OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [tags/] [linux-2.6/] [linux-2.6.24_orig/] [mm/] [filemap.c] - Blame information for rev 8

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/*
2
 *      linux/mm/filemap.c
3
 *
4
 * Copyright (C) 1994-1999  Linus Torvalds
5
 */
6
 
7
/*
8
 * This file handles the generic file mmap semantics used by
9
 * most "normal" filesystems (but you don't /have/ to use this:
10
 * the NFS filesystem used to do this differently, for example)
11
 */
12
#include <linux/module.h>
13
#include <linux/slab.h>
14
#include <linux/compiler.h>
15
#include <linux/fs.h>
16
#include <linux/uaccess.h>
17
#include <linux/aio.h>
18
#include <linux/capability.h>
19
#include <linux/kernel_stat.h>
20
#include <linux/mm.h>
21
#include <linux/swap.h>
22
#include <linux/mman.h>
23
#include <linux/pagemap.h>
24
#include <linux/file.h>
25
#include <linux/uio.h>
26
#include <linux/hash.h>
27
#include <linux/writeback.h>
28
#include <linux/backing-dev.h>
29
#include <linux/pagevec.h>
30
#include <linux/blkdev.h>
31
#include <linux/backing-dev.h>
32
#include <linux/security.h>
33
#include <linux/syscalls.h>
34
#include <linux/cpuset.h>
35
#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
36
#include "internal.h"
37
 
38
/*
39
 * FIXME: remove all knowledge of the buffer layer from the core VM
40
 */
41
#include <linux/buffer_head.h> /* for generic_osync_inode */
42
 
43
#include <asm/mman.h>
44
 
45
static ssize_t
46
generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
47
        loff_t offset, unsigned long nr_segs);
48
 
49
/*
50
 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51
 * though.
52
 *
53
 * Shared mappings now work. 15.8.1995  Bruno.
54
 *
55
 * finished 'unifying' the page and buffer cache and SMP-threaded the
56
 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57
 *
58
 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59
 */
60
 
61
/*
62
 * Lock ordering:
63
 *
64
 *  ->i_mmap_lock               (vmtruncate)
65
 *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
66
 *      ->swap_lock             (exclusive_swap_page, others)
67
 *        ->mapping->tree_lock
68
 *          ->zone.lock
69
 *
70
 *  ->i_mutex
71
 *    ->i_mmap_lock             (truncate->unmap_mapping_range)
72
 *
73
 *  ->mmap_sem
74
 *    ->i_mmap_lock
75
 *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76
 *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77
 *
78
 *  ->mmap_sem
79
 *    ->lock_page               (access_process_vm)
80
 *
81
 *  ->i_mutex                   (generic_file_buffered_write)
82
 *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83
 *
84
 *  ->i_mutex
85
 *    ->i_alloc_sem             (various)
86
 *
87
 *  ->inode_lock
88
 *    ->sb_lock                 (fs/fs-writeback.c)
89
 *    ->mapping->tree_lock      (__sync_single_inode)
90
 *
91
 *  ->i_mmap_lock
92
 *    ->anon_vma.lock           (vma_adjust)
93
 *
94
 *  ->anon_vma.lock
95
 *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
96
 *
97
 *  ->page_table_lock or pte_lock
98
 *    ->swap_lock               (try_to_unmap_one)
99
 *    ->private_lock            (try_to_unmap_one)
100
 *    ->tree_lock               (try_to_unmap_one)
101
 *    ->zone.lru_lock           (follow_page->mark_page_accessed)
102
 *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
103
 *    ->private_lock            (page_remove_rmap->set_page_dirty)
104
 *    ->tree_lock               (page_remove_rmap->set_page_dirty)
105
 *    ->inode_lock              (page_remove_rmap->set_page_dirty)
106
 *    ->inode_lock              (zap_pte_range->set_page_dirty)
107
 *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
108
 *
109
 *  ->task->proc_lock
110
 *    ->dcache_lock             (proc_pid_lookup)
111
 */
112
 
113
/*
114
 * Remove a page from the page cache and free it. Caller has to make
115
 * sure the page is locked and that nobody else uses it - or that usage
116
 * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
117
 */
118
void __remove_from_page_cache(struct page *page)
119
{
120
        struct address_space *mapping = page->mapping;
121
 
122
        radix_tree_delete(&mapping->page_tree, page->index);
123
        page->mapping = NULL;
124
        mapping->nrpages--;
125
        __dec_zone_page_state(page, NR_FILE_PAGES);
126
        BUG_ON(page_mapped(page));
127
 
128
        /*
129
         * Some filesystems seem to re-dirty the page even after
130
         * the VM has canceled the dirty bit (eg ext3 journaling).
131
         *
132
         * Fix it up by doing a final dirty accounting check after
133
         * having removed the page entirely.
134
         */
135
        if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
136
                dec_zone_page_state(page, NR_FILE_DIRTY);
137
                dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
138
        }
139
}
140
 
141
void remove_from_page_cache(struct page *page)
142
{
143
        struct address_space *mapping = page->mapping;
144
 
145
        BUG_ON(!PageLocked(page));
146
 
147
        write_lock_irq(&mapping->tree_lock);
148
        __remove_from_page_cache(page);
149
        write_unlock_irq(&mapping->tree_lock);
150
}
151
 
152
static int sync_page(void *word)
153
{
154
        struct address_space *mapping;
155
        struct page *page;
156
 
157
        page = container_of((unsigned long *)word, struct page, flags);
158
 
159
        /*
160
         * page_mapping() is being called without PG_locked held.
161
         * Some knowledge of the state and use of the page is used to
162
         * reduce the requirements down to a memory barrier.
163
         * The danger here is of a stale page_mapping() return value
164
         * indicating a struct address_space different from the one it's
165
         * associated with when it is associated with one.
166
         * After smp_mb(), it's either the correct page_mapping() for
167
         * the page, or an old page_mapping() and the page's own
168
         * page_mapping() has gone NULL.
169
         * The ->sync_page() address_space operation must tolerate
170
         * page_mapping() going NULL. By an amazing coincidence,
171
         * this comes about because none of the users of the page
172
         * in the ->sync_page() methods make essential use of the
173
         * page_mapping(), merely passing the page down to the backing
174
         * device's unplug functions when it's non-NULL, which in turn
175
         * ignore it for all cases but swap, where only page_private(page) is
176
         * of interest. When page_mapping() does go NULL, the entire
177
         * call stack gracefully ignores the page and returns.
178
         * -- wli
179
         */
180
        smp_mb();
181
        mapping = page_mapping(page);
182
        if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
183
                mapping->a_ops->sync_page(page);
184
        io_schedule();
185
        return 0;
186
}
187
 
188
/**
189
 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
190
 * @mapping:    address space structure to write
191
 * @start:      offset in bytes where the range starts
192
 * @end:        offset in bytes where the range ends (inclusive)
193
 * @sync_mode:  enable synchronous operation
194
 *
195
 * Start writeback against all of a mapping's dirty pages that lie
196
 * within the byte offsets <start, end> inclusive.
197
 *
198
 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
199
 * opposed to a regular memory cleansing writeback.  The difference between
200
 * these two operations is that if a dirty page/buffer is encountered, it must
201
 * be waited upon, and not just skipped over.
202
 */
203
int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
204
                                loff_t end, int sync_mode)
205
{
206
        int ret;
207
        struct writeback_control wbc = {
208
                .sync_mode = sync_mode,
209
                .nr_to_write = mapping->nrpages * 2,
210
                .range_start = start,
211
                .range_end = end,
212
        };
213
 
214
        if (!mapping_cap_writeback_dirty(mapping))
215
                return 0;
216
 
217
        ret = do_writepages(mapping, &wbc);
218
        return ret;
219
}
220
 
221
static inline int __filemap_fdatawrite(struct address_space *mapping,
222
        int sync_mode)
223
{
224
        return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
225
}
226
 
227
int filemap_fdatawrite(struct address_space *mapping)
228
{
229
        return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
230
}
231
EXPORT_SYMBOL(filemap_fdatawrite);
232
 
233
static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
234
                                loff_t end)
235
{
236
        return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
237
}
238
 
239
/**
240
 * filemap_flush - mostly a non-blocking flush
241
 * @mapping:    target address_space
242
 *
243
 * This is a mostly non-blocking flush.  Not suitable for data-integrity
244
 * purposes - I/O may not be started against all dirty pages.
245
 */
246
int filemap_flush(struct address_space *mapping)
247
{
248
        return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
249
}
250
EXPORT_SYMBOL(filemap_flush);
251
 
252
/**
253
 * wait_on_page_writeback_range - wait for writeback to complete
254
 * @mapping:    target address_space
255
 * @start:      beginning page index
256
 * @end:        ending page index
257
 *
258
 * Wait for writeback to complete against pages indexed by start->end
259
 * inclusive
260
 */
261
int wait_on_page_writeback_range(struct address_space *mapping,
262
                                pgoff_t start, pgoff_t end)
263
{
264
        struct pagevec pvec;
265
        int nr_pages;
266
        int ret = 0;
267
        pgoff_t index;
268
 
269
        if (end < start)
270
                return 0;
271
 
272
        pagevec_init(&pvec, 0);
273
        index = start;
274
        while ((index <= end) &&
275
                        (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
276
                        PAGECACHE_TAG_WRITEBACK,
277
                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
278
                unsigned i;
279
 
280
                for (i = 0; i < nr_pages; i++) {
281
                        struct page *page = pvec.pages[i];
282
 
283
                        /* until radix tree lookup accepts end_index */
284
                        if (page->index > end)
285
                                continue;
286
 
287
                        wait_on_page_writeback(page);
288
                        if (PageError(page))
289
                                ret = -EIO;
290
                }
291
                pagevec_release(&pvec);
292
                cond_resched();
293
        }
294
 
295
        /* Check for outstanding write errors */
296
        if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
297
                ret = -ENOSPC;
298
        if (test_and_clear_bit(AS_EIO, &mapping->flags))
299
                ret = -EIO;
300
 
301
        return ret;
302
}
303
 
304
/**
305
 * sync_page_range - write and wait on all pages in the passed range
306
 * @inode:      target inode
307
 * @mapping:    target address_space
308
 * @pos:        beginning offset in pages to write
309
 * @count:      number of bytes to write
310
 *
311
 * Write and wait upon all the pages in the passed range.  This is a "data
312
 * integrity" operation.  It waits upon in-flight writeout before starting and
313
 * waiting upon new writeout.  If there was an IO error, return it.
314
 *
315
 * We need to re-take i_mutex during the generic_osync_inode list walk because
316
 * it is otherwise livelockable.
317
 */
318
int sync_page_range(struct inode *inode, struct address_space *mapping,
319
                        loff_t pos, loff_t count)
320
{
321
        pgoff_t start = pos >> PAGE_CACHE_SHIFT;
322
        pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
323
        int ret;
324
 
