OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [tags/] [linux-2.6/] [linux-2.6.24_orig/] [kernel/] [hrtimer.c] - Blame information for rev 8

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/*
2
 *  linux/kernel/hrtimer.c
3
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7
 *
8
 *  High-resolution kernel timers
9
 *
10
 *  In contrast to the low-resolution timeout API implemented in
11
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12
 *  depending on system configuration and capabilities.
13
 *
14
 *  These timers are currently used for:
15
 *   - itimers
16
 *   - POSIX timers
17
 *   - nanosleep
18
 *   - precise in-kernel timing
19
 *
20
 *  Started by: Thomas Gleixner and Ingo Molnar
21
 *
22
 *  Credits:
23
 *      based on kernel/timer.c
24
 *
25
 *      Help, testing, suggestions, bugfixes, improvements were
26
 *      provided by:
27
 *
28
 *      George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29
 *      et. al.
30
 *
31
 *  For licencing details see kernel-base/COPYING
32
 */
33
 
34
#include <linux/cpu.h>
35
#include <linux/irq.h>
36
#include <linux/module.h>
37
#include <linux/percpu.h>
38
#include <linux/hrtimer.h>
39
#include <linux/notifier.h>
40
#include <linux/syscalls.h>
41
#include <linux/kallsyms.h>
42
#include <linux/interrupt.h>
43
#include <linux/tick.h>
44
#include <linux/seq_file.h>
45
#include <linux/err.h>
46
 
47
#include <asm/uaccess.h>
48
 
49
/**
50
 * ktime_get - get the monotonic time in ktime_t format
51
 *
52
 * returns the time in ktime_t format
53
 */
54
ktime_t ktime_get(void)
55
{
56
        struct timespec now;
57
 
58
        ktime_get_ts(&now);
59
 
60
        return timespec_to_ktime(now);
61
}
62
EXPORT_SYMBOL_GPL(ktime_get);
63
 
64
/**
65
 * ktime_get_real - get the real (wall-) time in ktime_t format
66
 *
67
 * returns the time in ktime_t format
68
 */
69
ktime_t ktime_get_real(void)
70
{
71
        struct timespec now;
72
 
73
        getnstimeofday(&now);
74
 
75
        return timespec_to_ktime(now);
76
}
77
 
78
EXPORT_SYMBOL_GPL(ktime_get_real);
79
 
80
/*
81
 * The timer bases:
82
 *
83
 * Note: If we want to add new timer bases, we have to skip the two
84
 * clock ids captured by the cpu-timers. We do this by holding empty
85
 * entries rather than doing math adjustment of the clock ids.
86
 * This ensures that we capture erroneous accesses to these clock ids
87
 * rather than moving them into the range of valid clock id's.
88
 */
89
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
90
{
91
 
92
        .clock_base =
93
        {
94
                {
95
                        .index = CLOCK_REALTIME,
96
                        .get_time = &ktime_get_real,
97
                        .resolution = KTIME_LOW_RES,
98
                },
99
                {
100
                        .index = CLOCK_MONOTONIC,
101
                        .get_time = &ktime_get,
102
                        .resolution = KTIME_LOW_RES,
103
                },
104
        }
105
};
106
 
107
/**
108
 * ktime_get_ts - get the monotonic clock in timespec format
109
 * @ts:         pointer to timespec variable
110
 *
111
 * The function calculates the monotonic clock from the realtime
112
 * clock and the wall_to_monotonic offset and stores the result
113
 * in normalized timespec format in the variable pointed to by @ts.
114
 */
115
void ktime_get_ts(struct timespec *ts)
116
{
117
        struct timespec tomono;
118
        unsigned long seq;
119
 
120
        do {
121
                seq = read_seqbegin(&xtime_lock);
122
                getnstimeofday(ts);
123
                tomono = wall_to_monotonic;
124
 
125
        } while (read_seqretry(&xtime_lock, seq));
126
 
127
        set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
128
                                ts->tv_nsec + tomono.tv_nsec);
129
}
130
EXPORT_SYMBOL_GPL(ktime_get_ts);
131
 
132
/*
133
 * Get the coarse grained time at the softirq based on xtime and
134
 * wall_to_monotonic.
135
 */
136
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
137
{
138
        ktime_t xtim, tomono;
139
        struct timespec xts, tom;
140
        unsigned long seq;
141
 
142
        do {
143
                seq = read_seqbegin(&xtime_lock);
144
                xts = current_kernel_time();
145
                tom = wall_to_monotonic;
146
        } while (read_seqretry(&xtime_lock, seq));
147
 
148
        xtim = timespec_to_ktime(xts);
149
        tomono = timespec_to_ktime(tom);
150
        base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
151
        base->clock_base[CLOCK_MONOTONIC].softirq_time =
152
                ktime_add(xtim, tomono);
153
}
154
 
155
/*
156
 * Helper function to check, whether the timer is running the callback
157
 * function
158
 */
159
static inline int hrtimer_callback_running(struct hrtimer *timer)
160
{
161
        return timer->state & HRTIMER_STATE_CALLBACK;
162
}
163
 
164
/*
165
 * Functions and macros which are different for UP/SMP systems are kept in a
166
 * single place
167
 */
168
#ifdef CONFIG_SMP
169
 
170
/*
171
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
172
 * means that all timers which are tied to this base via timer->base are
173
 * locked, and the base itself is locked too.
174
 *
175
 * So __run_timers/migrate_timers can safely modify all timers which could
176
 * be found on the lists/queues.
177
 *
178
 * When the timer's base is locked, and the timer removed from list, it is
179
 * possible to set timer->base = NULL and drop the lock: the timer remains
180
 * locked.
181
 */
182
static
183
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
184
                                             unsigned long *flags)
185
{
186
        struct hrtimer_clock_base *base;
187
 
188
        for (;;) {
189
                base = timer->base;
190
                if (likely(base != NULL)) {
191
                        spin_lock_irqsave(&base->cpu_base->lock, *flags);
192
                        if (likely(base == timer->base))
193
                                return base;
194
                        /* The timer has migrated to another CPU: */
195
                        spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
196
                }
197
                cpu_relax();
198
        }
199
}
200
 
