OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [tags/] [linux-2.6/] [linux-2.6.24_orig/] [kernel/] [posix-cpu-timers.c] - Blame information for rev 8

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/*
2
 * Implement CPU time clocks for the POSIX clock interface.
3
 */
4
 
5
#include <linux/sched.h>
6
#include <linux/posix-timers.h>
7
#include <asm/uaccess.h>
8
#include <linux/errno.h>
9
 
10
static int check_clock(const clockid_t which_clock)
11
{
12
        int error = 0;
13
        struct task_struct *p;
14
        const pid_t pid = CPUCLOCK_PID(which_clock);
15
 
16
        if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
17
                return -EINVAL;
18
 
19
        if (pid == 0)
20
                return 0;
21
 
22
        read_lock(&tasklist_lock);
23
        p = find_task_by_pid(pid);
24
        if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
25
                   same_thread_group(p, current) : thread_group_leader(p))) {
26
                error = -EINVAL;
27
        }
28
        read_unlock(&tasklist_lock);
29
 
30
        return error;
31
}
32
 
33
static inline union cpu_time_count
34
timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
35
{
36
        union cpu_time_count ret;
37
        ret.sched = 0;           /* high half always zero when .cpu used */
38
        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
39
                ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
40
        } else {
41
                ret.cpu = timespec_to_cputime(tp);
42
        }
43
        return ret;
44
}
45
 
46
static void sample_to_timespec(const clockid_t which_clock,
47
                               union cpu_time_count cpu,
48
                               struct timespec *tp)
49
{
50
        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
51
                tp->tv_sec = div_long_long_rem(cpu.sched,
52
                                               NSEC_PER_SEC, &tp->tv_nsec);
53
        } else {
54
                cputime_to_timespec(cpu.cpu, tp);
55
        }
56
}
57
 
58
static inline int cpu_time_before(const clockid_t which_clock,
59
                                  union cpu_time_count now,
60
                                  union cpu_time_count then)
61
{
62
        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
63
                return now.sched < then.sched;
64
        }  else {
65
                return cputime_lt(now.cpu, then.cpu);
66
        }
67
}
68
static inline void cpu_time_add(const clockid_t which_clock,
69
                                union cpu_time_count *acc,
70
                                union cpu_time_count val)
71
{
72
        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
73
                acc->sched += val.sched;
74
        }  else {
75
                acc->cpu = cputime_add(acc->cpu, val.cpu);
76
        }
77
}
78
static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
79
                                                union cpu_time_count a,
80
                                                union cpu_time_count b)
81
{
82
        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
83
                a.sched -= b.sched;
84
        }  else {
85
                a.cpu = cputime_sub(a.cpu, b.cpu);
86
        }
87
        return a;
88
}
89
 
90
/*
91
 * Divide and limit the result to res >= 1
92
 *
93
 * This is necessary to prevent signal delivery starvation, when the result of
94
 * the division would be rounded down to 0.
95
 */
96
static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
97
{
98
        cputime_t res = cputime_div(time, div);
99
 
100
        return max_t(cputime_t, res, 1);
101
}
102
 
103
/*
104
 * Update expiry time from increment, and increase overrun count,
105
 * given the current clock sample.
106
 */
107
static void bump_cpu_timer(struct k_itimer *timer,
108
                                  union cpu_time_count now)
109
{
110
        int i;
111
 
112
        if (timer->it.cpu.incr.sched == 0)
113
                return;
114
 
115
        if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
116
                unsigned long long delta, incr;
117
 
118
                if (now.sched < timer->it.cpu.expires.sched)
119
                        return;
120
                incr = timer->it.cpu.incr.sched;
121
                delta = now.sched + incr - timer->it.cpu.expires.sched;
122
                /* Don't use (incr*2 < delta), incr*2 might overflow. */
123
                for (i = 0; incr < delta - incr; i++)
124
                        incr = incr << 1;
125
                for (; i >= 0; incr >>= 1, i--) {
126
                        if (delta < incr)
127
                                continue;
128
                        timer->it.cpu.expires.sched += incr;
129
                        timer->it_overrun += 1 << i;
130
                        delta -= incr;
131
                }
132
        } else {
133
                cputime_t delta, incr;
134
 
135
                if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
136
                        return;
137
                incr = timer->it.cpu.incr.cpu;
138
                delta = cputime_sub(cputime_add(now.cpu, incr),
139
                                    timer->it.cpu.expires.cpu);
140
                /* Don't use (incr*2 < delta), incr*2 might overflow. */
141
                for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
142
                             incr = cputime_add(incr, incr);
143
                for (; i >= 0; incr = cputime_halve(incr), i--) {
144
                        if (cputime_lt(delta, incr))
145
                                continue;
146
                        timer->it.cpu.expires.cpu =
147
                                cputime_add(timer->it.cpu.expires.cpu, incr);
148
                        timer->it_overrun += 1 << i;
149
                        delta = cputime_sub(delta, incr);
150
                }
151
        }
152
}
153
 
154
static inline cputime_t prof_ticks(struct task_struct *p)
155
{
156
        return cputime_add(p->utime, p->stime);
157
}
158
static inline cputime_t virt_ticks(struct task_struct *p)
159
{
160
        return p->utime;
161
}
162
static inline unsigned long long sched_ns(struct task_struct *p)
163
{
164
        return task_sched_runtime(p);
165
}
166
 
167
int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
168
{
169
        int error = check_clock(which_clock);
170
        if (!error) {
171
                tp->tv_sec = 0;
172
                tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
173
                if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
174
                        /*
175
                         * If sched_clock is using a cycle counter, we
176
                         * don't have any idea of its true resolution
177
                         * exported, but it is much more than 1s/HZ.
178
                         */
179
                        tp->tv_nsec = 1;
180
                }
181
        }
182
        return error;
183
}
184
 
185
int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
186
{
187
        /*
188
         * You can never reset a CPU clock, but we check for other errors
189
         * in the call before failing with EPERM.
190
         */
191
        int error = check_clock(which_clock);
192
        if (error == 0) {
193
                error = -EPERM;
194
        }
195
        return error;
196
}
197
 
198
 
199
/*
200
 * Sample a per-thread clock for the given task.
201
 */
202
static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
203
                            union cpu_time_count *cpu)
204
{
205
        switch (CPUCLOCK_WHICH(which_clock)) {
206
        default:
207
                return -EINVAL;
208
        case CPUCLOCK_PROF:
209
                cpu->cpu = prof_ticks(p);
210
                break;
211
        case CPUCLOCK_VIRT:
212
                cpu->cpu = virt_ticks(p);
213
                break;
214
        case CPUCLOCK_SCHED:
215
                cpu->sched = sched_ns(p);
216
                break;
217
        }
218
        return 0;
219
}
220
 