325
        if (!mapping_cap_writeback_dirty(mapping) || !count)
326
                return 0;
327
        ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
328
        if (ret == 0) {
329
                mutex_lock(&inode->i_mutex);
330
                ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
331
                mutex_unlock(&inode->i_mutex);
332
        }
333
        if (ret == 0)
334
                ret = wait_on_page_writeback_range(mapping, start, end);
335
        return ret;
336
}
337
EXPORT_SYMBOL(sync_page_range);
338
 
339
/**
340
 * sync_page_range_nolock
341
 * @inode:      target inode
342
 * @mapping:    target address_space
343
 * @pos:        beginning offset in pages to write
344
 * @count:      number of bytes to write
345
 *
346
 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
347
 * as it forces O_SYNC writers to different parts of the same file
348
 * to be serialised right until io completion.
349
 */
350
int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
351
                           loff_t pos, loff_t count)
352
{
353
        pgoff_t start = pos >> PAGE_CACHE_SHIFT;
354
        pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
355
        int ret;
356
 
357
        if (!mapping_cap_writeback_dirty(mapping) || !count)
358
                return 0;
359
        ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
360
        if (ret == 0)
361
                ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
362
        if (ret == 0)
363
                ret = wait_on_page_writeback_range(mapping, start, end);
364
        return ret;
365
}
366
EXPORT_SYMBOL(sync_page_range_nolock);
367
 
368
/**
369
 * filemap_fdatawait - wait for all under-writeback pages to complete
370
 * @mapping: address space structure to wait for
371
 *
372
 * Walk the list of under-writeback pages of the given address space
373
 * and wait for all of them.
374
 */
375
int filemap_fdatawait(struct address_space *mapping)
376
{
377
        loff_t i_size = i_size_read(mapping->host);
378
 
379
        if (i_size == 0)
380
                return 0;
381
 
382
        return wait_on_page_writeback_range(mapping, 0,
383
                                (i_size - 1) >> PAGE_CACHE_SHIFT);
384
}
385
EXPORT_SYMBOL(filemap_fdatawait);
386
 
387
int filemap_write_and_wait(struct address_space *mapping)
388
{
389
        int err = 0;
390
 
391
        if (mapping->nrpages) {
392
                err = filemap_fdatawrite(mapping);
393
                /*
394
                 * Even if the above returned error, the pages may be
395
                 * written partially (e.g. -ENOSPC), so we wait for it.
396
                 * But the -EIO is special case, it may indicate the worst
397
                 * thing (e.g. bug) happened, so we avoid waiting for it.
398
                 */
399
                if (err != -EIO) {
400
                        int err2 = filemap_fdatawait(mapping);
401
                        if (!err)
402
                                err = err2;
403
                }
404
        }
405
        return err;
406
}
407
EXPORT_SYMBOL(filemap_write_and_wait);
408
 
409
/**
410
 * filemap_write_and_wait_range - write out & wait on a file range
411
 * @mapping:    the address_space for the pages
412
 * @lstart:     offset in bytes where the range starts
413
 * @lend:       offset in bytes where the range ends (inclusive)
414
 *
415
 * Write out and wait upon file offsets lstart->lend, inclusive.
416
 *
417
 * Note that `lend' is inclusive (describes the last byte to be written) so
418
 * that this function can be used to write to the very end-of-file (end = -1).
419
 */
420
int filemap_write_and_wait_range(struct address_space *mapping,
421
                                 loff_t lstart, loff_t lend)
422
{
423
        int err = 0;
424
 
425
        if (mapping->nrpages) {
426
                err = __filemap_fdatawrite_range(mapping, lstart, lend,
427
                                                 WB_SYNC_ALL);
428
                /* See comment of filemap_write_and_wait() */
429
                if (err != -EIO) {
430
                        int err2 = wait_on_page_writeback_range(mapping,
431
                                                lstart >> PAGE_CACHE_SHIFT,
432
                                                lend >> PAGE_CACHE_SHIFT);
433
                        if (!err)
434
                                err = err2;
435
                }
436
        }
437
        return err;
438
}
439
 
440
/**
441
 * add_to_page_cache - add newly allocated pagecache pages
442
 * @page:       page to add
443
 * @mapping:    the page's address_space
444
 * @offset:     page index
445
 * @gfp_mask:   page allocation mode
446
 *
447
 * This function is used to add newly allocated pagecache pages;
448
 * the page is new, so we can just run SetPageLocked() against it.
449
 * The other page state flags were set by rmqueue().
450
 *
451
 * This function does not add the page to the LRU.  The caller must do that.
452
 */
453
int add_to_page_cache(struct page *page, struct address_space *mapping,
454
                pgoff_t offset, gfp_t gfp_mask)
455
{
456
        int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
457
 
458
        if (error == 0) {
459
                write_lock_irq(&mapping->tree_lock);
460
                error = radix_tree_insert(&mapping->page_tree, offset, page);
461
                if (!error) {
462
                        page_cache_get(page);
463
                        SetPageLocked(page);
464
                        page->mapping = mapping;
465
                        page->index = offset;
466
                        mapping->nrpages++;
467
                        __inc_zone_page_state(page, NR_FILE_PAGES);
468
                }
469
                write_unlock_irq(&mapping->tree_lock);
470
                radix_tree_preload_end();
471
        }
472
        return error;
473
}
474
EXPORT_SYMBOL(add_to_page_cache);
475
 
476
int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
477
                                pgoff_t offset, gfp_t gfp_mask)
478
{
479
        int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
480
        if (ret == 0)
481
                lru_cache_add(page);
482
        return ret;
483
}
484
 
485
#ifdef CONFIG_NUMA
486
struct page *__page_cache_alloc(gfp_t gfp)
487
{
488
        if (cpuset_do_page_mem_spread()) {
489
                int n = cpuset_mem_spread_node();
490
                return alloc_pages_node(n, gfp, 0);
491
        }
492
        return alloc_pages(gfp, 0);
493
}
494
EXPORT_SYMBOL(__page_cache_alloc);
495
#endif
496
 
497
static int __sleep_on_page_lock(void *word)
498
{
499
        io_schedule();
500
        return 0;
501
}
502
 
503
/*
504
 * In order to wait for pages to become available there must be
505
 * waitqueues associated with pages. By using a hash table of
506
 * waitqueues where the bucket discipline is to maintain all
507
 * waiters on the same queue and wake all when any of the pages
508
 * become available, and for the woken contexts to check to be
509
 * sure the appropriate page became available, this saves space
510
 * at a cost of "thundering herd" phenomena during rare hash
511
 * collisions.
512
 */
513
static wait_queue_head_t *page_waitqueue(struct page *page)
514
{
515
        const struct zone *zone = page_zone(page);
516
 
517
        return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
518
}
519
 
520
static inline void wake_up_page(struct page *page, int bit)
521
{
522
        __wake_up_bit(page_waitqueue(page), &page->flags, bit);
523
}
524
 
525
void fastcall wait_on_page_bit(struct page *page, int bit_nr)
526
{
527
        DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
528
 
529
        if (test_bit(bit_nr, &page->flags))
530
                __wait_on_bit(page_waitqueue(page), &wait, sync_page,
531
                                                        TASK_UNINTERRUPTIBLE);
532
}
533
EXPORT_SYMBOL(wait_on_page_bit);
534
 
535
/**
536
 * unlock_page - unlock a locked page
537
 * @page: the page
538
 *
539
 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
540
 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
541
 * mechananism between PageLocked pages and PageWriteback pages is shared.
542
 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
543
 *
544
 * The first mb is necessary to safely close the critical section opened by the
545
 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
546
 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
547
 * parallel wait_on_page_locked()).
548
 */
549
void fastcall unlock_page(struct page *page)
550
{
551
        smp_mb__before_clear_bit();
552
        if (!TestClearPageLocked(page))
553
                BUG();
554
        smp_mb__after_clear_bit();
555
        wake_up_page(page, PG_locked);
556
}
557
EXPORT_SYMBOL(unlock_page);
558
 
559
/**
560
 * end_page_writeback - end writeback against a page
561
 * @page: the page
562
 */
563
void end_page_writeback(struct page *page)
564
{
565
        if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
566
                if (!test_clear_page_writeback(page))
567
                        BUG();
568
        }
569
        smp_mb__after_clear_bit();
570
        wake_up_page(page, PG_writeback);
571
}
572
EXPORT_SYMBOL(end_page_writeback);
573
 
574
/**
575
 * __lock_page - get a lock on the page, assuming we need to sleep to get it
576
 * @page: the page to lock
577
 *
578
 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
579
 * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
580
 * chances are that on the second loop, the block layer's plug list is empty,
581
 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
582
 */
583
void fastcall __lock_page(struct page *page)
584
{
585
        DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
586
 
587
        __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
588
                                                        TASK_UNINTERRUPTIBLE);
589
}
590
EXPORT_SYMBOL(__lock_page);
591
 
592
/*
593
 * Variant of lock_page that does not require the caller to hold a reference
594
 * on the page's mapping.
595
 */
596
void fastcall __lock_page_nosync(struct page *page)
597
{
598
        DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
599
        __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
600
                                                        TASK_UNINTERRUPTIBLE);
601
}
602
 
603
/**
604
 * find_get_page - find and get a page reference
605
 * @mapping: the address_space to search
606
 * @offset: the page index
607
 *
608
 * Is there a pagecache struct page at the given (mapping, offset) tuple?
609
 * If yes, increment its refcount and return it; if no, return NULL.
610
 */
611
struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
612
{
613
        struct page *page;
614
 
615
        read_lock_irq(&mapping->tree_lock);
616
        page = radix_tree_lookup(&mapping->page_tree, offset);
617
        if (page)
618
                page_cache_get(page);
619
        read_unlock_irq(&mapping->tree_lock);
620
        return page;
621
}
622
EXPORT_SYMBOL(find_get_page);
623
 
624
/**
625
 * find_lock_page - locate, pin and lock a pagecache page
626
 * @mapping: the address_space to search
627
 * @offset: the page index
628
 *
629
 * Locates the desired pagecache page, locks it, increments its reference
630
 * count and returns its address.
631
 *
632
 * Returns zero if the page was not present. find_lock_page() may sleep.
633
 */
634
struct page *find_lock_page(struct address_space *mapping,
635
                                pgoff_t offset)
636
{
637
        struct page *page;
638
 
639
repeat:
640
        read_lock_irq(&mapping->tree_lock);
641
        page = radix_tree_lookup(&mapping->page_tree, offset);
642
        if (page) {
643
                page_cache_get(page);
644
                if (TestSetPageLocked(page)) {
645
                        read_unlock_irq(&mapping->tree_lock);
646
                        __lock_page(page);
647
 