201
/*
202
 * Switch the timer base to the current CPU when possible.
203
 */
204
static inline struct hrtimer_clock_base *
205
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
206
{
207
        struct hrtimer_clock_base *new_base;
208
        struct hrtimer_cpu_base *new_cpu_base;
209
 
210
        new_cpu_base = &__get_cpu_var(hrtimer_bases);
211
        new_base = &new_cpu_base->clock_base[base->index];
212
 
213
        if (base != new_base) {
214
                /*
215
                 * We are trying to schedule the timer on the local CPU.
216
                 * However we can't change timer's base while it is running,
217
                 * so we keep it on the same CPU. No hassle vs. reprogramming
218
                 * the event source in the high resolution case. The softirq
219
                 * code will take care of this when the timer function has
220
                 * completed. There is no conflict as we hold the lock until
221
                 * the timer is enqueued.
222
                 */
223
                if (unlikely(hrtimer_callback_running(timer)))
224
                        return base;
225
 
226
                /* See the comment in lock_timer_base() */
227
                timer->base = NULL;
228
                spin_unlock(&base->cpu_base->lock);
229
                spin_lock(&new_base->cpu_base->lock);
230
                timer->base = new_base;
231
        }
232
        return new_base;
233
}
234
 
235
#else /* CONFIG_SMP */
236
 
237
static inline struct hrtimer_clock_base *
238
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
239
{
240
        struct hrtimer_clock_base *base = timer->base;
241
 
242
        spin_lock_irqsave(&base->cpu_base->lock, *flags);
243
 
244
        return base;
245
}
246
 
247
# define switch_hrtimer_base(t, b)      (b)
248
 
249
#endif  /* !CONFIG_SMP */
250
 
251
/*
252
 * Functions for the union type storage format of ktime_t which are
253
 * too large for inlining:
254
 */
255
#if BITS_PER_LONG < 64
256
# ifndef CONFIG_KTIME_SCALAR
257
/**
258
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
259
 * @kt:         addend
260
 * @nsec:       the scalar nsec value to add
261
 *
262
 * Returns the sum of kt and nsec in ktime_t format
263
 */
264
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
265
{
266
        ktime_t tmp;
267
 
268
        if (likely(nsec < NSEC_PER_SEC)) {
269
                tmp.tv64 = nsec;
270
        } else {
271
                unsigned long rem = do_div(nsec, NSEC_PER_SEC);
272
 
273
                tmp = ktime_set((long)nsec, rem);
274
        }
275
 
276
        return ktime_add(kt, tmp);
277
}
278
 
279
EXPORT_SYMBOL_GPL(ktime_add_ns);
280
 
281
/**
282
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
283
 * @kt:         minuend
284
 * @nsec:       the scalar nsec value to subtract
285
 *
286
 * Returns the subtraction of @nsec from @kt in ktime_t format
287
 */
288
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
289
{
290
        ktime_t tmp;
291
 
292
        if (likely(nsec < NSEC_PER_SEC)) {
293
                tmp.tv64 = nsec;
294
        } else {
295
                unsigned long rem = do_div(nsec, NSEC_PER_SEC);
296
 
297
                tmp = ktime_set((long)nsec, rem);
298
        }
299
 
300
        return ktime_sub(kt, tmp);
301
}
302
 
303
EXPORT_SYMBOL_GPL(ktime_sub_ns);
304
# endif /* !CONFIG_KTIME_SCALAR */
305
 
306
/*
307
 * Divide a ktime value by a nanosecond value
308
 */
309
unsigned long ktime_divns(const ktime_t kt, s64 div)
310
{
311
        u64 dclc, inc, dns;
312
        int sft = 0;
313
 
314
        dclc = dns = ktime_to_ns(kt);
315
        inc = div;
316
        /* Make sure the divisor is less than 2^32: */
317
        while (div >> 32) {
318
                sft++;
319
                div >>= 1;
320
        }
321
        dclc >>= sft;
322
        do_div(dclc, (unsigned long) div);
323
 
324
        return (unsigned long) dclc;
325
}
326
#endif /* BITS_PER_LONG >= 64 */
327
 
328
/* High resolution timer related functions */
329
#ifdef CONFIG_HIGH_RES_TIMERS
330
 
331
/*
332
 * High resolution timer enabled ?
333
 */
334
static int hrtimer_hres_enabled __read_mostly  = 1;
335
 
336
/*
337
 * Enable / Disable high resolution mode
338
 */
339
static int __init setup_hrtimer_hres(char *str)
340
{
341
        if (!strcmp(str, "off"))
342
                hrtimer_hres_enabled = 0;
343
        else if (!strcmp(str, "on"))
344
                hrtimer_hres_enabled = 1;
345
        else
346
                return 0;
347
        return 1;
348
}
349
 
350
__setup("highres=", setup_hrtimer_hres);
351
 
352
/*
353
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
354
 */
355
static inline int hrtimer_is_hres_enabled(void)
356
{
357
        return hrtimer_hres_enabled;
358
}
359
 
360
/*
361
 * Is the high resolution mode active ?
362
 */
363
static inline int hrtimer_hres_active(void)
364
{
365
        return __get_cpu_var(hrtimer_bases).hres_active;
366
}
367
 
368
/*
369
 * Reprogram the event source with checking both queues for the
370
 * next event
371
 * Called with interrupts disabled and base->lock held
372
 */
373
static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
374
{
375
        int i;
376
        struct hrtimer_clock_base *base = cpu_base->clock_base;
377
        ktime_t expires;
378
 
379
        cpu_base->expires_next.tv64 = KTIME_MAX;
380
 
381
        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
382
                struct hrtimer *timer;
383
 
384
                if (!base->first)
385
                        continue;
386
                timer = rb_entry(base->first, struct hrtimer, node);
387
                expires = ktime_sub(timer->expires, base->offset);
388
                if (expires.tv64 < cpu_base->expires_next.tv64)
389
                        cpu_base->expires_next = expires;
390
        }
391
 