221
/*
222
 * Sample a process (thread group) clock for the given group_leader task.
223
 * Must be called with tasklist_lock held for reading.
224
 * Must be called with tasklist_lock held for reading, and p->sighand->siglock.
225
 */
226
static int cpu_clock_sample_group_locked(unsigned int clock_idx,
227
                                         struct task_struct *p,
228
                                         union cpu_time_count *cpu)
229
{
230
        struct task_struct *t = p;
231
        switch (clock_idx) {
232
        default:
233
                return -EINVAL;
234
        case CPUCLOCK_PROF:
235
                cpu->cpu = cputime_add(p->signal->utime, p->signal->stime);
236
                do {
237
                        cpu->cpu = cputime_add(cpu->cpu, prof_ticks(t));
238
                        t = next_thread(t);
239
                } while (t != p);
240
                break;
241
        case CPUCLOCK_VIRT:
242
                cpu->cpu = p->signal->utime;
243
                do {
244
                        cpu->cpu = cputime_add(cpu->cpu, virt_ticks(t));
245
                        t = next_thread(t);
246
                } while (t != p);
247
                break;
248
        case CPUCLOCK_SCHED:
249
                cpu->sched = p->signal->sum_sched_runtime;
250
                /* Add in each other live thread.  */
251
                while ((t = next_thread(t)) != p) {
252
                        cpu->sched += t->se.sum_exec_runtime;
253
                }
254
                cpu->sched += sched_ns(p);
255
                break;
256
        }
257
        return 0;
258
}
259
 
260
/*
261
 * Sample a process (thread group) clock for the given group_leader task.
262
 * Must be called with tasklist_lock held for reading.
263
 */
264
static int cpu_clock_sample_group(const clockid_t which_clock,
265
                                  struct task_struct *p,
266
                                  union cpu_time_count *cpu)
267
{
268
        int ret;
269
        unsigned long flags;
270
        spin_lock_irqsave(&p->sighand->siglock, flags);
271
        ret = cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock), p,
272
                                            cpu);
273
        spin_unlock_irqrestore(&p->sighand->siglock, flags);
274
        return ret;
275
}
276
 
277
 
278
int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
279
{
280
        const pid_t pid = CPUCLOCK_PID(which_clock);
281
        int error = -EINVAL;
282
        union cpu_time_count rtn;
283
 
284
        if (pid == 0) {
285
                /*
286
                 * Special case constant value for our own clocks.
287
                 * We don't have to do any lookup to find ourselves.
288
                 */
289
                if (CPUCLOCK_PERTHREAD(which_clock)) {
290
                        /*
291
                         * Sampling just ourselves we can do with no locking.
292
                         */
293
                        error = cpu_clock_sample(which_clock,
294
                                                 current, &rtn);
295
                } else {
296
                        read_lock(&tasklist_lock);
297
                        error = cpu_clock_sample_group(which_clock,
298
                                                       current, &rtn);
299
                        read_unlock(&tasklist_lock);
300
                }
301
        } else {
302
                /*
303
                 * Find the given PID, and validate that the caller
304
                 * should be able to see it.
305
                 */
306
                struct task_struct *p;
307
                rcu_read_lock();
308
                p = find_task_by_pid(pid);
309
                if (p) {
310
                        if (CPUCLOCK_PERTHREAD(which_clock)) {
311
                                if (same_thread_group(p, current)) {
312
                                        error = cpu_clock_sample(which_clock,
313
                                                                 p, &rtn);
314
                                }
315
                        } else {
316
                                read_lock(&tasklist_lock);
317
                                if (thread_group_leader(p) && p->signal) {
318
                                        error =
319
                                            cpu_clock_sample_group(which_clock,
320
                                                                   p, &rtn);
321
                                }
322
                                read_unlock(&tasklist_lock);
323
                        }
324
                }
325
                rcu_read_unlock();
326
        }
327
 
328
        if (error)
329
                return error;
330
        sample_to_timespec(which_clock, rtn, tp);
331
        return 0;
332
}
333
 
334
 
335
/*
336
 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
337
 * This is called from sys_timer_create with the new timer already locked.
338
 */
339
int posix_cpu_timer_create(struct k_itimer *new_timer)
340
{
341
        int ret = 0;
342
        const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
343
        struct task_struct *p;
344
 
345
        if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
346
                return -EINVAL;
347
 
348
        INIT_LIST_HEAD(&new_timer->it.cpu.entry);
349
        new_timer->it.cpu.incr.sched = 0;
350
        new_timer->it.cpu.expires.sched = 0;
351
 
352
        read_lock(&tasklist_lock);
353
        if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
354
                if (pid == 0) {
355
                        p = current;
356
                } else {
357
                        p = find_task_by_pid(pid);
358
                        if (p && !same_thread_group(p, current))
359
                                p = NULL;
360
                }
361
        } else {
362
                if (pid == 0) {
363
                        p = current->group_leader;
364
                } else {
365
                        p = find_task_by_pid(pid);
366
                        if (p && !thread_group_leader(p))
367
                                p = NULL;
368
                }
369
        }
370
        new_timer->it.cpu.task = p;
371
        if (p) {
372
                get_task_struct(p);
373
        } else {
374
                ret = -EINVAL;
375
        }
376
        read_unlock(&tasklist_lock);
377
 
378
        return ret;
379
}
380
 
381
/*
382
 * Clean up a CPU-clock timer that is about to be destroyed.
383
 * This is called from timer deletion with the timer already locked.
384
 * If we return TIMER_RETRY, it's necessary to release the timer's lock
385
 * and try again.  (This happens when the timer is in the middle of firing.)
386
 */
387
int posix_cpu_timer_del(struct k_itimer *timer)
388
{
389
        struct task_struct *p = timer->it.cpu.task;
390
        int ret = 0;
391
 
392
        if (likely(p != NULL)) {
393
                read_lock(&tasklist_lock);
394
                if (unlikely(p->signal == NULL)) {
395
                        /*
396
                         * We raced with the reaping of the task.
397
                         * The deletion should have cleared us off the list.
398
                         */
399
                        BUG_ON(!list_empty(&timer->it.cpu.entry));
400
                } else {
401
                        spin_lock(&p->sighand->siglock);
402
                        if (timer->it.cpu.firing)
403
                                ret = TIMER_RETRY;
404
                        else
405
                                list_del(&timer->it.cpu.entry);
406
                        spin_unlock(&p->sighand->siglock);
407
                }
408
                read_unlock(&tasklist_lock);
409
 
410
                if (!ret)
411
                        put_task_struct(p);
412
        }
413
 
414
        return ret;
415
}
416
 
417
/*
418
 * Clean out CPU timers still ticking when a thread exited.  The task
419
 * pointer is cleared, and the expiry time is replaced with the residual
420
 * time for later timer_gettime calls to return.
421
 * This must be called with the siglock held.
422
 */
423
static void cleanup_timers(struct list_head *head,
424
                           cputime_t utime, cputime_t stime,
425
                           unsigned long long sum_exec_runtime)
426
{
427
        struct cpu_timer_list *timer, *next;
428
        cputime_t ptime = cputime_add(utime, stime);
429
 
430
        list_for_each_entry_safe(timer, next, head, entry) {
431
                list_del_init(&timer->entry);
432
                if (cputime_lt(timer->expires.cpu, ptime)) {
433
                        timer->expires.cpu = cputime_zero;
434
                } else {
435
                        timer->expires.cpu = cputime_sub(timer->expires.cpu,
436
                                                         ptime);
437
                }
438
        }
439
 