648
                        /* Has the page been truncated while we slept? */
649
                        if (unlikely(page->mapping != mapping)) {
650
                                unlock_page(page);
651
                                page_cache_release(page);
652
                                goto repeat;
653
                        }
654
                        VM_BUG_ON(page->index != offset);
655
                        goto out;
656
                }
657
        }
658
        read_unlock_irq(&mapping->tree_lock);
659
out:
660
        return page;
661
}
662
EXPORT_SYMBOL(find_lock_page);
663
 
664
/**
665
 * find_or_create_page - locate or add a pagecache page
666
 * @mapping: the page's address_space
667
 * @index: the page's index into the mapping
668
 * @gfp_mask: page allocation mode
669
 *
670
 * Locates a page in the pagecache.  If the page is not present, a new page
671
 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
672
 * LRU list.  The returned page is locked and has its reference count
673
 * incremented.
674
 *
675
 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
676
 * allocation!
677
 *
678
 * find_or_create_page() returns the desired page's address, or zero on
679
 * memory exhaustion.
680
 */
681
struct page *find_or_create_page(struct address_space *mapping,
682
                pgoff_t index, gfp_t gfp_mask)
683
{
684
        struct page *page;
685
        int err;
686
repeat:
687
        page = find_lock_page(mapping, index);
688
        if (!page) {
689
                page = __page_cache_alloc(gfp_mask);
690
                if (!page)
691
                        return NULL;
692
                err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
693
                if (unlikely(err)) {
694
                        page_cache_release(page);
695
                        page = NULL;
696
                        if (err == -EEXIST)
697
                                goto repeat;
698
                }
699
        }
700
        return page;
701
}
702
EXPORT_SYMBOL(find_or_create_page);
703
 
704
/**
705
 * find_get_pages - gang pagecache lookup
706
 * @mapping:    The address_space to search
707
 * @start:      The starting page index
708
 * @nr_pages:   The maximum number of pages
709
 * @pages:      Where the resulting pages are placed
710
 *
711
 * find_get_pages() will search for and return a group of up to
712
 * @nr_pages pages in the mapping.  The pages are placed at @pages.
713
 * find_get_pages() takes a reference against the returned pages.
714
 *
715
 * The search returns a group of mapping-contiguous pages with ascending
716
 * indexes.  There may be holes in the indices due to not-present pages.
717
 *
718
 * find_get_pages() returns the number of pages which were found.
719
 */
720
unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
721
                            unsigned int nr_pages, struct page **pages)
722
{
723
        unsigned int i;
724
        unsigned int ret;
725
 
726
        read_lock_irq(&mapping->tree_lock);
727
        ret = radix_tree_gang_lookup(&mapping->page_tree,
728
                                (void **)pages, start, nr_pages);
729
        for (i = 0; i < ret; i++)
730
                page_cache_get(pages[i]);
731
        read_unlock_irq(&mapping->tree_lock);
732
        return ret;
733
}
734
 
735
/**
736
 * find_get_pages_contig - gang contiguous pagecache lookup
737
 * @mapping:    The address_space to search
738
 * @index:      The starting page index
739
 * @nr_pages:   The maximum number of pages
740
 * @pages:      Where the resulting pages are placed
741
 *
742
 * find_get_pages_contig() works exactly like find_get_pages(), except
743
 * that the returned number of pages are guaranteed to be contiguous.
744
 *
745
 * find_get_pages_contig() returns the number of pages which were found.
746
 */
747
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
748
                               unsigned int nr_pages, struct page **pages)
749
{
750
        unsigned int i;
751
        unsigned int ret;
752
 
753
        read_lock_irq(&mapping->tree_lock);
754
        ret = radix_tree_gang_lookup(&mapping->page_tree,
755
                                (void **)pages, index, nr_pages);
756
        for (i = 0; i < ret; i++) {
757
                if (pages[i]->mapping == NULL || pages[i]->index != index)
758
                        break;
759
 
760
                page_cache_get(pages[i]);
761
                index++;
762
        }
763
        read_unlock_irq(&mapping->tree_lock);
764
        return i;
765
}
766
EXPORT_SYMBOL(find_get_pages_contig);
767
 
768
/**
769
 * find_get_pages_tag - find and return pages that match @tag
770
 * @mapping:    the address_space to search
771
 * @index:      the starting page index
772
 * @tag:        the tag index
773
 * @nr_pages:   the maximum number of pages
774
 * @pages:      where the resulting pages are placed
775
 *
776
 * Like find_get_pages, except we only return pages which are tagged with
777
 * @tag.   We update @index to index the next page for the traversal.
778
 */
779
unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
780
                        int tag, unsigned int nr_pages, struct page **pages)
781
{
782
        unsigned int i;
783
        unsigned int ret;
784
 
785
        read_lock_irq(&mapping->tree_lock);
786
        ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
787
                                (void **)pages, *index, nr_pages, tag);
788
        for (i = 0; i < ret; i++)
789
                page_cache_get(pages[i]);
790
        if (ret)
791
                *index = pages[ret - 1]->index + 1;
792
        read_unlock_irq(&mapping->tree_lock);
793
        return ret;
794
}
795
EXPORT_SYMBOL(find_get_pages_tag);
796
 
797
/**
798
 * grab_cache_page_nowait - returns locked page at given index in given cache
799
 * @mapping: target address_space
800
 * @index: the page index
801
 *
802
 * Same as grab_cache_page(), but do not wait if the page is unavailable.
803
 * This is intended for speculative data generators, where the data can
804
 * be regenerated if the page couldn't be grabbed.  This routine should
805
 * be safe to call while holding the lock for another page.
806
 *
807
 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
808
 * and deadlock against the caller's locked page.
809
 */
810
struct page *
811
grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
812
{
813
        struct page *page = find_get_page(mapping, index);
814
 
815
        if (page) {
816
                if (!TestSetPageLocked(page))
817
                        return page;
818
                page_cache_release(page);
819
                return NULL;
820
        }
821
        page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
822
        if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
823
                page_cache_release(page);
824
                page = NULL;
825
        }
826
        return page;
827
}
828
EXPORT_SYMBOL(grab_cache_page_nowait);
829
 
830
/*
831
 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
832
 * a _large_ part of the i/o request. Imagine the worst scenario:
833
 *
834
 *      ---R__________________________________________B__________
835
 *         ^ reading here                             ^ bad block(assume 4k)
836
 *
837
 * read(R) => miss => readahead(R...B) => media error => frustrating retries
838
 * => failing the whole request => read(R) => read(R+1) =>
839
 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
840
 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
841
 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
842
 *
843
 * It is going insane. Fix it by quickly scaling down the readahead size.
844
 */
845
static void shrink_readahead_size_eio(struct file *filp,
846
                                        struct file_ra_state *ra)
847
{
848
        if (!ra->ra_pages)
849
                return;
850
 
851
        ra->ra_pages /= 4;
852
}
853
 
854
/**
855
 * do_generic_mapping_read - generic file read routine
856
 * @mapping:    address_space to be read
857
 * @ra:         file's readahead state
858
 * @filp:       the file to read
859
 * @ppos:       current file position
860
 * @desc:       read_descriptor
861
 * @actor:      read method
862
 *
863
 * This is a generic file read routine, and uses the
864
 * mapping->a_ops->readpage() function for the actual low-level stuff.
865
 *
866
 * This is really ugly. But the goto's actually try to clarify some
867
 * of the logic when it comes to error handling etc.
868
 *
869
 * Note the struct file* is only passed for the use of readpage.
870
 * It may be NULL.
871
 */
872
void do_generic_mapping_read(struct address_space *mapping,
873
                             struct file_ra_state *ra,
874
                             struct file *filp,
875
                             loff_t *ppos,
876
                             read_descriptor_t *desc,
877
                             read_actor_t actor)
878
{
879
        struct inode *inode = mapping->host;
880
        pgoff_t index;
881
        pgoff_t last_index;
882
        pgoff_t prev_index;
883
        unsigned long offset;      /* offset into pagecache page */
884
        unsigned int prev_offset;
885
        int error;
886
 
887
        index = *ppos >> PAGE_CACHE_SHIFT;
888
        prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
889
        prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
890
        last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
891
        offset = *ppos & ~PAGE_CACHE_MASK;
892
 
893
        for (;;) {
894
                struct page *page;
895
                pgoff_t end_index;
896
                loff_t isize;
897
                unsigned long nr, ret;
898
 
899
                cond_resched();
900
find_page:
901
                page = find_get_page(mapping, index);
902
                if (!page) {
903
                        page_cache_sync_readahead(mapping,
904
                                        ra, filp,
905
                                        index, last_index - index);
906
                        page = find_get_page(mapping, index);
907
                        if (unlikely(page == NULL))
908
                                goto no_cached_page;
909
                }
910
                if (PageReadahead(page)) {
911
                        page_cache_async_readahead(mapping,
912
                                        ra, filp, page,
913
                                        index, last_index - index);
914
                }
915
                if (!PageUptodate(page))
916
                        goto page_not_up_to_date;
917
page_ok:
918
                /*
919
                 * i_size must be checked after we know the page is Uptodate.
920
                 *
921
                 * Checking i_size after the check allows us to calculate
922
                 * the correct value for "nr", which means the zero-filled
923
                 * part of the page is not copied back to userspace (unless
924
                 * another truncate extends the file - this is desired though).
925
                 */
926
 
927
                isize = i_size_read(inode);
928
                end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
929
                if (unlikely(!isize || index > end_index)) {
930
                        page_cache_release(page);
931
                        goto out;
932
                }
933
 
934
                /* nr is the maximum number of bytes to copy from this page */
935
                nr = PAGE_CACHE_SIZE;
936
                if (index == end_index) {
937
                        nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
938
                        if (nr <= offset) {
939
                                page_cache_release(page);
940
                                goto out;
941
                        }
942
                }
943
                nr = nr - offset;
944
 
945
                /* If users can be writing to this page using arbitrary
946
                 * virtual addresses, take care about potential aliasing
947
                 * before reading the page on the kernel side.
948
                 */
949
                if (mapping_writably_mapped(mapping))
950
                        flush_dcache_page(page);
951
 
952
                /*
953
                 * When a sequential read accesses a page several times,
954
                 * only mark it as accessed the first time.
955
                 */
956
                if (prev_index != index || offset != prev_offset)
957
                        mark_page_accessed(page);
958
                prev_index = index;
959
 
960
                /*
961
                 * Ok, we have the page, and it's up-to-date, so
962
                 * now we can copy it to user space...
963
                 *
964
                 * The actor routine returns how many bytes were actually used..
965
                 * NOTE! This may not be the same as how much of a user buffer
966
                 * we filled up (we may be padding etc), so we can only update
967
                 * "pos" here (the actor routine has to update the user buffer
968
                 * pointers and the remaining count).
969
                 */
970
                ret = actor(desc, page, offset, nr);
971
                offset += ret;
972
                index += offset >> PAGE_CACHE_SHIFT;
973
                offset &= ~PAGE_CACHE_MASK;
974
                prev_offset = offset;
975
 