392
        if (cpu_base->expires_next.tv64 != KTIME_MAX)
393
                tick_program_event(cpu_base->expires_next, 1);
394
}
395
 
396
/*
397
 * Shared reprogramming for clock_realtime and clock_monotonic
398
 *
399
 * When a timer is enqueued and expires earlier than the already enqueued
400
 * timers, we have to check, whether it expires earlier than the timer for
401
 * which the clock event device was armed.
402
 *
403
 * Called with interrupts disabled and base->cpu_base.lock held
404
 */
405
static int hrtimer_reprogram(struct hrtimer *timer,
406
                             struct hrtimer_clock_base *base)
407
{
408
        ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
409
        ktime_t expires = ktime_sub(timer->expires, base->offset);
410
        int res;
411
 
412
        /*
413
         * When the callback is running, we do not reprogram the clock event
414
         * device. The timer callback is either running on a different CPU or
415
         * the callback is executed in the hrtimer_interrupt context. The
416
         * reprogramming is handled either by the softirq, which called the
417
         * callback or at the end of the hrtimer_interrupt.
418
         */
419
        if (hrtimer_callback_running(timer))
420
                return 0;
421
 
422
        if (expires.tv64 >= expires_next->tv64)
423
                return 0;
424
 
425
        /*
426
         * Clockevents returns -ETIME, when the event was in the past.
427
         */
428
        res = tick_program_event(expires, 0);
429
        if (!IS_ERR_VALUE(res))
430
                *expires_next = expires;
431
        return res;
432
}
433
 
434
 
435
/*
436
 * Retrigger next event is called after clock was set
437
 *
438
 * Called with interrupts disabled via on_each_cpu()
439
 */
440
static void retrigger_next_event(void *arg)
441
{
442
        struct hrtimer_cpu_base *base;
443
        struct timespec realtime_offset;
444
        unsigned long seq;
445
 
446
        if (!hrtimer_hres_active())
447
                return;
448
 
449
        do {
450
                seq = read_seqbegin(&xtime_lock);
451
                set_normalized_timespec(&realtime_offset,
452
                                        -wall_to_monotonic.tv_sec,
453
                                        -wall_to_monotonic.tv_nsec);
454
        } while (read_seqretry(&xtime_lock, seq));
455
 
456
        base = &__get_cpu_var(hrtimer_bases);
457
 
458
        /* Adjust CLOCK_REALTIME offset */
459
        spin_lock(&base->lock);
460
        base->clock_base[CLOCK_REALTIME].offset =
461
                timespec_to_ktime(realtime_offset);
462
 
463
        hrtimer_force_reprogram(base);
464
        spin_unlock(&base->lock);
465
}
466
 
467
/*
468
 * Clock realtime was set
469
 *
470
 * Change the offset of the realtime clock vs. the monotonic
471
 * clock.
472
 *
473
 * We might have to reprogram the high resolution timer interrupt. On
474
 * SMP we call the architecture specific code to retrigger _all_ high
475
 * resolution timer interrupts. On UP we just disable interrupts and
476
 * call the high resolution interrupt code.
477
 */
478
void clock_was_set(void)
479
{
480
        /* Retrigger the CPU local events everywhere */
481
        on_each_cpu(retrigger_next_event, NULL, 0, 1);
482
}
483
 
484
/*
485
 * During resume we might have to reprogram the high resolution timer
486
 * interrupt (on the local CPU):
487
 */
488
void hres_timers_resume(void)
489
{
490
        WARN_ON_ONCE(num_online_cpus() > 1);
491
 
492
        /* Retrigger the CPU local events: */
493
        retrigger_next_event(NULL);
494
}
495
 
496
/*
497
 * Check, whether the timer is on the callback pending list
498
 */
499
static inline int hrtimer_cb_pending(const struct hrtimer *timer)
500
{
501
        return timer->state & HRTIMER_STATE_PENDING;
502
}
503
 
504
/*
505
 * Remove a timer from the callback pending list
506
 */
507
static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
508
{
509
        list_del_init(&timer->cb_entry);
510
}
511
 
512
/*
513
 * Initialize the high resolution related parts of cpu_base
514
 */
515
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
516
{
517
        base->expires_next.tv64 = KTIME_MAX;
518
        base->hres_active = 0;
519
        INIT_LIST_HEAD(&base->cb_pending);
520
}
521
 
522
/*
523
 * Initialize the high resolution related parts of a hrtimer
524
 */
525
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
526
{
527
        INIT_LIST_HEAD(&timer->cb_entry);
528
}
529
 
530
/*
531
 * When High resolution timers are active, try to reprogram. Note, that in case
532
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
533
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
534
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
535
 */
536
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
537
                                            struct hrtimer_clock_base *base)
538
{
539
        if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
540
 
541
                /* Timer is expired, act upon the callback mode */
542
                switch(timer->cb_mode) {
543
                case HRTIMER_CB_IRQSAFE_NO_RESTART:
544
                        /*
545
                         * We can call the callback from here. No restart
546
                         * happens, so no danger of recursion
547
                         */
548
                        BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
549
                        return 1;
550
                case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
551
                        /*
552
                         * This is solely for the sched tick emulation with
553
                         * dynamic tick support to ensure that we do not
554
                         * restart the tick right on the edge and end up with
555
                         * the tick timer in the softirq ! The calling site
556
                         * takes care of this.
557
                         */
558
                        return 1;
559
                case HRTIMER_CB_IRQSAFE:
560
                case HRTIMER_CB_SOFTIRQ:
561
                        /*
562
                         * Move everything else into the softirq pending list !
563
                         */
564
                        list_add_tail(&timer->cb_entry,
565
                                      &base->cpu_base->cb_pending);
566
                        timer->state = HRTIMER_STATE_PENDING;
567
                        raise_softirq(HRTIMER_SOFTIRQ);
568
                        return 1;
569
                default:
570
                        BUG();
571
                }
572
        }
573
        return 0;
574
}
575
 
