OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [tags/] [linux-2.6/] [linux-2.6.24_orig/] [mm/] [slob.c] - Blame information for rev 8

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/*
2
 * SLOB Allocator: Simple List Of Blocks
3
 *
4
 * Matt Mackall <mpm@selenic.com> 12/30/03
5
 *
6
 * NUMA support by Paul Mundt, 2007.
7
 *
8
 * How SLOB works:
9
 *
10
 * The core of SLOB is a traditional K&R style heap allocator, with
11
 * support for returning aligned objects. The granularity of this
12
 * allocator is as little as 2 bytes, however typically most architectures
13
 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
14
 *
15
 * The slob heap is a linked list of pages from alloc_pages(), and
16
 * within each page, there is a singly-linked list of free blocks (slob_t).
17
 * The heap is grown on demand and allocation from the heap is currently
18
 * first-fit.
19
 *
20
 * Above this is an implementation of kmalloc/kfree. Blocks returned
21
 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
22
 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
23
 * alloc_pages() directly, allocating compound pages so the page order
24
 * does not have to be separately tracked, and also stores the exact
25
 * allocation size in page->private so that it can be used to accurately
26
 * provide ksize(). These objects are detected in kfree() because slob_page()
27
 * is false for them.
28
 *
29
 * SLAB is emulated on top of SLOB by simply calling constructors and
30
 * destructors for every SLAB allocation. Objects are returned with the
31
 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
32
 * case the low-level allocator will fragment blocks to create the proper
33
 * alignment. Again, objects of page-size or greater are allocated by
34
 * calling alloc_pages(). As SLAB objects know their size, no separate
35
 * size bookkeeping is necessary and there is essentially no allocation
36
 * space overhead, and compound pages aren't needed for multi-page
37
 * allocations.
38
 *
39
 * NUMA support in SLOB is fairly simplistic, pushing most of the real
40
 * logic down to the page allocator, and simply doing the node accounting
41
 * on the upper levels. In the event that a node id is explicitly
42
 * provided, alloc_pages_node() with the specified node id is used
43
 * instead. The common case (or when the node id isn't explicitly provided)
44
 * will default to the current node, as per numa_node_id().
45
 *
46
 * Node aware pages are still inserted in to the global freelist, and
47
 * these are scanned for by matching against the node id encoded in the
48
 * page flags. As a result, block allocations that can be satisfied from
49
 * the freelist will only be done so on pages residing on the same node,
50
 * in order to prevent random node placement.
51
 */
52
 
53
#include <linux/kernel.h>
54
#include <linux/slab.h>
55
#include <linux/mm.h>
56
#include <linux/cache.h>
57
#include <linux/init.h>
58
#include <linux/module.h>
59
#include <linux/rcupdate.h>
60
#include <linux/list.h>
61
#include <asm/atomic.h>
62
 
63
/*
64
 * slob_block has a field 'units', which indicates size of block if +ve,
65
 * or offset of next block if -ve (in SLOB_UNITs).
66
 *
67
 * Free blocks of size 1 unit simply contain the offset of the next block.
68
 * Those with larger size contain their size in the first SLOB_UNIT of
69
 * memory, and the offset of the next free block in the second SLOB_UNIT.
70
 */
71
#if PAGE_SIZE <= (32767 * 2)
72
typedef s16 slobidx_t;
73
#else
74
typedef s32 slobidx_t;
75
#endif
76
 
77
struct slob_block {
78
        slobidx_t units;
79
};
80
typedef struct slob_block slob_t;
81
 
82
/*
83
 * We use struct page fields to manage some slob allocation aspects,
84
 * however to avoid the horrible mess in include/linux/mm_types.h, we'll
85
 * just define our own struct page type variant here.
86
 */
87
struct slob_page {
88
        union {
89
                struct {
90
                        unsigned long flags;    /* mandatory */
91
                        atomic_t _count;        /* mandatory */
92
                        slobidx_t units;        /* free units left in page */
93
                        unsigned long pad[2];
94
                        slob_t *free;           /* first free slob_t in page */
95
                        struct list_head list;  /* linked list of free pages */
96
                };
97
                struct page page;
98
        };
99
};
100
static inline void struct_slob_page_wrong_size(void)
101
{ BUILD_BUG_ON(sizeof(struct slob_page) != sizeof(struct page)); }
102
 
103
/*
104
 * free_slob_page: call before a slob_page is returned to the page allocator.
105
 */
106
static inline void free_slob_page(struct slob_page *sp)
107
{
108
        reset_page_mapcount(&sp->page);
109
        sp->page.mapping = NULL;
110
}
111
 
112
/*
113
 * All (partially) free slob pages go on this list.
114
 */
115
static LIST_HEAD(free_slob_pages);
116
 
117
/*
118
 * slob_page: True for all slob pages (false for bigblock pages)
119
 */
120
static inline int slob_page(struct slob_page *sp)
121
{
122
        return test_bit(PG_active, &sp->flags);
123
}
124
 
125
static inline void set_slob_page(struct slob_page *sp)
126
{
127
        __set_bit(PG_active, &sp->flags);
128
}
129
 