976
                page_cache_release(page);
977
                if (ret == nr && desc->count)
978
                        continue;
979
                goto out;
980
 
981
page_not_up_to_date:
982
                /* Get exclusive access to the page ... */
983
                lock_page(page);
984
 
985
                /* Did it get truncated before we got the lock? */
986
                if (!page->mapping) {
987
                        unlock_page(page);
988
                        page_cache_release(page);
989
                        continue;
990
                }
991
 
992
                /* Did somebody else fill it already? */
993
                if (PageUptodate(page)) {
994
                        unlock_page(page);
995
                        goto page_ok;
996
                }
997
 
998
readpage:
999
                /* Start the actual read. The read will unlock the page. */
1000
                error = mapping->a_ops->readpage(filp, page);
1001
 
1002
                if (unlikely(error)) {
1003
                        if (error == AOP_TRUNCATED_PAGE) {
1004
                                page_cache_release(page);
1005
                                goto find_page;
1006
                        }
1007
                        goto readpage_error;
1008
                }
1009
 
1010
                if (!PageUptodate(page)) {
1011
                        lock_page(page);
1012
                        if (!PageUptodate(page)) {
1013
                                if (page->mapping == NULL) {
1014
                                        /*
1015
                                         * invalidate_inode_pages got it
1016
                                         */
1017
                                        unlock_page(page);
1018
                                        page_cache_release(page);
1019
                                        goto find_page;
1020
                                }
1021
                                unlock_page(page);
1022
                                error = -EIO;
1023
                                shrink_readahead_size_eio(filp, ra);
1024
                                goto readpage_error;
1025
                        }
1026
                        unlock_page(page);
1027
                }
1028
 
1029
                goto page_ok;
1030
 
1031
readpage_error:
1032
                /* UHHUH! A synchronous read error occurred. Report it */
1033
                desc->error = error;
1034
                page_cache_release(page);
1035
                goto out;
1036
 
1037
no_cached_page:
1038
                /*
1039
                 * Ok, it wasn't cached, so we need to create a new
1040
                 * page..
1041
                 */
1042
                page = page_cache_alloc_cold(mapping);
1043
                if (!page) {
1044
                        desc->error = -ENOMEM;
1045
                        goto out;
1046
                }
1047
                error = add_to_page_cache_lru(page, mapping,
1048
                                                index, GFP_KERNEL);
1049
                if (error) {
1050
                        page_cache_release(page);
1051
                        if (error == -EEXIST)
1052
                                goto find_page;
1053
                        desc->error = error;
1054
                        goto out;
1055
                }
1056
                goto readpage;
1057
        }
1058
 
1059
out:
1060
        ra->prev_pos = prev_index;
1061
        ra->prev_pos <<= PAGE_CACHE_SHIFT;
1062
        ra->prev_pos |= prev_offset;
1063
 
1064
        *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1065
        if (filp)
1066
                file_accessed(filp);
1067
}
1068
EXPORT_SYMBOL(do_generic_mapping_read);
1069
 
1070
int file_read_actor(read_descriptor_t *desc, struct page *page,
1071
                        unsigned long offset, unsigned long size)
1072
{
1073
        char *kaddr;
1074
        unsigned long left, count = desc->count;
1075
 
1076
        if (size > count)
1077
                size = count;
1078
 
1079
        /*
1080
         * Faults on the destination of a read are common, so do it before
1081
         * taking the kmap.
1082
         */
1083
        if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1084
                kaddr = kmap_atomic(page, KM_USER0);
1085
                left = __copy_to_user_inatomic(desc->arg.buf,
1086
                                                kaddr + offset, size);
1087
                kunmap_atomic(kaddr, KM_USER0);
1088
                if (left == 0)
1089
                        goto success;
1090
        }
1091
 
1092
        /* Do it the slow way */
1093
        kaddr = kmap(page);
1094
        left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1095
        kunmap(page);
1096
 
1097
        if (left) {
1098
                size -= left;
1099
                desc->error = -EFAULT;
1100
        }
1101
success:
1102
        desc->count = count - size;
1103
        desc->written += size;
1104
        desc->arg.buf += size;
1105
        return size;
1106
}
1107
 
1108
/*
1109
 * Performs necessary checks before doing a write
1110
 * @iov:        io vector request
1111
 * @nr_segs:    number of segments in the iovec
1112
 * @count:      number of bytes to write
1113
 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1114
 *
1115
 * Adjust number of segments and amount of bytes to write (nr_segs should be
1116
 * properly initialized first). Returns appropriate error code that caller
1117
 * should return or zero in case that write should be allowed.
1118
 */
1119
int generic_segment_checks(const struct iovec *iov,
1120
                        unsigned long *nr_segs, size_t *count, int access_flags)
1121
{
1122
        unsigned long   seg;
1123
        size_t cnt = 0;
1124
        for (seg = 0; seg < *nr_segs; seg++) {
1125
                const struct iovec *iv = &iov[seg];
1126
 
1127
                /*
1128
                 * If any segment has a negative length, or the cumulative
1129
                 * length ever wraps negative then return -EINVAL.
1130
                 */
1131
                cnt += iv->iov_len;
1132
                if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1133
                        return -EINVAL;
1134
                if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1135
                        continue;
1136
                if (seg == 0)
1137
                        return -EFAULT;
1138
                *nr_segs = seg;
1139
                cnt -= iv->iov_len;     /* This segment is no good */
1140
                break;
1141
        }
1142
        *count = cnt;
1143
        return 0;
1144
}
1145
EXPORT_SYMBOL(generic_segment_checks);
1146
 
1147
/**
1148
 * generic_file_aio_read - generic filesystem read routine
1149
 * @iocb:       kernel I/O control block
1150
 * @iov:        io vector request
1151
 * @nr_segs:    number of segments in the iovec
1152
 * @pos:        current file position
1153
 *
1154
 * This is the "read()" routine for all filesystems
1155
 * that can use the page cache directly.
1156
 */
1157
ssize_t
1158
generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1159
                unsigned long nr_segs, loff_t pos)
1160
{
1161
        struct file *filp = iocb->ki_filp;
1162
        ssize_t retval;
1163
        unsigned long seg;
1164
        size_t count;
1165
        loff_t *ppos = &iocb->ki_pos;
1166
 
1167
        count = 0;
1168
        retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1169
        if (retval)
1170
                return retval;
1171
 
1172
        /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1173
        if (filp->f_flags & O_DIRECT) {
1174
                loff_t size;
1175
                struct address_space *mapping;
1176
                struct inode *inode;
1177
 
1178
                mapping = filp->f_mapping;
1179
                inode = mapping->host;
1180
                retval = 0;
1181
                if (!count)
1182
                        goto out; /* skip atime */
1183
                size = i_size_read(inode);
1184
                if (pos < size) {
1185
                        retval = generic_file_direct_IO(READ, iocb,
1186
                                                iov, pos, nr_segs);
1187
                        if (retval > 0)
1188
                                *ppos = pos + retval;
1189
                }
1190
                if (likely(retval != 0)) {
1191
                        file_accessed(filp);
1192
                        goto out;
1193
                }
1194
        }
1195
 
1196
        retval = 0;
1197
        if (count) {
1198
                for (seg = 0; seg < nr_segs; seg++) {
1199
                        read_descriptor_t desc;
1200
 
1201
                        desc.written = 0;
1202
                        desc.arg.buf = iov[seg].iov_base;
1203
                        desc.count = iov[seg].iov_len;
1204
                        if (desc.count == 0)
1205
                                continue;
1206
                        desc.error = 0;
1207
                        do_generic_file_read(filp,ppos,&desc,file_read_actor);
1208
                        retval += desc.written;
1209
                        if (desc.error) {
1210
                                retval = retval ?: desc.error;
1211
                                break;
1212
                        }
1213
                        if (desc.count > 0)
1214
                                break;
1215
                }
1216
        }
1217
out:
1218
        return retval;
1219
}
1220
EXPORT_SYMBOL(generic_file_aio_read);
1221
 
1222
static ssize_t
1223
do_readahead(struct address_space *mapping, struct file *filp,
1224
             pgoff_t index, unsigned long nr)
1225
{
1226
        if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1227
                return -EINVAL;
1228
 
1229
        force_page_cache_readahead(mapping, filp, index,
1230
                                        max_sane_readahead(nr));
1231
        return 0;
1232
}
1233
 
1234
asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1235
{
1236
        ssize_t ret;
1237
        struct file *file;
1238
 
1239
        ret = -EBADF;
1240
        file = fget(fd);
1241
        if (file) {
1242
                if (file->f_mode & FMODE_READ) {
1243
                        struct address_space *mapping = file->f_mapping;
1244
                        pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1245
                        pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1246
                        unsigned long len = end - start + 1;
1247
                        ret = do_readahead(mapping, file, start, len);
1248
                }
1249
                fput(file);
1250
        }
1251
        return ret;
1252
}
1253
 
1254
#ifdef CONFIG_MMU
1255
/**
1256
 * page_cache_read - adds requested page to the page cache if not already there
1257
 * @file:       file to read
1258
 * @offset:     page index
1259
 *
1260
 * This adds the requested page to the page cache if it isn't already there,
1261
 * and schedules an I/O to read in its contents from disk.
1262
 */
1263
static int fastcall page_cache_read(struct file * file, pgoff_t offset)
1264
{
1265
        struct address_space *mapping = file->f_mapping;
1266
        struct page *page;
1267
        int ret;
1268
 
1269
        do {
1270
                page = page_cache_alloc_cold(mapping);
1271
                if (!page)
1272
                        return -ENOMEM;
1273
 
1274
                ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1275
                if (ret == 0)
1276
                        ret = mapping->a_ops->readpage(file, page);
1277
                else if (ret == -EEXIST)
1278
                        ret = 0; /* losing race to add is OK */
1279
 
1280
                page_cache_release(page);
1281
 
1282
        } while (ret == AOP_TRUNCATED_PAGE);
1283
 
1284
        return ret;
1285
}
1286
 
1287
#define MMAP_LOTSAMISS  (100)
1288
 
1289
/**
1290
 * filemap_fault - read in file data for page fault handling
1291
 * @vma:        vma in which the fault was taken
1292
 * @vmf:        struct vm_fault containing details of the fault
1293
 *
1294
 * filemap_fault() is invoked via the vma operations vector for a
1295
 * mapped memory region to read in file data during a page fault.
1296
 *
1297
 * The goto's are kind of ugly, but this streamlines the normal case of having
1298
 * it in the page cache, and handles the special cases reasonably without
1299
 * having a lot of duplicated code.
1300
 */
1301
int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1302
{
1303
        int error;
1304
        struct file *file = vma->vm_file;
1305
        struct address_space *mapping = file->f_mapping;
1306
        struct file_ra_state *ra = &file->f_ra;
1307
        struct inode *inode = mapping->host;
1308
        struct page *page;
1309
        unsigned long size;
1310
        int did_readaround = 0;
1311
        int ret = 0;
1312
 