440
        ++head;
441
        list_for_each_entry_safe(timer, next, head, entry) {
442
                list_del_init(&timer->entry);
443
                if (cputime_lt(timer->expires.cpu, utime)) {
444
                        timer->expires.cpu = cputime_zero;
445
                } else {
446
                        timer->expires.cpu = cputime_sub(timer->expires.cpu,
447
                                                         utime);
448
                }
449
        }
450
 
451
        ++head;
452
        list_for_each_entry_safe(timer, next, head, entry) {
453
                list_del_init(&timer->entry);
454
                if (timer->expires.sched < sum_exec_runtime) {
455
                        timer->expires.sched = 0;
456
                } else {
457
                        timer->expires.sched -= sum_exec_runtime;
458
                }
459
        }
460
}
461
 
462
/*
463
 * These are both called with the siglock held, when the current thread
464
 * is being reaped.  When the final (leader) thread in the group is reaped,
465
 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
466
 */
467
void posix_cpu_timers_exit(struct task_struct *tsk)
468
{
469
        cleanup_timers(tsk->cpu_timers,
470
                       tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
471
 
472
}
473
void posix_cpu_timers_exit_group(struct task_struct *tsk)
474
{
475
        cleanup_timers(tsk->signal->cpu_timers,
476
                       cputime_add(tsk->utime, tsk->signal->utime),
477
                       cputime_add(tsk->stime, tsk->signal->stime),
478
                     tsk->se.sum_exec_runtime + tsk->signal->sum_sched_runtime);
479
}
480
 
481
 
482
/*
483
 * Set the expiry times of all the threads in the process so one of them
484
 * will go off before the process cumulative expiry total is reached.
485
 */
486
static void process_timer_rebalance(struct task_struct *p,
487
                                    unsigned int clock_idx,
488
                                    union cpu_time_count expires,
489
                                    union cpu_time_count val)
490
{
491
        cputime_t ticks, left;
492
        unsigned long long ns, nsleft;
493
        struct task_struct *t = p;
494
        unsigned int nthreads = atomic_read(&p->signal->live);
495
 
496
        if (!nthreads)
497
                return;
498
 
499
        switch (clock_idx) {
500
        default:
501
                BUG();
502
                break;
503
        case CPUCLOCK_PROF:
504
                left = cputime_div_non_zero(cputime_sub(expires.cpu, val.cpu),
505
                                       nthreads);
506
                do {
507
                        if (likely(!(t->flags & PF_EXITING))) {
508
                                ticks = cputime_add(prof_ticks(t), left);
509
                                if (cputime_eq(t->it_prof_expires,
510
                                               cputime_zero) ||
511
                                    cputime_gt(t->it_prof_expires, ticks)) {
512
                                        t->it_prof_expires = ticks;
513
                                }
514
                        }
515
                        t = next_thread(t);
516
                } while (t != p);
517
                break;
518
        case CPUCLOCK_VIRT:
519
                left = cputime_div_non_zero(cputime_sub(expires.cpu, val.cpu),
520
                                       nthreads);
521
                do {
522
                        if (likely(!(t->flags & PF_EXITING))) {
523
                                ticks = cputime_add(virt_ticks(t), left);
524
                                if (cputime_eq(t->it_virt_expires,
525
                                               cputime_zero) ||
526
                                    cputime_gt(t->it_virt_expires, ticks)) {
527
                                        t->it_virt_expires = ticks;
528
                                }
529
                        }
530
                        t = next_thread(t);
531
                } while (t != p);
532
                break;
533
        case CPUCLOCK_SCHED:
534
                nsleft = expires.sched - val.sched;
535
                do_div(nsleft, nthreads);
536
                nsleft = max_t(unsigned long long, nsleft, 1);
537
                do {
538
                        if (likely(!(t->flags & PF_EXITING))) {
539
                                ns = t->se.sum_exec_runtime + nsleft;
540
                                if (t->it_sched_expires == 0 ||
541
                                    t->it_sched_expires > ns) {
542
                                        t->it_sched_expires = ns;
543
                                }
544
                        }
545
                        t = next_thread(t);
546
                } while (t != p);
547
                break;
548
        }
549
}
550
 
551
static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
552
{
553
        /*
554
         * That's all for this thread or process.
555
         * We leave our residual in expires to be reported.
556
         */
557
        put_task_struct(timer->it.cpu.task);
558
        timer->it.cpu.task = NULL;
559
        timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
560
                                             timer->it.cpu.expires,
561
                                             now);
562
}
563
 
564
/*
565
 * Insert the timer on the appropriate list before any timers that
566
 * expire later.  This must be called with the tasklist_lock held
567
 * for reading, and interrupts disabled.
568
 */
569
static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
570
{
571
        struct task_struct *p = timer->it.cpu.task;
572
        struct list_head *head, *listpos;
573
        struct cpu_timer_list *const nt = &timer->it.cpu;
574
        struct cpu_timer_list *next;
575
        unsigned long i;
576
 
577
        head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
578
                p->cpu_timers : p->signal->cpu_timers);
579
        head += CPUCLOCK_WHICH(timer->it_clock);
580
 
581
        BUG_ON(!irqs_disabled());
582
        spin_lock(&p->sighand->siglock);
583
 
584
        listpos = head;
585
        if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
586
                list_for_each_entry(next, head, entry) {
587
                        if (next->expires.sched > nt->expires.sched)
588
                                break;
589
                        listpos = &next->entry;
590
                }
591
        } else {
592
                list_for_each_entry(next, head, entry) {
593
                        if (cputime_gt(next->expires.cpu, nt->expires.cpu))
594
                                break;
595
                        listpos = &next->entry;
596
                }
597
        }
598
        list_add(&nt->entry, listpos);
599
 
600
        if (listpos == head) {
601
                /*
602
                 * We are the new earliest-expiring timer.
603
                 * If we are a thread timer, there can always
604
                 * be a process timer telling us to stop earlier.
605
                 */
606
 
607
                if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
608
                        switch (CPUCLOCK_WHICH(timer->it_clock)) {
609
                        default:
610
                                BUG();
611
                        case CPUCLOCK_PROF:
612
                                if (cputime_eq(p->it_prof_expires,
613
                                               cputime_zero) ||
614
                                    cputime_gt(p->it_prof_expires,
615
                                               nt->expires.cpu))
616
                                        p->it_prof_expires = nt->expires.cpu;
617
                                break;
618
                        case CPUCLOCK_VIRT:
619
                                if (cputime_eq(p->it_virt_expires,
620
                                               cputime_zero) ||
621
                                    cputime_gt(p->it_virt_expires,
622
                                               nt->expires.cpu))
623
                                        p->it_virt_expires = nt->expires.cpu;
624
                                break;
625
                        case CPUCLOCK_SCHED:
626
                                if (p->it_sched_expires == 0 ||
627
                                    p->it_sched_expires > nt->expires.sched)
628
                                        p->it_sched_expires = nt->expires.sched;
629
                                break;
630
                        }
631
                } else {
632
                        /*
633
                         * For a process timer, we must balance
634
                         * all the live threads' expirations.
635
                         */
636
                        switch (CPUCLOCK_WHICH(timer->it_clock)) {
637
                        default:
638
                                BUG();
639
                        case CPUCLOCK_VIRT:
640
                                if (!cputime_eq(p->signal->it_virt_expires,
641
                                                cputime_zero) &&
642
                                    cputime_lt(p->signal->it_virt_expires,
643
                                               timer->it.cpu.expires.cpu))
644
                                        break;
645
                                goto rebalance;
646
                        case CPUCLOCK_PROF:
647
                                if (!cputime_eq(p->signal->it_prof_expires,
648
                                                cputime_zero) &&
649
                                    cputime_lt(p->signal->it_prof_expires,
650
                                               timer->it.cpu.expires.cpu))
651
                                        break;
652
                                i = p->signal->rlim[RLIMIT_CPU].rlim_cur;
653
                                if (i != RLIM_INFINITY &&
654
                                    i <= cputime_to_secs(timer->it.cpu.expires.cpu))
655
                                        break;
656
                                goto rebalance;
657
                        case CPUCLOCK_SCHED:
658
                        rebalance:
659
                                process_timer_rebalance(
660
                                        timer->it.cpu.task,
661
                                        CPUCLOCK_WHICH(timer->it_clock),
662
                                        timer->it.cpu.expires, now);
663
                                break;
664
                        }
665
                }
666
        }
667
 