576
/*
577
 * Switch to high resolution mode
578
 */
579
static int hrtimer_switch_to_hres(void)
580
{
581
        int cpu = smp_processor_id();
582
        struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
583
        unsigned long flags;
584
 
585
        if (base->hres_active)
586
                return 1;
587
 
588
        local_irq_save(flags);
589
 
590
        if (tick_init_highres()) {
591
                local_irq_restore(flags);
592
                printk(KERN_WARNING "Could not switch to high resolution "
593
                                    "mode on CPU %d\n", cpu);
594
                return 0;
595
        }
596
        base->hres_active = 1;
597
        base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
598
        base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
599
 
600
        tick_setup_sched_timer();
601
 
602
        /* "Retrigger" the interrupt to get things going */
603
        retrigger_next_event(NULL);
604
        local_irq_restore(flags);
605
        printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
606
               smp_processor_id());
607
        return 1;
608
}
609
 
610
#else
611
 
612
static inline int hrtimer_hres_active(void) { return 0; }
613
static inline int hrtimer_is_hres_enabled(void) { return 0; }
614
static inline int hrtimer_switch_to_hres(void) { return 0; }
615
static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
616
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
617
                                            struct hrtimer_clock_base *base)
618
{
619
        return 0;
620
}
621
static inline int hrtimer_cb_pending(struct hrtimer *timer) { return 0; }
622
static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) { }
623
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
624
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
625
 
626
#endif /* CONFIG_HIGH_RES_TIMERS */
627
 
628
#ifdef CONFIG_TIMER_STATS
629
void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
630
{
631
        if (timer->start_site)
632
                return;
633
 
634
        timer->start_site = addr;
635
        memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
636
        timer->start_pid = current->pid;
637
}
638
#endif
639
 
640
/*
641
 * Counterpart to lock_hrtimer_base above:
642
 */
643
static inline
644
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
645
{
646
        spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
647
}
648
 
649
/**
650
 * hrtimer_forward - forward the timer expiry
651
 * @timer:      hrtimer to forward
652
 * @now:        forward past this time
653
 * @interval:   the interval to forward
654
 *
655
 * Forward the timer expiry so it will expire in the future.
656
 * Returns the number of overruns.
657
 */
658
unsigned long
659
hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
660
{
661
        unsigned long orun = 1;
662
        ktime_t delta;
663
 
664
        delta = ktime_sub(now, timer->expires);
665
 
666
        if (delta.tv64 < 0)
667
                return 0;
668
 
669
        if (interval.tv64 < timer->base->resolution.tv64)
670
                interval.tv64 = timer->base->resolution.tv64;
671
 
672
        if (unlikely(delta.tv64 >= interval.tv64)) {
673
                s64 incr = ktime_to_ns(interval);
674
 
675
                orun = ktime_divns(delta, incr);
676
                timer->expires = ktime_add_ns(timer->expires, incr * orun);
677
                if (timer->expires.tv64 > now.tv64)
678
                        return orun;
679
                /*
680
                 * This (and the ktime_add() below) is the
681
                 * correction for exact:
682
                 */
683
                orun++;
684
        }
685
        timer->expires = ktime_add(timer->expires, interval);
686
        /*
687
         * Make sure, that the result did not wrap with a very large
688
         * interval.
689
         */
690
        if (timer->expires.tv64 < 0)
691
                timer->expires = ktime_set(KTIME_SEC_MAX, 0);
692
 
693
        return orun;
694
}
695
EXPORT_SYMBOL_GPL(hrtimer_forward);
696
 
697
/*
698
 * enqueue_hrtimer - internal function to (re)start a timer
699
 *
700
 * The timer is inserted in expiry order. Insertion into the
701
 * red black tree is O(log(n)). Must hold the base lock.
702
 */
703
static void enqueue_hrtimer(struct hrtimer *timer,
704
                            struct hrtimer_clock_base *base, int reprogram)
705
{
706
        struct rb_node **link = &base->active.rb_node;
707
        struct rb_node *parent = NULL;
708
        struct hrtimer *entry;
709
        int leftmost = 1;
710
 
711
        /*
712
         * Find the right place in the rbtree:
713
         */
714
        while (*link) {
715
                parent = *link;
716
                entry = rb_entry(parent, struct hrtimer, node);
717
                /*
718
                 * We dont care about collisions. Nodes with
719
                 * the same expiry time stay together.
720
                 */
721
                if (timer->expires.tv64 < entry->expires.tv64) {
722
                        link = &(*link)->rb_left;
723
                } else {
724
                        link = &(*link)->rb_right;
725
                        leftmost = 0;
726
                }
727
        }
728
 
729
        /*
730
         * Insert the timer to the rbtree and check whether it
731
         * replaces the first pending timer
732
         */
733
        if (leftmost) {
734
                /*
735
                 * Reprogram the clock event device. When the timer is already
736
                 * expired hrtimer_enqueue_reprogram has either called the
737
                 * callback or added it to the pending list and raised the
738
                 * softirq.
739
                 *
740
                 * This is a NOP for !HIGHRES
741
                 */
742
                if (reprogram && hrtimer_enqueue_reprogram(timer, base))
743
                        return;
744
 
745
                base->first = &timer->node;
746
        }
747
 
748
        rb_link_node(&timer->node, parent, link);
749
        rb_insert_color(&timer->node, &base->active);
750
        /*
751
         * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
752
         * state of a possibly running callback.
753
         */
754
        timer->state |= HRTIMER_STATE_ENQUEUED;
755
}
756
 