1313
        size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1314
        if (vmf->pgoff >= size)
1315
                return VM_FAULT_SIGBUS;
1316
 
1317
        /* If we don't want any read-ahead, don't bother */
1318
        if (VM_RandomReadHint(vma))
1319
                goto no_cached_page;
1320
 
1321
        /*
1322
         * Do we have something in the page cache already?
1323
         */
1324
retry_find:
1325
        page = find_lock_page(mapping, vmf->pgoff);
1326
        /*
1327
         * For sequential accesses, we use the generic readahead logic.
1328
         */
1329
        if (VM_SequentialReadHint(vma)) {
1330
                if (!page) {
1331
                        page_cache_sync_readahead(mapping, ra, file,
1332
                                                           vmf->pgoff, 1);
1333
                        page = find_lock_page(mapping, vmf->pgoff);
1334
                        if (!page)
1335
                                goto no_cached_page;
1336
                }
1337
                if (PageReadahead(page)) {
1338
                        page_cache_async_readahead(mapping, ra, file, page,
1339
                                                           vmf->pgoff, 1);
1340
                }
1341
        }
1342
 
1343
        if (!page) {
1344
                unsigned long ra_pages;
1345
 
1346
                ra->mmap_miss++;
1347
 
1348
                /*
1349
                 * Do we miss much more than hit in this file? If so,
1350
                 * stop bothering with read-ahead. It will only hurt.
1351
                 */
1352
                if (ra->mmap_miss > MMAP_LOTSAMISS)
1353
                        goto no_cached_page;
1354
 
1355
                /*
1356
                 * To keep the pgmajfault counter straight, we need to
1357
                 * check did_readaround, as this is an inner loop.
1358
                 */
1359
                if (!did_readaround) {
1360
                        ret = VM_FAULT_MAJOR;
1361
                        count_vm_event(PGMAJFAULT);
1362
                }
1363
                did_readaround = 1;
1364
                ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1365
                if (ra_pages) {
1366
                        pgoff_t start = 0;
1367
 
1368
                        if (vmf->pgoff > ra_pages / 2)
1369
                                start = vmf->pgoff - ra_pages / 2;
1370
                        do_page_cache_readahead(mapping, file, start, ra_pages);
1371
                }
1372
                page = find_lock_page(mapping, vmf->pgoff);
1373
                if (!page)
1374
                        goto no_cached_page;
1375
        }
1376
 
1377
        if (!did_readaround)
1378
                ra->mmap_miss--;
1379
 
1380
        /*
1381
         * We have a locked page in the page cache, now we need to check
1382
         * that it's up-to-date. If not, it is going to be due to an error.
1383
         */
1384
        if (unlikely(!PageUptodate(page)))
1385
                goto page_not_uptodate;
1386
 
1387
        /* Must recheck i_size under page lock */
1388
        size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1389
        if (unlikely(vmf->pgoff >= size)) {
1390
                unlock_page(page);
1391
                page_cache_release(page);
1392
                return VM_FAULT_SIGBUS;
1393
        }
1394
 
1395
        /*
1396
         * Found the page and have a reference on it.
1397
         */
1398
        mark_page_accessed(page);
1399
        ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1400
        vmf->page = page;
1401
        return ret | VM_FAULT_LOCKED;
1402
 
1403
no_cached_page:
1404
        /*
1405
         * We're only likely to ever get here if MADV_RANDOM is in
1406
         * effect.
1407
         */
1408
        error = page_cache_read(file, vmf->pgoff);
1409
 
1410
        /*
1411
         * The page we want has now been added to the page cache.
1412
         * In the unlikely event that someone removed it in the
1413
         * meantime, we'll just come back here and read it again.
1414
         */
1415
        if (error >= 0)
1416
                goto retry_find;
1417
 
1418
        /*
1419
         * An error return from page_cache_read can result if the
1420
         * system is low on memory, or a problem occurs while trying
1421
         * to schedule I/O.
1422
         */
1423
        if (error == -ENOMEM)
1424
                return VM_FAULT_OOM;
1425
        return VM_FAULT_SIGBUS;
1426
 
1427
page_not_uptodate:
1428
        /* IO error path */
1429
        if (!did_readaround) {
1430
                ret = VM_FAULT_MAJOR;
1431
                count_vm_event(PGMAJFAULT);
1432
        }
1433
 
1434
        /*
1435
         * Umm, take care of errors if the page isn't up-to-date.
1436
         * Try to re-read it _once_. We do this synchronously,
1437
         * because there really aren't any performance issues here
1438
         * and we need to check for errors.
1439
         */
1440
        ClearPageError(page);
1441
        error = mapping->a_ops->readpage(file, page);
1442
        page_cache_release(page);
1443
 
1444
        if (!error || error == AOP_TRUNCATED_PAGE)
1445
                goto retry_find;
1446
 
1447
        /* Things didn't work out. Return zero to tell the mm layer so. */
1448
        shrink_readahead_size_eio(file, ra);
1449
        return VM_FAULT_SIGBUS;
1450
}
1451
EXPORT_SYMBOL(filemap_fault);
1452
 
1453
struct vm_operations_struct generic_file_vm_ops = {
1454
        .fault          = filemap_fault,
1455
};
1456
 
1457
/* This is used for a general mmap of a disk file */
1458
 
1459
int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1460
{
1461
        struct address_space *mapping = file->f_mapping;
1462
 
1463
        if (!mapping->a_ops->readpage)
1464
                return -ENOEXEC;
1465
        file_accessed(file);
1466
        vma->vm_ops = &generic_file_vm_ops;
1467
        vma->vm_flags |= VM_CAN_NONLINEAR;
1468
        return 0;
1469
}
1470
 
1471
/*
1472
 * This is for filesystems which do not implement ->writepage.
1473
 */
1474
int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1475
{
1476
        if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1477
                return -EINVAL;
1478
        return generic_file_mmap(file, vma);
1479
}
1480
#else
1481
int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1482
{
1483
        return -ENOSYS;
1484
}
1485
int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1486
{
1487
        return -ENOSYS;
1488
}
1489
#endif /* CONFIG_MMU */
1490
 
1491
EXPORT_SYMBOL(generic_file_mmap);
1492
EXPORT_SYMBOL(generic_file_readonly_mmap);
1493
 
1494
static struct page *__read_cache_page(struct address_space *mapping,
1495
                                pgoff_t index,
1496
                                int (*filler)(void *,struct page*),
1497
                                void *data)
1498
{
1499
        struct page *page;
1500
        int err;
1501
repeat:
1502
        page = find_get_page(mapping, index);
1503
        if (!page) {
1504
                page = page_cache_alloc_cold(mapping);
1505
                if (!page)
1506
                        return ERR_PTR(-ENOMEM);
1507
                err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1508
                if (unlikely(err)) {
1509
                        page_cache_release(page);
1510
                        if (err == -EEXIST)
1511
                                goto repeat;
1512
                        /* Presumably ENOMEM for radix tree node */
1513
                        return ERR_PTR(err);
1514
                }
1515
                err = filler(data, page);
1516
                if (err < 0) {
1517
                        page_cache_release(page);
1518
                        page = ERR_PTR(err);
1519
                }
1520
        }
1521
        return page;
1522
}
1523
 
1524
/*
1525
 * Same as read_cache_page, but don't wait for page to become unlocked
1526
 * after submitting it to the filler.
1527
 */
1528
struct page *read_cache_page_async(struct address_space *mapping,
1529
                                pgoff_t index,
1530
                                int (*filler)(void *,struct page*),
1531
                                void *data)
1532
{
1533
        struct page *page;
1534
        int err;
1535
 
1536
retry:
1537
        page = __read_cache_page(mapping, index, filler, data);
1538
        if (IS_ERR(page))
1539
                return page;
1540
        if (PageUptodate(page))
1541
                goto out;
1542
 
1543
        lock_page(page);
1544
        if (!page->mapping) {
1545
                unlock_page(page);
1546
                page_cache_release(page);
1547
                goto retry;
1548
        }
1549
        if (PageUptodate(page)) {
1550
                unlock_page(page);
1551
                goto out;
1552
        }
1553
        err = filler(data, page);
1554
        if (err < 0) {
1555
                page_cache_release(page);
1556
                return ERR_PTR(err);
1557
        }
1558
out:
1559
        mark_page_accessed(page);
1560
        return page;
1561
}
1562
EXPORT_SYMBOL(read_cache_page_async);
1563
 
1564
/**
1565
 * read_cache_page - read into page cache, fill it if needed
1566
 * @mapping:    the page's address_space
1567
 * @index:      the page index
1568
 * @filler:     function to perform the read
1569
 * @data:       destination for read data
1570
 *
1571
 * Read into the page cache. If a page already exists, and PageUptodate() is
1572
 * not set, try to fill the page then wait for it to become unlocked.
1573
 *
1574
 * If the page does not get brought uptodate, return -EIO.
1575
 */
1576
struct page *read_cache_page(struct address_space *mapping,
1577
                                pgoff_t index,
1578
                                int (*filler)(void *,struct page*),
1579
                                void *data)
1580
{
1581
        struct page *page;
1582
 
1583
        page = read_cache_page_async(mapping, index, filler, data);
1584
        if (IS_ERR(page))
1585
                goto out;
1586
        wait_on_page_locked(page);
1587
        if (!PageUptodate(page)) {
1588
                page_cache_release(page);
1589
                page = ERR_PTR(-EIO);
1590
        }
1591
 out:
1592
        return page;
1593
}
1594
EXPORT_SYMBOL(read_cache_page);
1595
 
1596
/*
1597
 * The logic we want is
1598
 *
1599
 *      if suid or (sgid and xgrp)
1600
 *              remove privs
1601
 */
1602
int should_remove_suid(struct dentry *dentry)
1603
{
1604
        mode_t mode = dentry->d_inode->i_mode;
1605
        int kill = 0;
1606
 
1607
        /* suid always must be killed */
1608
        if (unlikely(mode & S_ISUID))
1609
                kill = ATTR_KILL_SUID;
1610
 
1611
        /*
1612
         * sgid without any exec bits is just a mandatory locking mark; leave
1613
         * it alone.  If some exec bits are set, it's a real sgid; kill it.
1614
         */
1615
        if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1616
                kill |= ATTR_KILL_SGID;
1617
 
1618
        if (unlikely(kill && !capable(CAP_FSETID)))
1619
                return kill;
1620
 
1621
        return 0;
1622
}
1623
EXPORT_SYMBOL(should_remove_suid);
1624
 
1625
int __remove_suid(struct dentry *dentry, int kill)
1626
{
1627
        struct iattr newattrs;
1628
 