668
        spin_unlock(&p->sighand->siglock);
669
}
670
 
671
/*
672
 * The timer is locked, fire it and arrange for its reload.
673
 */
674
static void cpu_timer_fire(struct k_itimer *timer)
675
{
676
        if (unlikely(timer->sigq == NULL)) {
677
                /*
678
                 * This a special case for clock_nanosleep,
679
                 * not a normal timer from sys_timer_create.
680
                 */
681
                wake_up_process(timer->it_process);
682
                timer->it.cpu.expires.sched = 0;
683
        } else if (timer->it.cpu.incr.sched == 0) {
684
                /*
685
                 * One-shot timer.  Clear it as soon as it's fired.
686
                 */
687
                posix_timer_event(timer, 0);
688
                timer->it.cpu.expires.sched = 0;
689
        } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
690
                /*
691
                 * The signal did not get queued because the signal
692
                 * was ignored, so we won't get any callback to
693
                 * reload the timer.  But we need to keep it
694
                 * ticking in case the signal is deliverable next time.
695
                 */
696
                posix_cpu_timer_schedule(timer);
697
        }
698
}
699
 
700
/*
701
 * Guts of sys_timer_settime for CPU timers.
702
 * This is called with the timer locked and interrupts disabled.
703
 * If we return TIMER_RETRY, it's necessary to release the timer's lock
704
 * and try again.  (This happens when the timer is in the middle of firing.)
705
 */
706
int posix_cpu_timer_set(struct k_itimer *timer, int flags,
707
                        struct itimerspec *new, struct itimerspec *old)
708
{
709
        struct task_struct *p = timer->it.cpu.task;
710
        union cpu_time_count old_expires, new_expires, val;
711
        int ret;
712
 
713
        if (unlikely(p == NULL)) {
714
                /*
715
                 * Timer refers to a dead task's clock.
716
                 */
717
                return -ESRCH;
718
        }
719
 
720
        new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
721
 
722
        read_lock(&tasklist_lock);
723
        /*
724
         * We need the tasklist_lock to protect against reaping that
725
         * clears p->signal.  If p has just been reaped, we can no
726
         * longer get any information about it at all.
727
         */
728
        if (unlikely(p->signal == NULL)) {
729
                read_unlock(&tasklist_lock);
730
                put_task_struct(p);
731
                timer->it.cpu.task = NULL;
732
                return -ESRCH;
733
        }
734
 
735
        /*
736
         * Disarm any old timer after extracting its expiry time.
737
         */
738
        BUG_ON(!irqs_disabled());
739
 
740
        ret = 0;
741
        spin_lock(&p->sighand->siglock);
742
        old_expires = timer->it.cpu.expires;
743
        if (unlikely(timer->it.cpu.firing)) {
744
                timer->it.cpu.firing = -1;
745
                ret = TIMER_RETRY;
746
        } else
747
                list_del_init(&timer->it.cpu.entry);
748
        spin_unlock(&p->sighand->siglock);
749
 
750
        /*
751
         * We need to sample the current value to convert the new
752
         * value from to relative and absolute, and to convert the
753
         * old value from absolute to relative.  To set a process
754
         * timer, we need a sample to balance the thread expiry
755
         * times (in arm_timer).  With an absolute time, we must
756
         * check if it's already passed.  In short, we need a sample.
757
         */
758
        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
759
                cpu_clock_sample(timer->it_clock, p, &val);
760
        } else {
761
                cpu_clock_sample_group(timer->it_clock, p, &val);
762
        }
763
 
764
        if (old) {
765
                if (old_expires.sched == 0) {
766
                        old->it_value.tv_sec = 0;
767
                        old->it_value.tv_nsec = 0;
768
                } else {
769
                        /*
770
                         * Update the timer in case it has
771
                         * overrun already.  If it has,
772
                         * we'll report it as having overrun
773
                         * and with the next reloaded timer
774
                         * already ticking, though we are
775
                         * swallowing that pending
776
                         * notification here to install the
777
                         * new setting.
778
                         */
779
                        bump_cpu_timer(timer, val);
780
                        if (cpu_time_before(timer->it_clock, val,
781
                                            timer->it.cpu.expires)) {
782
                                old_expires = cpu_time_sub(
783
                                        timer->it_clock,
784
                                        timer->it.cpu.expires, val);
785
                                sample_to_timespec(timer->it_clock,
786
                                                   old_expires,
787
                                                   &old->it_value);
788
                        } else {
789
                                old->it_value.tv_nsec = 1;
790
                                old->it_value.tv_sec = 0;
791
                        }
792
                }
793
        }
794
 
795
        if (unlikely(ret)) {
796
                /*
797
                 * We are colliding with the timer actually firing.
798
                 * Punt after filling in the timer's old value, and
799
                 * disable this firing since we are already reporting
800
                 * it as an overrun (thanks to bump_cpu_timer above).
801
                 */
802
                read_unlock(&tasklist_lock);
803
                goto out;
804
        }
805
 
806
        if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
807
                cpu_time_add(timer->it_clock, &new_expires, val);
808
        }
809
 
810
        /*
811
         * Install the new expiry time (or zero).
812
         * For a timer with no notification action, we don't actually
813
         * arm the timer (we'll just fake it for timer_gettime).
814
         */
815
        timer->it.cpu.expires = new_expires;
816
        if (new_expires.sched != 0 &&
817
            (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
818
            cpu_time_before(timer->it_clock, val, new_expires)) {
819
                arm_timer(timer, val);
820
        }
821
 
822
        read_unlock(&tasklist_lock);
823
 
824
        /*
825
         * Install the new reload setting, and
826
         * set up the signal and overrun bookkeeping.
827
         */
828
        timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
829
                                                &new->it_interval);
830
 
831
        /*
832
         * This acts as a modification timestamp for the timer,
833
         * so any automatic reload attempt will punt on seeing
834
         * that we have reset the timer manually.
835
         */
836
        timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
837
                ~REQUEUE_PENDING;
838
        timer->it_overrun_last = 0;
839
        timer->it_overrun = -1;
840
 