757
/*
758
 * __remove_hrtimer - internal function to remove a timer
759
 *
760
 * Caller must hold the base lock.
761
 *
762
 * High resolution timer mode reprograms the clock event device when the
763
 * timer is the one which expires next. The caller can disable this by setting
764
 * reprogram to zero. This is useful, when the context does a reprogramming
765
 * anyway (e.g. timer interrupt)
766
 */
767
static void __remove_hrtimer(struct hrtimer *timer,
768
                             struct hrtimer_clock_base *base,
769
                             unsigned long newstate, int reprogram)
770
{
771
        /* High res. callback list. NOP for !HIGHRES */
772
        if (hrtimer_cb_pending(timer))
773
                hrtimer_remove_cb_pending(timer);
774
        else {
775
                /*
776
                 * Remove the timer from the rbtree and replace the
777
                 * first entry pointer if necessary.
778
                 */
779
                if (base->first == &timer->node) {
780
                        base->first = rb_next(&timer->node);
781
                        /* Reprogram the clock event device. if enabled */
782
                        if (reprogram && hrtimer_hres_active())
783
                                hrtimer_force_reprogram(base->cpu_base);
784
                }
785
                rb_erase(&timer->node, &base->active);
786
        }
787
        timer->state = newstate;
788
}
789
 
790
/*
791
 * remove hrtimer, called with base lock held
792
 */
793
static inline int
794
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
795
{
796
        if (hrtimer_is_queued(timer)) {
797
                int reprogram;
798
 
799
                /*
800
                 * Remove the timer and force reprogramming when high
801
                 * resolution mode is active and the timer is on the current
802
                 * CPU. If we remove a timer on another CPU, reprogramming is
803
                 * skipped. The interrupt event on this CPU is fired and
804
                 * reprogramming happens in the interrupt handler. This is a
805
                 * rare case and less expensive than a smp call.
806
                 */
807
                timer_stats_hrtimer_clear_start_info(timer);
808
                reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
809
                __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
810
                                 reprogram);
811
                return 1;
812
        }
813
        return 0;
814
}
815
 
816
/**
817
 * hrtimer_start - (re)start an relative timer on the current CPU
818
 * @timer:      the timer to be added
819
 * @tim:        expiry time
820
 * @mode:       expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
821
 *
822
 * Returns:
823
 *  0 on success
824
 *  1 when the timer was active
825
 */
826
int
827
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
828
{
829
        struct hrtimer_clock_base *base, *new_base;
830
        unsigned long flags;
831
        int ret;
832
 
833
        base = lock_hrtimer_base(timer, &flags);
834
 
835
        /* Remove an active timer from the queue: */
836
        ret = remove_hrtimer(timer, base);
837
 
838
        /* Switch the timer base, if necessary: */
839
        new_base = switch_hrtimer_base(timer, base);
840
 
841
        if (mode == HRTIMER_MODE_REL) {
842
                tim = ktime_add(tim, new_base->get_time());
843
                /*
844
                 * CONFIG_TIME_LOW_RES is a temporary way for architectures
845
                 * to signal that they simply return xtime in
846
                 * do_gettimeoffset(). In this case we want to round up by
847
                 * resolution when starting a relative timer, to avoid short
848
                 * timeouts. This will go away with the GTOD framework.
849
                 */
850
#ifdef CONFIG_TIME_LOW_RES
851
                tim = ktime_add(tim, base->resolution);
852
#endif
853
                /*
854
                 * Careful here: User space might have asked for a
855
                 * very long sleep, so the add above might result in a
856
                 * negative number, which enqueues the timer in front
857
                 * of the queue.
858
                 */
859
                if (tim.tv64 < 0)
860
                        tim.tv64 = KTIME_MAX;
861
        }
862
        timer->expires = tim;
863
 
864
        timer_stats_hrtimer_set_start_info(timer);
865
 
866
        /*
867
         * Only allow reprogramming if the new base is on this CPU.
868
         * (it might still be on another CPU if the timer was pending)
869
         */
870
        enqueue_hrtimer(timer, new_base,
871
                        new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
872
 
873
        unlock_hrtimer_base(timer, &flags);
874
 
875
        return ret;
876
}
877
EXPORT_SYMBOL_GPL(hrtimer_start);
878
 
879
/**
880
 * hrtimer_try_to_cancel - try to deactivate a timer
881
 * @timer:      hrtimer to stop
882
 *
883
 * Returns:
884
 *  0 when the timer was not active
885
 *  1 when the timer was active
886
 * -1 when the timer is currently excuting the callback function and
887
 *    cannot be stopped
888
 */
889
int hrtimer_try_to_cancel(struct hrtimer *timer)
890
{
891
        struct hrtimer_clock_base *base;
892
        unsigned long flags;
893
        int ret = -1;
894
 
895
        base = lock_hrtimer_base(timer, &flags);
896
 
897
        if (!hrtimer_callback_running(timer))
898
                ret = remove_hrtimer(timer, base);
899
 
900
        unlock_hrtimer_base(timer, &flags);
901
 
902
        return ret;
903
 
904
}
905
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
906
 
907
/**
908
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
909
 * @timer:      the timer to be cancelled
910
 *
911
 * Returns:
912
 *  0 when the timer was not active
913
 *  1 when the timer was active
914
 */
915
int hrtimer_cancel(struct hrtimer *timer)
916
{
917
        for (;;) {
918
                int ret = hrtimer_try_to_cancel(timer);
919
 
920
                if (ret >= 0)
921
                        return ret;
922
                cpu_relax();
923
        }
924
}
925
EXPORT_SYMBOL_GPL(hrtimer_cancel);
926
 
927
/**
928
 * hrtimer_get_remaining - get remaining time for the timer
929
 * @timer:      the timer to read
930
 */
931
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
932
{
933
        struct hrtimer_clock_base *base;
934
        unsigned long flags;
935
        ktime_t rem;
936
 
937
        base = lock_hrtimer_base(timer, &flags);
938
        rem = ktime_sub(timer->expires, base->get_time());
939
        unlock_hrtimer_base(timer, &flags);
940
 
941
        return rem;
942
}
943
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
944
 
945
#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
946
/**
947
 * hrtimer_get_next_event - get the time until next expiry event
948
 *
949
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
950
 * is pending.
951
 */
952
ktime_t hrtimer_get_next_event(void)
953
{
954
        struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
955
        struct hrtimer_clock_base *base = cpu_base->clock_base;
956
        ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
957
        unsigned long flags;
958
        int i;
959
 