1629
        newattrs.ia_valid = ATTR_FORCE | kill;
1630
        return notify_change(dentry, &newattrs);
1631
}
1632
 
1633
int remove_suid(struct dentry *dentry)
1634
{
1635
        int killsuid = should_remove_suid(dentry);
1636
        int killpriv = security_inode_need_killpriv(dentry);
1637
        int error = 0;
1638
 
1639
        if (killpriv < 0)
1640
                return killpriv;
1641
        if (killpriv)
1642
                error = security_inode_killpriv(dentry);
1643
        if (!error && killsuid)
1644
                error = __remove_suid(dentry, killsuid);
1645
 
1646
        return error;
1647
}
1648
EXPORT_SYMBOL(remove_suid);
1649
 
1650
static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1651
                        const struct iovec *iov, size_t base, size_t bytes)
1652
{
1653
        size_t copied = 0, left = 0;
1654
 
1655
        while (bytes) {
1656
                char __user *buf = iov->iov_base + base;
1657
                int copy = min(bytes, iov->iov_len - base);
1658
 
1659
                base = 0;
1660
                left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1661
                copied += copy;
1662
                bytes -= copy;
1663
                vaddr += copy;
1664
                iov++;
1665
 
1666
                if (unlikely(left))
1667
                        break;
1668
        }
1669
        return copied - left;
1670
}
1671
 
1672
/*
1673
 * Copy as much as we can into the page and return the number of bytes which
1674
 * were sucessfully copied.  If a fault is encountered then return the number of
1675
 * bytes which were copied.
1676
 */
1677
size_t iov_iter_copy_from_user_atomic(struct page *page,
1678
                struct iov_iter *i, unsigned long offset, size_t bytes)
1679
{
1680
        char *kaddr;
1681
        size_t copied;
1682
 
1683
        BUG_ON(!in_atomic());
1684
        kaddr = kmap_atomic(page, KM_USER0);
1685
        if (likely(i->nr_segs == 1)) {
1686
                int left;
1687
                char __user *buf = i->iov->iov_base + i->iov_offset;
1688
                left = __copy_from_user_inatomic_nocache(kaddr + offset,
1689
                                                        buf, bytes);
1690
                copied = bytes - left;
1691
        } else {
1692
                copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1693
                                                i->iov, i->iov_offset, bytes);
1694
        }
1695
        kunmap_atomic(kaddr, KM_USER0);
1696
 
1697
        return copied;
1698
}
1699
EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1700
 
1701
/*
1702
 * This has the same sideeffects and return value as
1703
 * iov_iter_copy_from_user_atomic().
1704
 * The difference is that it attempts to resolve faults.
1705
 * Page must not be locked.
1706
 */
1707
size_t iov_iter_copy_from_user(struct page *page,
1708
                struct iov_iter *i, unsigned long offset, size_t bytes)
1709
{
1710
        char *kaddr;
1711
        size_t copied;
1712
 
1713
        kaddr = kmap(page);
1714
        if (likely(i->nr_segs == 1)) {
1715
                int left;
1716
                char __user *buf = i->iov->iov_base + i->iov_offset;
1717
                left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1718
                copied = bytes - left;
1719
        } else {
1720
                copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1721
                                                i->iov, i->iov_offset, bytes);
1722
        }
1723
        kunmap(page);
1724
        return copied;
1725
}
1726
EXPORT_SYMBOL(iov_iter_copy_from_user);
1727
 
1728
static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes)
1729
{
1730
        if (likely(i->nr_segs == 1)) {
1731
                i->iov_offset += bytes;
1732
        } else {
1733
                const struct iovec *iov = i->iov;
1734
                size_t base = i->iov_offset;
1735
 
1736
                while (bytes) {
1737
                        int copy = min(bytes, iov->iov_len - base);
1738
 
1739
                        bytes -= copy;
1740
                        base += copy;
1741
                        if (iov->iov_len == base) {
1742
                                iov++;
1743
                                base = 0;
1744
                        }
1745
                }
1746
                i->iov = iov;
1747
                i->iov_offset = base;
1748
        }
1749
}
1750
 
1751
void iov_iter_advance(struct iov_iter *i, size_t bytes)
1752
{
1753
        BUG_ON(i->count < bytes);
1754
 
1755
        __iov_iter_advance_iov(i, bytes);
1756
        i->count -= bytes;
1757
}
1758
EXPORT_SYMBOL(iov_iter_advance);
1759
 
1760
/*
1761
 * Fault in the first iovec of the given iov_iter, to a maximum length
1762
 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1763
 * accessed (ie. because it is an invalid address).
1764
 *
1765
 * writev-intensive code may want this to prefault several iovecs -- that
1766
 * would be possible (callers must not rely on the fact that _only_ the
1767
 * first iovec will be faulted with the current implementation).
1768
 */
1769
int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1770
{
1771
        char __user *buf = i->iov->iov_base + i->iov_offset;
1772
        bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1773
        return fault_in_pages_readable(buf, bytes);
1774
}
1775
EXPORT_SYMBOL(iov_iter_fault_in_readable);
1776
 
1777
/*
1778
 * Return the count of just the current iov_iter segment.
1779
 */
1780
size_t iov_iter_single_seg_count(struct iov_iter *i)
1781
{
1782
        const struct iovec *iov = i->iov;
1783
        if (i->nr_segs == 1)
1784
                return i->count;
1785
        else
1786
                return min(i->count, iov->iov_len - i->iov_offset);
1787
}
1788
EXPORT_SYMBOL(iov_iter_single_seg_count);
1789
 
1790
/*
1791
 * Performs necessary checks before doing a write
1792
 *
1793
 * Can adjust writing position or amount of bytes to write.
1794
 * Returns appropriate error code that caller should return or
1795
 * zero in case that write should be allowed.
1796
 */
1797
inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1798
{
1799
        struct inode *inode = file->f_mapping->host;
1800
        unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1801
 
1802
        if (unlikely(*pos < 0))
1803
                return -EINVAL;
1804
 
1805
        if (!isblk) {
1806
                /* FIXME: this is for backwards compatibility with 2.4 */
1807
                if (file->f_flags & O_APPEND)
1808
                        *pos = i_size_read(inode);
1809
 
1810
                if (limit != RLIM_INFINITY) {
1811
                        if (*pos >= limit) {
1812
                                send_sig(SIGXFSZ, current, 0);
1813
                                return -EFBIG;
1814
                        }
1815
                        if (*count > limit - (typeof(limit))*pos) {
1816
                                *count = limit - (typeof(limit))*pos;
1817
                        }
1818
                }
1819
        }
1820
 
1821
        /*
1822
         * LFS rule
1823
         */
1824
        if (unlikely(*pos + *count > MAX_NON_LFS &&
1825
                                !(file->f_flags & O_LARGEFILE))) {
1826
                if (*pos >= MAX_NON_LFS) {
1827
                        return -EFBIG;
1828
                }
1829
                if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1830
                        *count = MAX_NON_LFS - (unsigned long)*pos;
1831
                }
1832
        }
1833
 
1834
        /*
1835
         * Are we about to exceed the fs block limit ?
1836
         *
1837
         * If we have written data it becomes a short write.  If we have
1838
         * exceeded without writing data we send a signal and return EFBIG.
1839
         * Linus frestrict idea will clean these up nicely..
1840
         */
1841
        if (likely(!isblk)) {
1842
                if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1843
                        if (*count || *pos > inode->i_sb->s_maxbytes) {
1844
                                return -EFBIG;
1845
                        }
1846
                        /* zero-length writes at ->s_maxbytes are OK */
1847
                }
1848
 
1849
                if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1850
                        *count = inode->i_sb->s_maxbytes - *pos;
1851
        } else {
1852
#ifdef CONFIG_BLOCK
1853
                loff_t isize;
1854
                if (bdev_read_only(I_BDEV(inode)))
1855
                        return -EPERM;
1856
                isize = i_size_read(inode);
1857
                if (*pos >= isize) {
1858
                        if (*count || *pos > isize)
1859
                                return -ENOSPC;
1860
                }
1861
 
1862
                if (*pos + *count > isize)
1863
                        *count = isize - *pos;
1864
#else
1865
                return -EPERM;
1866
#endif
1867
        }
1868
        return 0;
1869
}
1870
EXPORT_SYMBOL(generic_write_checks);
1871
 
1872
int pagecache_write_begin(struct file *file, struct address_space *mapping,
1873
                                loff_t pos, unsigned len, unsigned flags,
1874
                                struct page **pagep, void **fsdata)
1875
{
1876
        const struct address_space_operations *aops = mapping->a_ops;
1877
 
1878
        if (aops->write_begin) {
1879
                return aops->write_begin(file, mapping, pos, len, flags,
1880
                                                        pagep, fsdata);
1881
        } else {
1882
                int ret;
1883
                pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1884
                unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1885
                struct inode *inode = mapping->host;
1886
                struct page *page;
1887
again:
1888
                page = __grab_cache_page(mapping, index);
1889
                *pagep = page;
1890
                if (!page)
1891
                        return -ENOMEM;
1892
 
1893
                if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1894
                        /*
1895
                         * There is no way to resolve a short write situation
1896
                         * for a !Uptodate page (except by double copying in
1897
                         * the caller done by generic_perform_write_2copy).
1898
                         *
1899
                         * Instead, we have to bring it uptodate here.
1900
                         */
1901
                        ret = aops->readpage(file, page);
1902
                        page_cache_release(page);
1903
                        if (ret) {
1904
                                if (ret == AOP_TRUNCATED_PAGE)
1905
                                        goto again;
1906
                                return ret;
1907
                        }
1908
                        goto again;
1909
                }
1910
 
1911
                ret = aops->prepare_write(file, page, offset, offset+len);
1912
                if (ret) {
1913
                        unlock_page(page);
1914
                        page_cache_release(page);
1915
                        if (pos + len > inode->i_size)
1916
                                vmtruncate(inode, inode->i_size);
1917
                }
1918
                return ret;
1919
        }
1920
}
1921
EXPORT_SYMBOL(pagecache_write_begin);
1922
 
1923
int pagecache_write_end(struct file *file, struct address_space *mapping,
1924
                                loff_t pos, unsigned len, unsigned copied,
1925
                                struct page *page, void *fsdata)
1926
{
1927
        const struct address_space_operations *aops = mapping->a_ops;
1928
        int ret;
1929
 
1930
        if (aops->write_end) {
1931
                mark_page_accessed(page);
1932
                ret = aops->write_end(file, mapping, pos, len, copied,
1933
                                                        page, fsdata);
1934
        } else {
1935
                unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1936
                struct inode *inode = mapping->host;
1937
 
1938
                flush_dcache_page(page);
1939
                ret = aops->commit_write(file, page, offset, offset+len);
1940
                unlock_page(page);
1941
                mark_page_accessed(page);
1942
                page_cache_release(page);
1943
 