841
        if (new_expires.sched != 0 &&
842
            (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
843
            !cpu_time_before(timer->it_clock, val, new_expires)) {
844
                /*
845
                 * The designated time already passed, so we notify
846
                 * immediately, even if the thread never runs to
847
                 * accumulate more time on this clock.
848
                 */
849
                cpu_timer_fire(timer);
850
        }
851
 
852
        ret = 0;
853
 out:
854
        if (old) {
855
                sample_to_timespec(timer->it_clock,
856
                                   timer->it.cpu.incr, &old->it_interval);
857
        }
858
        return ret;
859
}
860
 
861
void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
862
{
863
        union cpu_time_count now;
864
        struct task_struct *p = timer->it.cpu.task;
865
        int clear_dead;
866
 
867
        /*
868
         * Easy part: convert the reload time.
869
         */
870
        sample_to_timespec(timer->it_clock,
871
                           timer->it.cpu.incr, &itp->it_interval);
872
 
873
        if (timer->it.cpu.expires.sched == 0) {  /* Timer not armed at all.  */
874
                itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
875
                return;
876
        }
877
 
878
        if (unlikely(p == NULL)) {
879
                /*
880
                 * This task already died and the timer will never fire.
881
                 * In this case, expires is actually the dead value.
882
                 */
883
        dead:
884
                sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
885
                                   &itp->it_value);
886
                return;
887
        }
888
 
889
        /*
890
         * Sample the clock to take the difference with the expiry time.
891
         */
892
        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
893
                cpu_clock_sample(timer->it_clock, p, &now);
894
                clear_dead = p->exit_state;
895
        } else {
896
                read_lock(&tasklist_lock);
897
                if (unlikely(p->signal == NULL)) {
898
                        /*
899
                         * The process has been reaped.
900
                         * We can't even collect a sample any more.
901
                         * Call the timer disarmed, nothing else to do.
902
                         */
903
                        put_task_struct(p);
904
                        timer->it.cpu.task = NULL;
905
                        timer->it.cpu.expires.sched = 0;
906
                        read_unlock(&tasklist_lock);
907
                        goto dead;
908
                } else {
909
                        cpu_clock_sample_group(timer->it_clock, p, &now);
910
                        clear_dead = (unlikely(p->exit_state) &&
911
                                      thread_group_empty(p));
912
                }
913
                read_unlock(&tasklist_lock);
914
        }
915
 
916
        if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
917
                if (timer->it.cpu.incr.sched == 0 &&
918
                    cpu_time_before(timer->it_clock,
919
                                    timer->it.cpu.expires, now)) {
920
                        /*
921
                         * Do-nothing timer expired and has no reload,
922
                         * so it's as if it was never set.
923
                         */
924
                        timer->it.cpu.expires.sched = 0;
925
                        itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
926
                        return;
927
                }
928
                /*
929
                 * Account for any expirations and reloads that should
930
                 * have happened.
931
                 */
932
                bump_cpu_timer(timer, now);
933
        }
934
 
935
        if (unlikely(clear_dead)) {
936
                /*
937
                 * We've noticed that the thread is dead, but
938
                 * not yet reaped.  Take this opportunity to
939
                 * drop our task ref.
940
                 */
941
                clear_dead_task(timer, now);
942
                goto dead;
943
        }
944
 
945
        if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
946
                sample_to_timespec(timer->it_clock,
947
                                   cpu_time_sub(timer->it_clock,
948
                                                timer->it.cpu.expires, now),
949
                                   &itp->it_value);
950
        } else {
951
                /*
952
                 * The timer should have expired already, but the firing
953
                 * hasn't taken place yet.  Say it's just about to expire.
954
                 */
955
                itp->it_value.tv_nsec = 1;
956
                itp->it_value.tv_sec = 0;
957
        }
958
}
959
 
960
/*
961
 * Check for any per-thread CPU timers that have fired and move them off
962
 * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
963
 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
964
 */
965
static void check_thread_timers(struct task_struct *tsk,
966
                                struct list_head *firing)
967
{
968
        int maxfire;
969
        struct list_head *timers = tsk->cpu_timers;
970
 
971
        maxfire = 20;
972
        tsk->it_prof_expires = cputime_zero;
973
        while (!list_empty(timers)) {
974
                struct cpu_timer_list *t = list_first_entry(timers,
975
                                                      struct cpu_timer_list,
976
                                                      entry);
977
                if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
978
                        tsk->it_prof_expires = t->expires.cpu;
979
                        break;
980
                }
981
                t->firing = 1;
982
                list_move_tail(&t->entry, firing);
983
        }
984
 
985
        ++timers;
986
        maxfire = 20;
987
        tsk->it_virt_expires = cputime_zero;
988
        while (!list_empty(timers)) {
989
                struct cpu_timer_list *t = list_first_entry(timers,
990
                                                      struct cpu_timer_list,
991
                                                      entry);
992
                if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
993
                        tsk->it_virt_expires = t->expires.cpu;
994
                        break;
995
                }
996
                t->firing = 1;
997
                list_move_tail(&t->entry, firing);
998
        }
999
 
1000
        ++timers;
1001
        maxfire = 20;
1002
        tsk->it_sched_expires = 0;
1003
        while (!list_empty(timers)) {
1004
                struct cpu_timer_list *t = list_first_entry(timers,
1005
                                                      struct cpu_timer_list,
1006
                                                      entry);
1007
                if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
1008
                        tsk->it_sched_expires = t->expires.sched;
1009
                        break;
1010
                }
1011
                t->firing = 1;
1012
                list_move_tail(&t->entry, firing);
1013
        }
1014
}
1015
 
1016
/*
1017
 * Check for any per-thread CPU timers that have fired and move them
1018
 * off the tsk->*_timers list onto the firing list.  Per-thread timers
1019
 * have already been taken off.
1020
 */
1021
static void check_process_timers(struct task_struct *tsk,
1022
                                 struct list_head *firing)
1023
{
1024
        int maxfire;
1025
        struct signal_struct *const sig = tsk->signal;
1026
        cputime_t utime, stime, ptime, virt_expires, prof_expires;
1027
        unsigned long long sum_sched_runtime, sched_expires;
1028
        struct task_struct *t;
1029
        struct list_head *timers = sig->cpu_timers;
1030
 
1031
        /*
1032
         * Don't sample the current process CPU clocks if there are no timers.
1033
         */
1034
        if (list_empty(&timers[CPUCLOCK_PROF]) &&
1035
            cputime_eq(sig->it_prof_expires, cputime_zero) &&
1036
            sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1037
            list_empty(&timers[CPUCLOCK_VIRT]) &&
1038
            cputime_eq(sig->it_virt_expires, cputime_zero) &&
1039
            list_empty(&timers[CPUCLOCK_SCHED]))
1040
                return;
1041
 
1042
        /*
1043
         * Collect the current process totals.
1044
         */
1045
        utime = sig->utime;
1046
        stime = sig->stime;
1047
        sum_sched_runtime = sig->sum_sched_runtime;
1048
        t = tsk;
1049
        do {
1050
                utime = cputime_add(utime, t->utime);
1051
                stime = cputime_add(stime, t->stime);
1052
                sum_sched_runtime += t->se.sum_exec_runtime;
1053
                t = next_thread(t);
1054
        } while (t != tsk);
1055
        ptime = cputime_add(utime, stime);
1056
 
