnt overflow:
456
         */
457
        if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
458
                return MAX_JIFFY_OFFSET;
459
 
460
        return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
461
#endif
462
}
463
EXPORT_SYMBOL(msecs_to_jiffies);
464
 
465
unsigned long usecs_to_jiffies(const unsigned int u)
466
{
467
        if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
468
                return MAX_JIFFY_OFFSET;
469
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
470
        return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
471
#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
472
        return u * (HZ / USEC_PER_SEC);
473
#else
474
        return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
475
#endif
476
}
477
EXPORT_SYMBOL(usecs_to_jiffies);
478
 
479
/*
480
 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
481
 * that a remainder subtract here would not do the right thing as the
482
 * resolution values don't fall on second boundries.  I.e. the line:
483
 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
484
 *
485
 * Rather, we just shift the bits off the right.
486
 *
487
 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
488
 * value to a scaled second value.
489
 */
490
unsigned long
491
timespec_to_jiffies(const struct timespec *value)
492
{
493
        unsigned long sec = value->tv_sec;
494
        long nsec = value->tv_nsec + TICK_NSEC - 1;
495
 
496
        if (sec >= MAX_SEC_IN_JIFFIES){
497
                sec = MAX_SEC_IN_JIFFIES;
498
                nsec = 0;
499
        }
500
        return (((u64)sec * SEC_CONVERSION) +
501
                (((u64)nsec * NSEC_CONVERSION) >>
502
                 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
503
 
504
}
505
EXPORT_SYMBOL(timespec_to_jiffies);
506
 
507
void
508
jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
509
{
510
        /*
511
         * Convert jiffies to nanoseconds and separate with
512
         * one divide.
513
         */
514
        u64 nsec = (u64)jiffies * TICK_NSEC;
515
        value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
516
}
517
EXPORT_SYMBOL(jiffies_to_timespec);
518
 
519
/* Same for "timeval"
520
 *
521
 * Well, almost.  The problem here is that the real system resolution is
522
 * in nanoseconds and the value being converted is in micro seconds.
523
 * Also for some machines (those that use HZ = 1024, in-particular),
524
 * there is a LARGE error in the tick size in microseconds.
525
 
526
 * The solution we use is to do the rounding AFTER we convert the
527
 * microsecond part.  Thus the USEC_ROUND, the bits to be shifted off.
528
 * Instruction wise, this should cost only an additional add with carry
529
 * instruction above the way it was done above.
530
 */
531
unsigned long
532
timeval_to_jiffies(const struct timeval *value)
533
{
534
        unsigned long sec = value->tv_sec;
535
        long usec = value->tv_usec;
536
 
537
        if (sec >= MAX_SEC_IN_JIFFIES){
538
                sec = MAX_SEC_IN_JIFFIES;
539
                usec = 0;
540
        }
541
        return (((u64)sec * SEC_CONVERSION) +
542
                (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
543
                 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
544
}
545
EXPORT_SYMBOL(timeval_to_jiffies);
546
 
547
void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
548
{
549
        /*
550
         * Convert jiffies to nanoseconds and separate with
551
         * one divide.
552
         */
553
        u64 nsec = (u64)jiffies * TICK_NSEC;
554
        long tv_usec;
555
 
556
        value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
557
        tv_usec /= NSEC_PER_USEC;
558
        value->tv_usec = tv_usec;
559
}
560
EXPORT_SYMBOL(jiffies_to_timeval);
561
 
562
/*
563
 * Convert jiffies/jiffies_64 to clock_t and back.
564
 */
565
clock_t jiffies_to_clock_t(long x)
566
{
567
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
568
        return x / (HZ / USER_HZ);
569
#else
570
        u64 tmp = (u64)x * TICK_NSEC;
571
        do_div(tmp, (NSEC_PER_SEC / USER_HZ));
572
        return (long)tmp;
573
#endif
574
}
575
EXPORT_SYMBOL(jiffies_to_clock_t);
576
 
577
unsigned long clock_t_to_jiffies(unsigned long x)
578
{
579
#if (HZ % USER_HZ)==0
580
        if (x >= ~0UL / (HZ / USER_HZ))
581
                return ~0UL;
582
        return x * (HZ / USER_HZ);
583
#else
584
        u64 jif;
585
 
586
        /* Don't worry about loss of precision here .. */
587
        if (x >= ~0UL / HZ * USER_HZ)
588
                return ~0UL;
589
 
590
        /* .. but do try to contain it here */
591
        jif = x * (u64) HZ;
592
        do_div(jif, USER_HZ);
593
        return jif;
594
#endif
595
}
596
EXPORT_SYMBOL(clock_t_to_jiffies);
597
 
598
u64 jiffies_64_to_clock_t(u64 x)
599
{
600
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
601
        do_div(x, HZ / USER_HZ);
602
#else
603
        /*
604
         * There are better ways that don't overflow early,
605
         * but even this doesn't overflow in hundreds of years
606
         * in 64 bits, so..
607
         */
608
        x *= TICK_NSEC;
609
        do_div(x, (NSEC_PER_SEC / USER_HZ));
610
#endif
611
        return x;
612
}
613
 
614
EXPORT_SYMBOL(jiffies_64_to_clock_t);
615
 
616
u64 nsec_to_clock_t(u64 x)
617
{
618
#if (NSEC_PER_SEC % USER_HZ) == 0
619
        do_div(x, (NSEC_PER_SEC / USER_HZ));
620
#elif (USER_HZ % 512) == 0
621
        x *= USER_HZ/512;
622
        do_div(x, (NSEC_PER_SEC / 512));
623
#else
624
        /*
625
         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
626
         * overflow after 64.99 years.
627
         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
628
         */
629
        x *= 9;
630
        do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
631
                                  USER_HZ));
632
#endif
633
        return x;
634
}
635
 
636
#if (BITS_PER_LONG < 64)
637
u64 get_jiffies_64(void)
638
{
639
        unsigned long seq;
640
        u64 ret;
641
 
642
        do {
643
                seq = read_seqbegin(&xtime_lock);
644
                ret = jiffies_64;
645
        } while (read_seqretry(&xtime_lock, seq));
646
        return ret;
647
}
648
 
649
EXPORT_SYMBOL(get_jiffies_64);
650
#endif
651
 
652
EXPORT_SYMBOL(jiffies);

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.