1944
                if (ret < 0) {
1945
                        if (pos + len > inode->i_size)
1946
                                vmtruncate(inode, inode->i_size);
1947
                } else if (ret > 0)
1948
                        ret = min_t(size_t, copied, ret);
1949
                else
1950
                        ret = copied;
1951
        }
1952
 
1953
        return ret;
1954
}
1955
EXPORT_SYMBOL(pagecache_write_end);
1956
 
1957
ssize_t
1958
generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1959
                unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1960
                size_t count, size_t ocount)
1961
{
1962
        struct file     *file = iocb->ki_filp;
1963
        struct address_space *mapping = file->f_mapping;
1964
        struct inode    *inode = mapping->host;
1965
        ssize_t         written;
1966
 
1967
        if (count != ocount)
1968
                *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1969
 
1970
        written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1971
        if (written > 0) {
1972
                loff_t end = pos + written;
1973
                if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1974
                        i_size_write(inode,  end);
1975
                        mark_inode_dirty(inode);
1976
                }
1977
                *ppos = end;
1978
        }
1979
 
1980
        /*
1981
         * Sync the fs metadata but not the minor inode changes and
1982
         * of course not the data as we did direct DMA for the IO.
1983
         * i_mutex is held, which protects generic_osync_inode() from
1984
         * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
1985
         */
1986
        if ((written >= 0 || written == -EIOCBQUEUED) &&
1987
            ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1988
                int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1989
                if (err < 0)
1990
                        written = err;
1991
        }
1992
        return written;
1993
}
1994
EXPORT_SYMBOL(generic_file_direct_write);
1995
 
1996
/*
1997
 * Find or create a page at the given pagecache position. Return the locked
1998
 * page. This function is specifically for buffered writes.
1999
 */
2000
struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2001
{
2002
        int status;
2003
        struct page *page;
2004
repeat:
2005
        page = find_lock_page(mapping, index);
2006
        if (likely(page))
2007
                return page;
2008
 
2009
        page = page_cache_alloc(mapping);
2010
        if (!page)
2011
                return NULL;
2012
        status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2013
        if (unlikely(status)) {
2014
                page_cache_release(page);
2015
                if (status == -EEXIST)
2016
                        goto repeat;
2017
                return NULL;
2018
        }
2019
        return page;
2020
}
2021
EXPORT_SYMBOL(__grab_cache_page);
2022
 
2023
static ssize_t generic_perform_write_2copy(struct file *file,
2024
                                struct iov_iter *i, loff_t pos)
2025
{
2026
        struct address_space *mapping = file->f_mapping;
2027
        const struct address_space_operations *a_ops = mapping->a_ops;
2028
        struct inode *inode = mapping->host;
2029
        long status = 0;
2030
        ssize_t written = 0;
2031
 
2032
        do {
2033
                struct page *src_page;
2034
                struct page *page;
2035
                pgoff_t index;          /* Pagecache index for current page */
2036
                unsigned long offset;   /* Offset into pagecache page */
2037
                unsigned long bytes;    /* Bytes to write to page */
2038
                size_t copied;          /* Bytes copied from user */
2039
 
2040
                offset = (pos & (PAGE_CACHE_SIZE - 1));
2041
                index = pos >> PAGE_CACHE_SHIFT;
2042
                bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2043
                                                iov_iter_count(i));
2044
 
2045
                /*
2046
                 * a non-NULL src_page indicates that we're doing the
2047
                 * copy via get_user_pages and kmap.
2048
                 */
2049
                src_page = NULL;
2050
 
2051
                /*
2052
                 * Bring in the user page that we will copy from _first_.
2053
                 * Otherwise there's a nasty deadlock on copying from the
2054
                 * same page as we're writing to, without it being marked
2055
                 * up-to-date.
2056
                 *
2057
                 * Not only is this an optimisation, but it is also required
2058
                 * to check that the address is actually valid, when atomic
2059
                 * usercopies are used, below.
2060
                 */
2061
                if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2062
                        status = -EFAULT;
2063
                        break;
2064
                }
2065
 
2066
                page = __grab_cache_page(mapping, index);
2067
                if (!page) {
2068
                        status = -ENOMEM;
2069
                        break;
2070
                }
2071
 
2072
                /*
2073
                 * non-uptodate pages cannot cope with short copies, and we
2074
                 * cannot take a pagefault with the destination page locked.
2075
                 * So pin the source page to copy it.
2076
                 */
2077
                if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2078
                        unlock_page(page);
2079
 
2080
                        src_page = alloc_page(GFP_KERNEL);
2081
                        if (!src_page) {
2082
                                page_cache_release(page);
2083
                                status = -ENOMEM;
2084
                                break;
2085
                        }
2086
 
2087
                        /*
2088
                         * Cannot get_user_pages with a page locked for the
2089
                         * same reason as we can't take a page fault with a
2090
                         * page locked (as explained below).
2091
                         */
2092
                        copied = iov_iter_copy_from_user(src_page, i,
2093
                                                                offset, bytes);
2094
                        if (unlikely(copied == 0)) {
2095
                                status = -EFAULT;
2096
                                page_cache_release(page);
2097
                                page_cache_release(src_page);
2098
                                break;
2099
                        }
2100
                        bytes = copied;
2101
 
2102
                        lock_page(page);
2103
                        /*
2104
                         * Can't handle the page going uptodate here, because
2105
                         * that means we would use non-atomic usercopies, which
2106
                         * zero out the tail of the page, which can cause
2107
                         * zeroes to become transiently visible. We could just
2108
                         * use a non-zeroing copy, but the APIs aren't too
2109
                         * consistent.
2110
                         */
2111
                        if (unlikely(!page->mapping || PageUptodate(page))) {
2112
                                unlock_page(page);
2113
                                page_cache_release(page);
2114
                                page_cache_release(src_page);
2115
                                continue;
2116
                        }
2117
                }
2118
 
2119
                status = a_ops->prepare_write(file, page, offset, offset+bytes);
2120
                if (unlikely(status))
2121
                        goto fs_write_aop_error;
2122
 
2123
                if (!src_page) {
2124
                        /*
2125
                         * Must not enter the pagefault handler here, because
2126
                         * we hold the page lock, so we might recursively
2127
                         * deadlock on the same lock, or get an ABBA deadlock
2128
                         * against a different lock, or against the mmap_sem
2129
                         * (which nests outside the page lock).  So increment
2130
                         * preempt count, and use _atomic usercopies.
2131
                         *
2132
                         * The page is uptodate so we are OK to encounter a
2133
                         * short copy: if unmodified parts of the page are
2134
                         * marked dirty and written out to disk, it doesn't
2135
                         * really matter.
2136
                         */
2137
                        pagefault_disable();
2138
                        copied = iov_iter_copy_from_user_atomic(page, i,
2139
                                                                offset, bytes);
2140
                        pagefault_enable();
2141
                } else {
2142
                        void *src, *dst;
2143
                        src = kmap_atomic(src_page, KM_USER0);
2144
                        dst = kmap_atomic(page, KM_USER1);
2145
                        memcpy(dst + offset, src + offset, bytes);
2146
                        kunmap_atomic(dst, KM_USER1);
2147
                        kunmap_atomic(src, KM_USER0);
2148
                        copied = bytes;
2149
                }
2150
                flush_dcache_page(page);
2151
 
2152
                status = a_ops->commit_write(file, page, offset, offset+bytes);
2153
                if (unlikely(status < 0))
2154
                        goto fs_write_aop_error;
2155
                if (unlikely(status > 0)) /* filesystem did partial write */
2156
                        copied = min_t(size_t, copied, status);
2157
 
2158
                unlock_page(page);
2159
                mark_page_accessed(page);
2160
                page_cache_release(page);
2161
                if (src_page)
2162
                        page_cache_release(src_page);
2163
 
2164
                iov_iter_advance(i, copied);
2165
                pos += copied;
2166
                written += copied;
2167
 
2168
                balance_dirty_pages_ratelimited(mapping);
2169
                cond_resched();
2170
                continue;
2171
 
2172
fs_write_aop_error:
2173
                unlock_page(page);
2174
                page_cache_release(page);
2175
                if (src_page)
2176
                        page_cache_release(src_page);
2177
 
2178
                /*
2179
                 * prepare_write() may have instantiated a few blocks
2180
                 * outside i_size.  Trim these off again. Don't need
2181
                 * i_size_read because we hold i_mutex.
2182
                 */
2183
                if (pos + bytes > inode->i_size)
2184
                        vmtruncate(inode, inode->i_size);
2185
                break;
2186
        } while (iov_iter_count(i));
2187
 
2188
        return written ? written : status;
2189
}
2190
 
2191
static ssize_t generic_perform_write(struct file *file,
2192
                                struct iov_iter *i, loff_t pos)
2193
{
2194
        struct address_space *mapping = file->f_mapping;
2195
        const struct address_space_operations *a_ops = mapping->a_ops;
2196
        long status = 0;
2197
        ssize_t written = 0;
2198
        unsigned int flags = 0;
2199
 
2200
        /*
2201
         * Copies from kernel address space cannot fail (NFSD is a big user).
2202
         */
2203
        if (segment_eq(get_fs(), KERNEL_DS))
2204
                flags |= AOP_FLAG_UNINTERRUPTIBLE;
2205
 
2206
        do {
2207
                struct page *page;
2208
                pgoff_t index;          /* Pagecache index for current page */
2209
                unsigned long offset;   /* Offset into pagecache page */
2210
                unsigned long bytes;    /* Bytes to write to page */
2211
                size_t copied;          /* Bytes copied from user */
2212
                void *fsdata;
2213
 
2214
                offset = (pos & (PAGE_CACHE_SIZE - 1));
2215
                index = pos >> PAGE_CACHE_SHIFT;
2216
                bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2217
                                                iov_iter_count(i));
2218
 
2219
again:
2220
 
2221
                /*
2222
                 * Bring in the user page that we will copy from _first_.
2223
                 * Otherwise there's a nasty deadlock on copying from the
2224
                 * same page as we're writing to, without it being marked
2225
                 * up-to-date.
2226
                 *
2227
                 * Not only is this an optimisation, but it is also required
2228
                 * to check that the address is actually valid, when atomic
2229
                 * usercopies are used, below.
2230
                 */
2231
                if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2232
                        status = -EFAULT;
2233
                        break;
2234
                }
2235
 
2236
                status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2237
                                                &page, &fsdata);
2238
                if (unlikely(status))
2239
                        break;
2240
 
2241
                pagefault_disable();
2242
                copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2243
                pagefault_enable();
2244
                flush_dcache_page(page);
2245
 
2246
                status = a_ops->write_end(file, mapping, pos, bytes, copied,
2247
                                                page, fsdata);
2248
                if (unlikely(status < 0))
2249
                        break;
2250
                copied = status;
2251
 