1057
        maxfire = 20;
1058
        prof_expires = cputime_zero;
1059
        while (!list_empty(timers)) {
1060
                struct cpu_timer_list *t = list_first_entry(timers,
1061
                                                      struct cpu_timer_list,
1062
                                                      entry);
1063
                if (!--maxfire || cputime_lt(ptime, t->expires.cpu)) {
1064
                        prof_expires = t->expires.cpu;
1065
                        break;
1066
                }
1067
                t->firing = 1;
1068
                list_move_tail(&t->entry, firing);
1069
        }
1070
 
1071
        ++timers;
1072
        maxfire = 20;
1073
        virt_expires = cputime_zero;
1074
        while (!list_empty(timers)) {
1075
                struct cpu_timer_list *t = list_first_entry(timers,
1076
                                                      struct cpu_timer_list,
1077
                                                      entry);
1078
                if (!--maxfire || cputime_lt(utime, t->expires.cpu)) {
1079
                        virt_expires = t->expires.cpu;
1080
                        break;
1081
                }
1082
                t->firing = 1;
1083
                list_move_tail(&t->entry, firing);
1084
        }
1085
 
1086
        ++timers;
1087
        maxfire = 20;
1088
        sched_expires = 0;
1089
        while (!list_empty(timers)) {
1090
                struct cpu_timer_list *t = list_first_entry(timers,
1091
                                                      struct cpu_timer_list,
1092
                                                      entry);
1093
                if (!--maxfire || sum_sched_runtime < t->expires.sched) {
1094
                        sched_expires = t->expires.sched;
1095
                        break;
1096
                }
1097
                t->firing = 1;
1098
                list_move_tail(&t->entry, firing);
1099
        }
1100
 
1101
        /*
1102
         * Check for the special case process timers.
1103
         */
1104
        if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1105
                if (cputime_ge(ptime, sig->it_prof_expires)) {
1106
                        /* ITIMER_PROF fires and reloads.  */
1107
                        sig->it_prof_expires = sig->it_prof_incr;
1108
                        if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1109
                                sig->it_prof_expires = cputime_add(
1110
                                        sig->it_prof_expires, ptime);
1111
                        }
1112
                        __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk);
1113
                }
1114
                if (!cputime_eq(sig->it_prof_expires, cputime_zero) &&
1115
                    (cputime_eq(prof_expires, cputime_zero) ||
1116
                     cputime_lt(sig->it_prof_expires, prof_expires))) {
1117
                        prof_expires = sig->it_prof_expires;
1118
                }
1119
        }
1120
        if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1121
                if (cputime_ge(utime, sig->it_virt_expires)) {
1122
                        /* ITIMER_VIRTUAL fires and reloads.  */
1123
                        sig->it_virt_expires = sig->it_virt_incr;
1124
                        if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1125
                                sig->it_virt_expires = cputime_add(
1126
                                        sig->it_virt_expires, utime);
1127
                        }
1128
                        __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk);
1129
                }
1130
                if (!cputime_eq(sig->it_virt_expires, cputime_zero) &&
1131
                    (cputime_eq(virt_expires, cputime_zero) ||
1132
                     cputime_lt(sig->it_virt_expires, virt_expires))) {
1133
                        virt_expires = sig->it_virt_expires;
1134
                }
1135
        }
1136
        if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1137
                unsigned long psecs = cputime_to_secs(ptime);
1138
                cputime_t x;
1139
                if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
1140
                        /*
1141
                         * At the hard limit, we just die.
1142
                         * No need to calculate anything else now.
1143
                         */
1144
                        __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1145
                        return;
1146
                }
1147
                if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
1148
                        /*
1149
                         * At the soft limit, send a SIGXCPU every second.
1150
                         */
1151
                        __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1152
                        if (sig->rlim[RLIMIT_CPU].rlim_cur
1153
                            < sig->rlim[RLIMIT_CPU].rlim_max) {
1154
                                sig->rlim[RLIMIT_CPU].rlim_cur++;
1155
                        }
1156
                }
1157
                x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
1158
                if (cputime_eq(prof_expires, cputime_zero) ||
1159
                    cputime_lt(x, prof_expires)) {
1160
                        prof_expires = x;
1161
                }
1162
        }
1163
 
1164
        if (!cputime_eq(prof_expires, cputime_zero) ||
1165
            !cputime_eq(virt_expires, cputime_zero) ||
1166
            sched_expires != 0) {
1167
                /*
1168
                 * Rebalance the threads' expiry times for the remaining
1169
                 * process CPU timers.
1170
                 */
1171
 
1172
                cputime_t prof_left, virt_left, ticks;
1173
                unsigned long long sched_left, sched;
1174
                const unsigned int nthreads = atomic_read(&sig->live);
1175
 
1176
                if (!nthreads)
1177
                        return;
1178
 
1179
                prof_left = cputime_sub(prof_expires, utime);
1180
                prof_left = cputime_sub(prof_left, stime);
1181
                prof_left = cputime_div_non_zero(prof_left, nthreads);
1182
                virt_left = cputime_sub(virt_expires, utime);
1183
                virt_left = cputime_div_non_zero(virt_left, nthreads);
1184
                if (sched_expires) {
1185
                        sched_left = sched_expires - sum_sched_runtime;
1186
                        do_div(sched_left, nthreads);
1187
                        sched_left = max_t(unsigned long long, sched_left, 1);
1188
                } else {
1189
                        sched_left = 0;
1190
                }
1191
                t = tsk;
1192
                do {
1193
                        if (unlikely(t->flags & PF_EXITING))
1194
                                continue;
1195
 
1196
                        ticks = cputime_add(cputime_add(t->utime, t->stime),
1197
                                            prof_left);
1198
                        if (!cputime_eq(prof_expires, cputime_zero) &&
1199
                            (cputime_eq(t->it_prof_expires, cputime_zero) ||
1200
                             cputime_gt(t->it_prof_expires, ticks))) {
1201
                                t->it_prof_expires = ticks;
1202
                        }
1203
 
1204
                        ticks = cputime_add(t->utime, virt_left);
1205
                        if (!cputime_eq(virt_expires, cputime_zero) &&
1206
                            (cputime_eq(t->it_virt_expires, cputime_zero) ||
1207
                             cputime_gt(t->it_virt_expires, ticks))) {
1208
                                t->it_virt_expires = ticks;
1209
                        }
1210
 
1211
                        sched = t->se.sum_exec_runtime + sched_left;
1212
                        if (sched_expires && (t->it_sched_expires == 0 ||
1213
                                              t->it_sched_expires > sched)) {
1214
                                t->it_sched_expires = sched;
1215
                        }
1216
                } while ((t = next_thread(t)) != tsk);
1217
        }
1218
}
1219
 
1220
/*
1221
 * This is called from the signal code (via do_schedule_next_timer)
1222
 * when the last timer signal was delivered and we have to reload the timer.
1223
 */
1224
void posix_cpu_timer_schedule(struct k_itimer *timer)
1225
{
1226
        struct task_struct *p = timer->it.cpu.task;
1227
        union cpu_time_count now;
1228
 
1229
        if (unlikely(p == NULL))
1230
                /*
1231
                 * The task was cleaned up already, no future firings.
1232
                 */
1233
                goto out;
1234
 