960
        spin_lock_irqsave(&cpu_base->lock, flags);
961
 
962
        if (!hrtimer_hres_active()) {
963
                for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
964
                        struct hrtimer *timer;
965
 
966
                        if (!base->first)
967
                                continue;
968
 
969
                        timer = rb_entry(base->first, struct hrtimer, node);
970
                        delta.tv64 = timer->expires.tv64;
971
                        delta = ktime_sub(delta, base->get_time());
972
                        if (delta.tv64 < mindelta.tv64)
973
                                mindelta.tv64 = delta.tv64;
974
                }
975
        }
976
 
977
        spin_unlock_irqrestore(&cpu_base->lock, flags);
978
 
979
        if (mindelta.tv64 < 0)
980
                mindelta.tv64 = 0;
981
        return mindelta;
982
}
983
#endif
984
 
985
/**
986
 * hrtimer_init - initialize a timer to the given clock
987
 * @timer:      the timer to be initialized
988
 * @clock_id:   the clock to be used
989
 * @mode:       timer mode abs/rel
990
 */
991
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
992
                  enum hrtimer_mode mode)
993
{
994
        struct hrtimer_cpu_base *cpu_base;
995
 
996
        memset(timer, 0, sizeof(struct hrtimer));
997
 
998
        cpu_base = &__raw_get_cpu_var(hrtimer_bases);
999
 
1000
        if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1001
                clock_id = CLOCK_MONOTONIC;
1002
 
1003
        timer->base = &cpu_base->clock_base[clock_id];
1004
        hrtimer_init_timer_hres(timer);
1005
 
1006
#ifdef CONFIG_TIMER_STATS
1007
        timer->start_site = NULL;
1008
        timer->start_pid = -1;
1009
        memset(timer->start_comm, 0, TASK_COMM_LEN);
1010
#endif
1011
}
1012
EXPORT_SYMBOL_GPL(hrtimer_init);
1013
 
1014
/**
1015
 * hrtimer_get_res - get the timer resolution for a clock
1016
 * @which_clock: which clock to query
1017
 * @tp:          pointer to timespec variable to store the resolution
1018
 *
1019
 * Store the resolution of the clock selected by @which_clock in the
1020
 * variable pointed to by @tp.
1021
 */
1022
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1023
{
1024
        struct hrtimer_cpu_base *cpu_base;
1025
 
1026
        cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1027
        *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1028
 
1029
        return 0;
1030
}
1031
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1032
 
1033
#ifdef CONFIG_HIGH_RES_TIMERS
1034
 
1035
/*
1036
 * High resolution timer interrupt
1037
 * Called with interrupts disabled
1038
 */
1039
void hrtimer_interrupt(struct clock_event_device *dev)
1040
{
1041
        struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1042
        struct hrtimer_clock_base *base;
1043
        ktime_t expires_next, now;
1044
        int i, raise = 0;
1045
 
1046
        BUG_ON(!cpu_base->hres_active);
1047
        cpu_base->nr_events++;
1048
        dev->next_event.tv64 = KTIME_MAX;
1049
 
1050
 retry:
1051
        now = ktime_get();
1052
 
1053
        expires_next.tv64 = KTIME_MAX;
1054
 
1055
        base = cpu_base->clock_base;
1056
 
1057
        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1058
                ktime_t basenow;
1059
                struct rb_node *node;
1060
 
1061
                spin_lock(&cpu_base->lock);
1062
 
1063
                basenow = ktime_add(now, base->offset);
1064
 
1065
                while ((node = base->first)) {
1066
                        struct hrtimer *timer;
1067
 
1068
                        timer = rb_entry(node, struct hrtimer, node);
1069
 
1070
                        if (basenow.tv64 < timer->expires.tv64) {
1071
                                ktime_t expires;
1072
 
1073
                                expires = ktime_sub(timer->expires,
1074
                                                    base->offset);
1075
                                if (expires.tv64 < expires_next.tv64)
1076
                                        expires_next = expires;
1077
                                break;
1078
                        }
1079
 
1080
                        /* Move softirq callbacks to the pending list */
1081
                        if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1082
                                __remove_hrtimer(timer, base,
1083
                                                 HRTIMER_STATE_PENDING, 0);
1084
                                list_add_tail(&timer->cb_entry,
1085
                                              &base->cpu_base->cb_pending);
1086
                                raise = 1;
1087
                                continue;
1088
                        }
1089
 
1090
                        __remove_hrtimer(timer, base,
1091
                                         HRTIMER_STATE_CALLBACK, 0);
1092
                        timer_stats_account_hrtimer(timer);
1093
 
1094
                        /*
1095
                         * Note: We clear the CALLBACK bit after
1096
                         * enqueue_hrtimer to avoid reprogramming of
1097
                         * the event hardware. This happens at the end
1098
                         * of this function anyway.
1099
                         */
1100
                        if (timer->function(timer) != HRTIMER_NORESTART) {
1101
                                BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1102
                                enqueue_hrtimer(timer, base, 0);
1103
                        }
1104
                        timer->state &= ~HRTIMER_STATE_CALLBACK;
1105
                }
1106
                spin_unlock(&cpu_base->lock);
1107
                base++;
1108
        }
1109
 
1110
        cpu_base->expires_next = expires_next;
1111
 
1112
        /* Reprogramming necessary ? */
1113
        if (expires_next.tv64 != KTIME_MAX) {
1114
                if (tick_program_event(expires_next, 0))
1115
                        goto retry;
1116
        }
1117
 
1118
        /* Raise softirq ? */
1119
        if (raise)
1120
                raise_softirq(HRTIMER_SOFTIRQ);
1121
}
1122
 
1123
static void run_hrtimer_softirq(struct softirq_action *h)
1124
{
1125
        struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1126
 