2252
                cond_resched();
2253
 
2254
                if (unlikely(copied == 0)) {
2255
                        /*
2256
                         * If we were unable to copy any data at all, we must
2257
                         * fall back to a single segment length write.
2258
                         *
2259
                         * If we didn't fallback here, we could livelock
2260
                         * because not all segments in the iov can be copied at
2261
                         * once without a pagefault.
2262
                         */
2263
                        bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2264
                                                iov_iter_single_seg_count(i));
2265
                        goto again;
2266
                }
2267
                iov_iter_advance(i, copied);
2268
                pos += copied;
2269
                written += copied;
2270
 
2271
                balance_dirty_pages_ratelimited(mapping);
2272
 
2273
        } while (iov_iter_count(i));
2274
 
2275
        return written ? written : status;
2276
}
2277
 
2278
ssize_t
2279
generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2280
                unsigned long nr_segs, loff_t pos, loff_t *ppos,
2281
                size_t count, ssize_t written)
2282
{
2283
        struct file *file = iocb->ki_filp;
2284
        struct address_space *mapping = file->f_mapping;
2285
        const struct address_space_operations *a_ops = mapping->a_ops;
2286
        struct inode *inode = mapping->host;
2287
        ssize_t status;
2288
        struct iov_iter i;
2289
 
2290
        iov_iter_init(&i, iov, nr_segs, count, written);
2291
        if (a_ops->write_begin)
2292
                status = generic_perform_write(file, &i, pos);
2293
        else
2294
                status = generic_perform_write_2copy(file, &i, pos);
2295
 
2296
        if (likely(status >= 0)) {
2297
                written += status;
2298
                *ppos = pos + status;
2299
 
2300
                /*
2301
                 * For now, when the user asks for O_SYNC, we'll actually give
2302
                 * O_DSYNC
2303
                 */
2304
                if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2305
                        if (!a_ops->writepage || !is_sync_kiocb(iocb))
2306
                                status = generic_osync_inode(inode, mapping,
2307
                                                OSYNC_METADATA|OSYNC_DATA);
2308
                }
2309
        }
2310
 
2311
        /*
2312
         * If we get here for O_DIRECT writes then we must have fallen through
2313
         * to buffered writes (block instantiation inside i_size).  So we sync
2314
         * the file data here, to try to honour O_DIRECT expectations.
2315
         */
2316
        if (unlikely(file->f_flags & O_DIRECT) && written)
2317
                status = filemap_write_and_wait(mapping);
2318
 
2319
        return written ? written : status;
2320
}
2321
EXPORT_SYMBOL(generic_file_buffered_write);
2322
 
2323
static ssize_t
2324
__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2325
                                unsigned long nr_segs, loff_t *ppos)
2326
{
2327
        struct file *file = iocb->ki_filp;
2328
        struct address_space * mapping = file->f_mapping;
2329
        size_t ocount;          /* original count */
2330
        size_t count;           /* after file limit checks */
2331
        struct inode    *inode = mapping->host;
2332
        loff_t          pos;
2333
        ssize_t         written;
2334
        ssize_t         err;
2335
 
2336
        ocount = 0;
2337
        err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2338
        if (err)
2339
                return err;
2340
 
2341
        count = ocount;
2342
        pos = *ppos;
2343
 
2344
        vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2345
 
2346
        /* We can write back this queue in page reclaim */
2347
        current->backing_dev_info = mapping->backing_dev_info;
2348
        written = 0;
2349
 
2350
        err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2351
        if (err)
2352
                goto out;
2353
 
2354
        if (count == 0)
2355
                goto out;
2356
 
2357
        err = remove_suid(file->f_path.dentry);
2358
        if (err)
2359
                goto out;
2360
 
2361
        file_update_time(file);
2362
 
2363
        /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2364
        if (unlikely(file->f_flags & O_DIRECT)) {
2365
                loff_t endbyte;
2366
                ssize_t written_buffered;
2367
 
2368
                written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2369
                                                        ppos, count, ocount);
2370
                if (written < 0 || written == count)
2371
                        goto out;
2372
                /*
2373
                 * direct-io write to a hole: fall through to buffered I/O
2374
                 * for completing the rest of the request.
2375
                 */
2376
                pos += written;
2377
                count -= written;
2378
                written_buffered = generic_file_buffered_write(iocb, iov,
2379
                                                nr_segs, pos, ppos, count,
2380
                                                written);
2381
                /*
2382
                 * If generic_file_buffered_write() retuned a synchronous error
2383
                 * then we want to return the number of bytes which were
2384
                 * direct-written, or the error code if that was zero.  Note
2385
                 * that this differs from normal direct-io semantics, which
2386
                 * will return -EFOO even if some bytes were written.
2387
                 */
2388
                if (written_buffered < 0) {
2389
                        err = written_buffered;
2390
                        goto out;
2391
                }
2392
 
2393
                /*
2394
                 * We need to ensure that the page cache pages are written to
2395
                 * disk and invalidated to preserve the expected O_DIRECT
2396
                 * semantics.
2397
                 */
2398
                endbyte = pos + written_buffered - written - 1;
2399
                err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2400
                                            SYNC_FILE_RANGE_WAIT_BEFORE|
2401
                                            SYNC_FILE_RANGE_WRITE|
2402
                                            SYNC_FILE_RANGE_WAIT_AFTER);
2403
                if (err == 0) {
2404
                        written = written_buffered;
2405
                        invalidate_mapping_pages(mapping,
2406
                                                 pos >> PAGE_CACHE_SHIFT,
2407
                                                 endbyte >> PAGE_CACHE_SHIFT);
2408
                } else {
2409
                        /*
2410
                         * We don't know how much we wrote, so just return
2411
                         * the number of bytes which were direct-written
2412
                         */
2413
                }
2414
        } else {
2415
                written = generic_file_buffered_write(iocb, iov, nr_segs,
2416
                                pos, ppos, count, written);
2417
        }
2418
out:
2419
        current->backing_dev_info = NULL;
2420
        return written ? written : err;
2421
}
2422
 
2423
ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2424
                const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2425
{
2426
        struct file *file = iocb->ki_filp;
2427
        struct address_space *mapping = file->f_mapping;
2428
        struct inode *inode = mapping->host;
2429
        ssize_t ret;
2430
 
2431
        BUG_ON(iocb->ki_pos != pos);
2432
 
2433
        ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2434
                        &iocb->ki_pos);
2435
 
2436
        if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2437
                ssize_t err;
2438
 
2439
                err = sync_page_range_nolock(inode, mapping, pos, ret);
2440
                if (err < 0)
2441
                        ret = err;
2442
        }
2443
        return ret;
2444
}
2445
EXPORT_SYMBOL(generic_file_aio_write_nolock);
2446
 
2447
ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2448
                unsigned long nr_segs, loff_t pos)
2449
{
2450
        struct file *file = iocb->ki_filp;
2451
        struct address_space *mapping = file->f_mapping;
2452
        struct inode *inode = mapping->host;
2453
        ssize_t ret;
2454
 
2455
        BUG_ON(iocb->ki_pos != pos);
2456
 
2457
        mutex_lock(&inode->i_mutex);
2458
        ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2459
                        &iocb->ki_pos);
2460
        mutex_unlock(&inode->i_mutex);
2461
 
2462
        if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2463
                ssize_t err;
2464
 
2465
                err = sync_page_range(inode, mapping, pos, ret);
2466
                if (err < 0)
2467
                        ret = err;
2468
        }
2469
        return ret;
2470
}
2471
EXPORT_SYMBOL(generic_file_aio_write);
2472
 
2473
/*
2474
 * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2475
 * went wrong during pagecache shootdown.
2476
 */
2477
static ssize_t
2478
generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2479
        loff_t offset, unsigned long nr_segs)
2480
{
2481
        struct file *file = iocb->ki_filp;
2482
        struct address_space *mapping = file->f_mapping;
2483
        ssize_t retval;
2484
        size_t write_len;
2485
        pgoff_t end = 0; /* silence gcc */
2486
 
2487
        /*
2488
         * If it's a write, unmap all mmappings of the file up-front.  This
2489
         * will cause any pte dirty bits to be propagated into the pageframes
2490
         * for the subsequent filemap_write_and_wait().
2491
         */
2492
        if (rw == WRITE) {
2493
                write_len = iov_length(iov, nr_segs);
2494
                end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2495
                if (mapping_mapped(mapping))
2496
                        unmap_mapping_range(mapping, offset, write_len, 0);
2497
        }
2498
 
2499
        retval = filemap_write_and_wait(mapping);
2500
        if (retval)
2501
                goto out;
2502
 
2503
        /*
2504
         * After a write we want buffered reads to be sure to go to disk to get
2505
         * the new data.  We invalidate clean cached page from the region we're
2506
         * about to write.  We do this *before* the write so that we can return
2507
         * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2508
         */
2509
        if (rw == WRITE && mapping->nrpages) {
2510
                retval = invalidate_inode_pages2_range(mapping,
2511
                                        offset >> PAGE_CACHE_SHIFT, end);
2512
                if (retval)
2513
                        goto out;
2514
        }
2515
 
2516
        retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2517
 
2518
        /*
2519
         * Finally, try again to invalidate clean pages which might have been
2520
         * cached by non-direct readahead, or faulted in by get_user_pages()
2521
         * if the source of the write was an mmap'ed region of the file
2522
         * we're writing.  Either one is a pretty crazy thing to do,
2523
         * so we don't support it 100%.  If this invalidation
2524
         * fails, tough, the write still worked...
2525
         */
2526
        if (rw == WRITE && mapping->nrpages) {
2527
                invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
2528
        }
2529
out:
2530
        return retval;
2531
}
2532
 
2533
/**
2534
 * try_to_release_page() - release old fs-specific metadata on a page
2535
 *
2536
 * @page: the page which the kernel is trying to free
2537
 * @gfp_mask: memory allocation flags (and I/O mode)
2538
 *
2539
 * The address_space is to try to release any data against the page
2540
 * (presumably at page->private).  If the release was successful, return `1'.
2541
 * Otherwise return zero.
2542
 *
2543
 * The @gfp_mask argument specifies whether I/O may be performed to release
2544
 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2545
 *
2546
 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2547
 */
2548
int try_to_release_page(struct page *page, gfp_t gfp_mask)
2549
{
2550
        struct address_space * const mapping = page->mapping;
2551
 
2552
        BUG_ON(!PageLocked(page));
2553
        if (PageWriteback(page))
2554
                return 0;
2555
 
2556
        if (mapping && mapping->a_ops->releasepage)
2557
                return mapping->a_ops->releasepage(page, gfp_mask);
2558
        return try_to_free_buffers(page);
2559
}
2560
 
2561
EXPORT_SYMBOL(try_to_release_page);

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.