1235
        /*
1236
         * Fetch the current sample and update the timer's expiry time.
1237
         */
1238
        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1239
                cpu_clock_sample(timer->it_clock, p, &now);
1240
                bump_cpu_timer(timer, now);
1241
                if (unlikely(p->exit_state)) {
1242
                        clear_dead_task(timer, now);
1243
                        goto out;
1244
                }
1245
                read_lock(&tasklist_lock); /* arm_timer needs it.  */
1246
        } else {
1247
                read_lock(&tasklist_lock);
1248
                if (unlikely(p->signal == NULL)) {
1249
                        /*
1250
                         * The process has been reaped.
1251
                         * We can't even collect a sample any more.
1252
                         */
1253
                        put_task_struct(p);
1254
                        timer->it.cpu.task = p = NULL;
1255
                        timer->it.cpu.expires.sched = 0;
1256
                        goto out_unlock;
1257
                } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1258
                        /*
1259
                         * We've noticed that the thread is dead, but
1260
                         * not yet reaped.  Take this opportunity to
1261
                         * drop our task ref.
1262
                         */
1263
                        clear_dead_task(timer, now);
1264
                        goto out_unlock;
1265
                }
1266
                cpu_clock_sample_group(timer->it_clock, p, &now);
1267
                bump_cpu_timer(timer, now);
1268
                /* Leave the tasklist_lock locked for the call below.  */
1269
        }
1270
 
1271
        /*
1272
         * Now re-arm for the new expiry time.
1273
         */
1274
        arm_timer(timer, now);
1275
 
1276
out_unlock:
1277
        read_unlock(&tasklist_lock);
1278
 
1279
out:
1280
        timer->it_overrun_last = timer->it_overrun;
1281
        timer->it_overrun = -1;
1282
        ++timer->it_requeue_pending;
1283
}
1284
 
1285
/*
1286
 * This is called from the timer interrupt handler.  The irq handler has
1287
 * already updated our counts.  We need to check if any timers fire now.
1288
 * Interrupts are disabled.
1289
 */
1290
void run_posix_cpu_timers(struct task_struct *tsk)
1291
{
1292
        LIST_HEAD(firing);
1293
        struct k_itimer *timer, *next;
1294
 
1295
        BUG_ON(!irqs_disabled());
1296
 
1297
#define UNEXPIRED(clock) \
1298
                (cputime_eq(tsk->it_##clock##_expires, cputime_zero) || \
1299
                 cputime_lt(clock##_ticks(tsk), tsk->it_##clock##_expires))
1300
 
1301
        if (UNEXPIRED(prof) && UNEXPIRED(virt) &&
1302
            (tsk->it_sched_expires == 0 ||
1303
             tsk->se.sum_exec_runtime < tsk->it_sched_expires))
1304
                return;
1305
 
1306
#undef  UNEXPIRED
1307
 
1308
        /*
1309
         * Double-check with locks held.
1310
         */
1311
        read_lock(&tasklist_lock);
1312
        if (likely(tsk->signal != NULL)) {
1313
                spin_lock(&tsk->sighand->siglock);
1314
 
1315
                /*
1316
                 * Here we take off tsk->cpu_timers[N] and tsk->signal->cpu_timers[N]
1317
                 * all the timers that are firing, and put them on the firing list.
1318
                 */
1319
                check_thread_timers(tsk, &firing);
1320
                check_process_timers(tsk, &firing);
1321
 
1322
                /*
1323
                 * We must release these locks before taking any timer's lock.
1324
                 * There is a potential race with timer deletion here, as the
1325
                 * siglock now protects our private firing list.  We have set
1326
                 * the firing flag in each timer, so that a deletion attempt
1327
                 * that gets the timer lock before we do will give it up and
1328
                 * spin until we've taken care of that timer below.
1329
                 */
1330
                spin_unlock(&tsk->sighand->siglock);
1331
        }
1332
        read_unlock(&tasklist_lock);
1333
 
1334
        /*
1335
         * Now that all the timers on our list have the firing flag,
1336
         * noone will touch their list entries but us.  We'll take
1337
         * each timer's lock before clearing its firing flag, so no
1338
         * timer call will interfere.
1339
         */
1340
        list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1341
                int firing;
1342
                spin_lock(&timer->it_lock);
1343
                list_del_init(&timer->it.cpu.entry);
1344
                firing = timer->it.cpu.firing;
1345
                timer->it.cpu.firing = 0;
1346
                /*
1347
                 * The firing flag is -1 if we collided with a reset
1348
                 * of the timer, which already reported this
1349
                 * almost-firing as an overrun.  So don't generate an event.
1350
                 */
1351
                if (likely(firing >= 0)) {
1352
                        cpu_timer_fire(timer);
1353
                }
1354
                spin_unlock(&timer->it_lock);
1355
        }
1356
}
1357
 
1358
/*
1359
 * Set one of the process-wide special case CPU timers.
1360
 * The tasklist_lock and tsk->sighand->siglock must be held by the caller.
1361
 * The oldval argument is null for the RLIMIT_CPU timer, where *newval is
1362
 * absolute; non-null for ITIMER_*, where *newval is relative and we update
1363
 * it to be absolute, *oldval is absolute and we update it to be relative.
1364
 */
1365
void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1366
                           cputime_t *newval, cputime_t *oldval)
1367
{
1368
        union cpu_time_count now;
1369
        struct list_head *head;
1370
 
1371
        BUG_ON(clock_idx == CPUCLOCK_SCHED);
1372
        cpu_clock_sample_group_locked(clock_idx, tsk, &now);
1373
 
1374
        if (oldval) {
1375
                if (!cputime_eq(*oldval, cputime_zero)) {
1376
                        if (cputime_le(*oldval, now.cpu)) {
1377
                                /* Just about to fire. */
1378
                                *oldval = jiffies_to_cputime(1);
1379
                        } else {
1380
                                *oldval = cputime_sub(*oldval, now.cpu);
1381
                        }
1382
                }
1383
 
1384
                if (cputime_eq(*newval, cputime_zero))
1385
                        return;
1386
                *newval = cputime_add(*newval, now.cpu);
1387
 
1388
                /*
1389
                 * If the RLIMIT_CPU timer will expire before the
1390
                 * ITIMER_PROF timer, we have nothing else to do.
1391
                 */
1392
                if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
1393
                    < cputime_to_secs(*newval))
1394
                        return;
1395
        }
1396
 
1397
        /*
1398
         * Check whether there are any process timers already set to fire
1399
         * before this one.  If so, we don't have anything more to do.
1400
         */
1401
        head = &tsk->signal->cpu_timers[clock_idx];
1402
        if (list_empty(head) ||
1403
            cputime_ge(list_first_entry(head,
1404
                                  struct cpu_timer_list, entry)->expires.cpu,
1405
                       *newval)) {
1406
                /*
1407
                 * Rejigger each thread's expiry time so that one will
1408
                 * notice before we hit the process-cumulative expiry time.
1409
                 */
1410
                union cpu_time_count expires = { .sched = 0 };
1411
                expires.cpu = *newval;
1412
                process_timer_rebalance(tsk, clock_idx, expires, now);
1413
        }
1414
}
1415
 
1416
static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1417
                            struct timespec *rqtp, struct itimerspec *it)
1418
{
1419
        struct k_itimer timer;
1420
        int error;
1421
 