1127
        spin_lock_irq(&cpu_base->lock);
1128
 
1129
        while (!list_empty(&cpu_base->cb_pending)) {
1130
                enum hrtimer_restart (*fn)(struct hrtimer *);
1131
                struct hrtimer *timer;
1132
                int restart;
1133
 
1134
                timer = list_entry(cpu_base->cb_pending.next,
1135
                                   struct hrtimer, cb_entry);
1136
 
1137
                timer_stats_account_hrtimer(timer);
1138
 
1139
                fn = timer->function;
1140
                __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1141
                spin_unlock_irq(&cpu_base->lock);
1142
 
1143
                restart = fn(timer);
1144
 
1145
                spin_lock_irq(&cpu_base->lock);
1146
 
1147
                timer->state &= ~HRTIMER_STATE_CALLBACK;
1148
                if (restart == HRTIMER_RESTART) {
1149
                        BUG_ON(hrtimer_active(timer));
1150
                        /*
1151
                         * Enqueue the timer, allow reprogramming of the event
1152
                         * device
1153
                         */
1154
                        enqueue_hrtimer(timer, timer->base, 1);
1155
                } else if (hrtimer_active(timer)) {
1156
                        /*
1157
                         * If the timer was rearmed on another CPU, reprogram
1158
                         * the event device.
1159
                         */
1160
                        if (timer->base->first == &timer->node)
1161
                                hrtimer_reprogram(timer, timer->base);
1162
                }
1163
        }
1164
        spin_unlock_irq(&cpu_base->lock);
1165
}
1166
 
1167
#endif  /* CONFIG_HIGH_RES_TIMERS */
1168
 
1169
/*
1170
 * Expire the per base hrtimer-queue:
1171
 */
1172
static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
1173
                                     int index)
1174
{
1175
        struct rb_node *node;
1176
        struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
1177
 
1178
        if (!base->first)
1179
                return;
1180
 
1181
        if (base->get_softirq_time)
1182
                base->softirq_time = base->get_softirq_time();
1183
 
1184
        spin_lock_irq(&cpu_base->lock);
1185
 
1186
        while ((node = base->first)) {
1187
                struct hrtimer *timer;
1188
                enum hrtimer_restart (*fn)(struct hrtimer *);
1189
                int restart;
1190
 
1191
                timer = rb_entry(node, struct hrtimer, node);
1192
                if (base->softirq_time.tv64 <= timer->expires.tv64)
1193
                        break;
1194
 
1195
#ifdef CONFIG_HIGH_RES_TIMERS
1196
                WARN_ON_ONCE(timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ);
1197
#endif
1198
                timer_stats_account_hrtimer(timer);
1199
 
1200
                fn = timer->function;
1201
                __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1202
                spin_unlock_irq(&cpu_base->lock);
1203
 
1204
                restart = fn(timer);
1205
 
1206
                spin_lock_irq(&cpu_base->lock);
1207
 
1208
                timer->state &= ~HRTIMER_STATE_CALLBACK;
1209
                if (restart != HRTIMER_NORESTART) {
1210
                        BUG_ON(hrtimer_active(timer));
1211
                        enqueue_hrtimer(timer, base, 0);
1212
                }
1213
        }
1214
        spin_unlock_irq(&cpu_base->lock);
1215
}
1216
 
1217
/*
1218
 * Called from timer softirq every jiffy, expire hrtimers:
1219
 *
1220
 * For HRT its the fall back code to run the softirq in the timer
1221
 * softirq context in case the hrtimer initialization failed or has
1222
 * not been done yet.
1223
 */
1224
void hrtimer_run_queues(void)
1225
{
1226
        struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1227
        int i;
1228
 
1229
        if (hrtimer_hres_active())
1230
                return;
1231
 
1232
        /*
1233
         * This _is_ ugly: We have to check in the softirq context,
1234
         * whether we can switch to highres and / or nohz mode. The
1235
         * clocksource switch happens in the timer interrupt with
1236
         * xtime_lock held. Notification from there only sets the
1237
         * check bit in the tick_oneshot code, otherwise we might
1238
         * deadlock vs. xtime_lock.
1239
         */
1240
        if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1241
                if (hrtimer_switch_to_hres())
1242
                        return;
1243
 
1244
        hrtimer_get_softirq_time(cpu_base);
1245
 
1246
        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1247
                run_hrtimer_queue(cpu_base, i);
1248
}
1249
 
1250
/*
1251
 * Sleep related functions:
1252
 */
1253
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1254
{
1255
        struct hrtimer_sleeper *t =
1256
                container_of(timer, struct hrtimer_sleeper, timer);
1257
        struct task_struct *task = t->task;
1258
 
1259
        t->task = NULL;
1260
        if (task)
1261
                wake_up_process(task);
1262
 
1263
        return HRTIMER_NORESTART;
1264
}
1265
 
1266
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1267
{
1268
        sl->timer.function = hrtimer_wakeup;
1269
        sl->task = task;
1270
#ifdef CONFIG_HIGH_RES_TIMERS
1271
        sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART;
1272
#endif
1273
}
1274
 
1275
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1276
{
1277
        hrtimer_init_sleeper(t, current);
1278
 
1279
        do {
1280
                set_current_state(TASK_INTERRUPTIBLE);
1281
                hrtimer_start(&t->timer, t->timer.expires, mode);
1282
 
1283
                if (likely(t->task))
1284
                        schedule();
1285
 
1286
                hrtimer_cancel(&t->timer);
1287
                mode = HRTIMER_MODE_ABS;
1288
 
1289
        } while (t->task && !signal_pending(current));
1290
 
1291
        return t->task == NULL;
1292
}
1293
 
1294
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1295
{
1296
        struct hrtimer_sleeper t;
1297
        struct timespec *rmtp;
1298
        ktime_t time;
1299
 
1300
        restart->fn = do_no_restart_syscall;
1301
 
1302
        hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
1303
        t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
1304
 
1305
        if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1306
                return 0;
1307
 