1422
        /*
1423
         * Set up a temporary timer and then wait for it to go off.
1424
         */
1425
        memset(&timer, 0, sizeof timer);
1426
        spin_lock_init(&timer.it_lock);
1427
        timer.it_clock = which_clock;
1428
        timer.it_overrun = -1;
1429
        error = posix_cpu_timer_create(&timer);
1430
        timer.it_process = current;
1431
        if (!error) {
1432
                static struct itimerspec zero_it;
1433
 
1434
                memset(it, 0, sizeof *it);
1435
                it->it_value = *rqtp;
1436
 
1437
                spin_lock_irq(&timer.it_lock);
1438
                error = posix_cpu_timer_set(&timer, flags, it, NULL);
1439
                if (error) {
1440
                        spin_unlock_irq(&timer.it_lock);
1441
                        return error;
1442
                }
1443
 
1444
                while (!signal_pending(current)) {
1445
                        if (timer.it.cpu.expires.sched == 0) {
1446
                                /*
1447
                                 * Our timer fired and was reset.
1448
                                 */
1449
                                spin_unlock_irq(&timer.it_lock);
1450
                                return 0;
1451
                        }
1452
 
1453
                        /*
1454
                         * Block until cpu_timer_fire (or a signal) wakes us.
1455
                         */
1456
                        __set_current_state(TASK_INTERRUPTIBLE);
1457
                        spin_unlock_irq(&timer.it_lock);
1458
                        schedule();
1459
                        spin_lock_irq(&timer.it_lock);
1460
                }
1461
 
1462
                /*
1463
                 * We were interrupted by a signal.
1464
                 */
1465
                sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1466
                posix_cpu_timer_set(&timer, 0, &zero_it, it);
1467
                spin_unlock_irq(&timer.it_lock);
1468
 
1469
                if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1470
                        /*
1471
                         * It actually did fire already.
1472
                         */
1473
                        return 0;
1474
                }
1475
 
1476
                error = -ERESTART_RESTARTBLOCK;
1477
        }
1478
 
1479
        return error;
1480
}
1481
 
1482
int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1483
                     struct timespec *rqtp, struct timespec __user *rmtp)
1484
{
1485
        struct restart_block *restart_block =
1486
            &current_thread_info()->restart_block;
1487
        struct itimerspec it;
1488
        int error;
1489
 
1490
        /*
1491
         * Diagnose required errors first.
1492
         */
1493
        if (CPUCLOCK_PERTHREAD(which_clock) &&
1494
            (CPUCLOCK_PID(which_clock) == 0 ||
1495
             CPUCLOCK_PID(which_clock) == current->pid))
1496
                return -EINVAL;
1497
 
1498
        error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1499
 
1500
        if (error == -ERESTART_RESTARTBLOCK) {
1501
 
1502
                if (flags & TIMER_ABSTIME)
1503
                        return -ERESTARTNOHAND;
1504
                /*
1505
                 * Report back to the user the time still remaining.
1506
                 */
1507
                if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1508
                        return -EFAULT;
1509
 
1510
                restart_block->fn = posix_cpu_nsleep_restart;
1511
                restart_block->arg0 = which_clock;
1512
                restart_block->arg1 = (unsigned long) rmtp;
1513
                restart_block->arg2 = rqtp->tv_sec;
1514
                restart_block->arg3 = rqtp->tv_nsec;
1515
        }
1516
        return error;
1517
}
1518
 
1519
long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1520
{
1521
        clockid_t which_clock = restart_block->arg0;
1522
        struct timespec __user *rmtp;
1523
        struct timespec t;
1524
        struct itimerspec it;
1525
        int error;
1526
 
1527
        rmtp = (struct timespec __user *) restart_block->arg1;
1528
        t.tv_sec = restart_block->arg2;
1529
        t.tv_nsec = restart_block->arg3;
1530
 
1531
        restart_block->fn = do_no_restart_syscall;
1532
        error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1533
 
1534
        if (error == -ERESTART_RESTARTBLOCK) {
1535
                /*
1536
                 * Report back to the user the time still remaining.
1537
                 */
1538
                if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1539
                        return -EFAULT;
1540
 
1541
                restart_block->fn = posix_cpu_nsleep_restart;
1542
                restart_block->arg0 = which_clock;
1543
                restart_block->arg1 = (unsigned long) rmtp;
1544
                restart_block->arg2 = t.tv_sec;
1545
                restart_block->arg3 = t.tv_nsec;
1546
        }
1547
        return error;
1548
 
1549
}
1550
 
1551
 
1552
#define PROCESS_CLOCK   MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1553
#define THREAD_CLOCK    MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1554
 
1555
static int process_cpu_clock_getres(const clockid_t which_clock,
1556
                                    struct timespec *tp)
1557
{
1558
        return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1559
}
1560
static int process_cpu_clock_get(const clockid_t which_clock,
1561
                                 struct timespec *tp)
1562
{
1563
        return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1564
}
1565
static int process_cpu_timer_create(struct k_itimer *timer)
1566
{
1567
        timer->it_clock = PROCESS_CLOCK;
1568
        return posix_cpu_timer_create(timer);
1569
}
1570
static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1571
                              struct timespec *rqtp,
1572
                              struct timespec __user *rmtp)
1573
{
1574
        return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1575
}
1576
static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1577
{
1578
        return -EINVAL;
1579
}
1580
static int thread_cpu_clock_getres(const clockid_t which_clock,
1581
                                   struct timespec *tp)
1582
{
1583
        return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1584
}
1585
static int thread_cpu_clock_get(const clockid_t which_clock,
1586
                                struct timespec *tp)
1587
{
1588
        return posix_cpu_clock_get(THREAD_CLOCK, tp);
1589
}
1590
static int thread_cpu_timer_create(struct k_itimer *timer)
1591
{
1592
        timer->it_clock = THREAD_CLOCK;
1593
        return posix_cpu_timer_create(timer);
1594
}
1595
static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
1596
                              struct timespec *rqtp, struct timespec __user *rmtp)
1597
{
1598
        return -EINVAL;
1599
}
1600
static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
1601
{
1602
        return -EINVAL;
1603
}
1604
 
1605
static __init int init_posix_cpu_timers(void)
1606
{
1607
        struct k_clock process = {
1608
                .clock_getres = process_cpu_clock_getres,
1609
                .clock_get = process_cpu_clock_get,
1610
                .clock_set = do_posix_clock_nosettime,
1611
                .timer_create = process_cpu_timer_create,
1612
                .nsleep = process_cpu_nsleep,
1613
                .nsleep_restart = process_cpu_nsleep_restart,
1614
        };
1615
        struct k_clock thread = {
1616
                .clock_getres = thread_cpu_clock_getres,
1617
                .clock_get = thread_cpu_clock_get,
1618
                .clock_set = do_posix_clock_nosettime,
1619
                .timer_create = thread_cpu_timer_create,
1620
                .nsleep = thread_cpu_nsleep,
1621
                .nsleep_restart = thread_cpu_nsleep_restart,
1622
        };
1623
 
1624
        register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1625
        register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1626
 
1627
        return 0;
1628
}
1629
__initcall(init_posix_cpu_timers);

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.