1308
        rmtp = (struct timespec *)restart->arg1;
1309
        if (rmtp) {
1310
                time = ktime_sub(t.timer.expires, t.timer.base->get_time());
1311
                if (time.tv64 <= 0)
1312
                        return 0;
1313
                *rmtp = ktime_to_timespec(time);
1314
        }
1315
 
1316
        restart->fn = hrtimer_nanosleep_restart;
1317
 
1318
        /* The other values in restart are already filled in */
1319
        return -ERESTART_RESTARTBLOCK;
1320
}
1321
 
1322
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec *rmtp,
1323
                       const enum hrtimer_mode mode, const clockid_t clockid)
1324
{
1325
        struct restart_block *restart;
1326
        struct hrtimer_sleeper t;
1327
        ktime_t rem;
1328
 
1329
        hrtimer_init(&t.timer, clockid, mode);
1330
        t.timer.expires = timespec_to_ktime(*rqtp);
1331
        if (do_nanosleep(&t, mode))
1332
                return 0;
1333
 
1334
        /* Absolute timers do not update the rmtp value and restart: */
1335
        if (mode == HRTIMER_MODE_ABS)
1336
                return -ERESTARTNOHAND;
1337
 
1338
        if (rmtp) {
1339
                rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
1340
                if (rem.tv64 <= 0)
1341
                        return 0;
1342
                *rmtp = ktime_to_timespec(rem);
1343
        }
1344
 
1345
        restart = &current_thread_info()->restart_block;
1346
        restart->fn = hrtimer_nanosleep_restart;
1347
        restart->arg0 = (unsigned long) t.timer.base->index;
1348
        restart->arg1 = (unsigned long) rmtp;
1349
        restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
1350
        restart->arg3 = t.timer.expires.tv64 >> 32;
1351
 
1352
        return -ERESTART_RESTARTBLOCK;
1353
}
1354
 
1355
asmlinkage long
1356
sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1357
{
1358
        struct timespec tu, rmt;
1359
        int ret;
1360
 
1361
        if (copy_from_user(&tu, rqtp, sizeof(tu)))
1362
                return -EFAULT;
1363
 
1364
        if (!timespec_valid(&tu))
1365
                return -EINVAL;
1366
 
1367
        ret = hrtimer_nanosleep(&tu, rmtp ? &rmt : NULL, HRTIMER_MODE_REL,
1368
                                CLOCK_MONOTONIC);
1369
 
1370
        if (ret && rmtp) {
1371
                if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1372
                        return -EFAULT;
1373
        }
1374
 
1375
        return ret;
1376
}
1377
 
1378
/*
1379
 * Functions related to boot-time initialization:
1380
 */
1381
static void __cpuinit init_hrtimers_cpu(int cpu)
1382
{
1383
        struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1384
        int i;
1385
 
1386
        spin_lock_init(&cpu_base->lock);
1387
        lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);
1388
 
1389
        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1390
                cpu_base->clock_base[i].cpu_base = cpu_base;
1391
 
1392
        hrtimer_init_hres(cpu_base);
1393
}
1394
 
1395
#ifdef CONFIG_HOTPLUG_CPU
1396
 
1397
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1398
                                struct hrtimer_clock_base *new_base)
1399
{
1400
        struct hrtimer *timer;
1401
        struct rb_node *node;
1402
 
1403
        while ((node = rb_first(&old_base->active))) {
1404
                timer = rb_entry(node, struct hrtimer, node);
1405
                BUG_ON(hrtimer_callback_running(timer));
1406
                __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
1407
                timer->base = new_base;
1408
                /*
1409
                 * Enqueue the timer. Allow reprogramming of the event device
1410
                 */
1411
                enqueue_hrtimer(timer, new_base, 1);
1412
        }
1413
}
1414
 
1415
static void migrate_hrtimers(int cpu)
1416
{
1417
        struct hrtimer_cpu_base *old_base, *new_base;
1418
        int i;
1419
 
1420
        BUG_ON(cpu_online(cpu));
1421
        old_base = &per_cpu(hrtimer_bases, cpu);
1422
        new_base = &get_cpu_var(hrtimer_bases);
1423
 
1424
        tick_cancel_sched_timer(cpu);
1425
 
1426
        local_irq_disable();
1427
        double_spin_lock(&new_base->lock, &old_base->lock,
1428
                         smp_processor_id() < cpu);
1429
 
1430
        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1431
                migrate_hrtimer_list(&old_base->clock_base[i],
1432
                                     &new_base->clock_base[i]);
1433
        }
1434
 
1435
        double_spin_unlock(&new_base->lock, &old_base->lock,
1436
                           smp_processor_id() < cpu);
1437
        local_irq_enable();
1438
        put_cpu_var(hrtimer_bases);
1439
}
1440
#endif /* CONFIG_HOTPLUG_CPU */
1441
 
1442
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1443
                                        unsigned long action, void *hcpu)
1444
{
1445
        unsigned int cpu = (long)hcpu;
1446
 
1447
        switch (action) {
1448
 
1449
        case CPU_UP_PREPARE:
1450
        case CPU_UP_PREPARE_FROZEN:
1451
                init_hrtimers_cpu(cpu);
1452
                break;
1453
 
1454
#ifdef CONFIG_HOTPLUG_CPU
1455
        case CPU_DEAD:
1456
        case CPU_DEAD_FROZEN:
1457
                clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
1458
                migrate_hrtimers(cpu);
1459
                break;
1460
#endif
1461
 
1462
        default:
1463
                break;
1464
        }
1465
 
1466
        return NOTIFY_OK;
1467
}
1468
 
1469
static struct notifier_block __cpuinitdata hrtimers_nb = {
1470
        .notifier_call = hrtimer_cpu_notify,
1471
};
1472
 
1473
void __init hrtimers_init(void)
1474
{
1475
        hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1476
                          (void *)(long)smp_processor_id());
1477
        register_cpu_notifier(&hrtimers_nb);
1478
#ifdef CONFIG_HIGH_RES_TIMERS
1479
        open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
1480
#endif
1481
}
1482
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.