130
static inline void clear_slob_page(struct slob_page *sp)
131
{
132
        __clear_bit(PG_active, &sp->flags);
133
}
134
 
135
/*
136
 * slob_page_free: true for pages on free_slob_pages list.
137
 */
138
static inline int slob_page_free(struct slob_page *sp)
139
{
140
        return test_bit(PG_private, &sp->flags);
141
}
142
 
143
static inline void set_slob_page_free(struct slob_page *sp)
144
{
145
        list_add(&sp->list, &free_slob_pages);
146
        __set_bit(PG_private, &sp->flags);
147
}
148
 
149
static inline void clear_slob_page_free(struct slob_page *sp)
150
{
151
        list_del(&sp->list);
152
        __clear_bit(PG_private, &sp->flags);
153
}
154
 
155
#define SLOB_UNIT sizeof(slob_t)
156
#define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
157
#define SLOB_ALIGN L1_CACHE_BYTES
158
 
159
/*
160
 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
161
 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
162
 * the block using call_rcu.
163
 */
164
struct slob_rcu {
165
        struct rcu_head head;
166
        int size;
167
};
168
 
169
/*
170
 * slob_lock protects all slob allocator structures.
171
 */
172
static DEFINE_SPINLOCK(slob_lock);
173
 
174
/*
175
 * Encode the given size and next info into a free slob block s.
176
 */
177
static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
178
{
179
        slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
180
        slobidx_t offset = next - base;
181
 
182
        if (size > 1) {
183
                s[0].units = size;
184
                s[1].units = offset;
185
        } else
186
                s[0].units = -offset;
187
}
188
 
189
/*
190
 * Return the size of a slob block.
191
 */
192
static slobidx_t slob_units(slob_t *s)
193
{
194
        if (s->units > 0)
195
                return s->units;
196
        return 1;
197
}
198
 
199
/*
200
 * Return the next free slob block pointer after this one.
201
 */
202
static slob_t *slob_next(slob_t *s)
203
{
204
        slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
205
        slobidx_t next;
206
 
207
        if (s[0].units < 0)
208
                next = -s[0].units;
209
        else
210
                next = s[1].units;
211
        return base+next;
212
}
213
 
214
/*
215
 * Returns true if s is the last free block in its page.
216
 */
217
static int slob_last(slob_t *s)
218
{
219
        return !((unsigned long)slob_next(s) & ~PAGE_MASK);
220
}
221
 
222
static void *slob_new_page(gfp_t gfp, int order, int node)
223
{
224
        void *page;
225
 
226
#ifdef CONFIG_NUMA
227
        if (node != -1)
228
                page = alloc_pages_node(node, gfp, order);
229
        else
230
#endif
231
                page = alloc_pages(gfp, order);
232
 
233
        if (!page)
234
                return NULL;
235
 
236
        return page_address(page);
237
}
238
 
239
/*
240
 * Allocate a slob block within a given slob_page sp.
241
 */
242
static void *slob_page_alloc(struct slob_page *sp, size_t size, int align)
243
{
244
        slob_t *prev, *cur, *aligned = 0;
245
        int delta = 0, units = SLOB_UNITS(size);
246
 
247
        for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) {
248
                slobidx_t avail = slob_units(cur);
249
 
250
                if (align) {
251
                        aligned = (slob_t *)ALIGN((unsigned long)cur, align);
252
                        delta = aligned - cur;
253
                }
254
                if (avail >= units + delta) { /* room enough? */
255
                        slob_t *next;
256
 
257
                        if (delta) { /* need to fragment head to align? */
258
                                next = slob_next(cur);
259
                                set_slob(aligned, avail - delta, next);
260
                                set_slob(cur, delta, aligned);
261
                                prev = cur;
262
                                cur = aligned;
263
                                avail = slob_units(cur);
264
                        }
265
 
266
                        next = slob_next(cur);
267
                        if (avail == units) { /* exact fit? unlink. */
268
                                if (prev)
269
                                        set_slob(prev, slob_units(prev), next);
270
                                else
271
                                        sp->free = next;
272
                        } else { /* fragment */
273
                                if (prev)
274
                                        set_slob(prev, slob_units(prev), cur + units);
275
                                else
276
                                        sp->free = cur + units;
277
                                set_slob(cur + units, avail - units, next);
278
                        }
279
 
280
                        sp->units -= units;
281
                        if (!sp->units)
282
                                clear_slob_page_free(sp);
283
                        return cur;
284
                }
285
                if (slob_last(cur))
286
                        return NULL;
287
        }
288
}
289
 
290
/*
291
 * slob_alloc: entry point into the slob allocator.
292
 */
293
static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
294
{
295
        struct slob_page *sp;
296
        struct list_head *prev;
297
        slob_t *b = NULL;
298
        unsigned long flags;
299
 
300
        spin_lock_irqsave(&slob_lock, flags);
301
        /* Iterate through each partially free page, try to find room */
302
        list_for_each_entry(sp, &free_slob_pages, list) {
303
#ifdef CONFIG_NUMA
304
                /*
305
                 * If there's a node specification, search for a partial
306
                 * page with a matching node id in the freelist.
307
                 */
308
                if (node != -1 && page_to_nid(&sp->page) != node)
309
                        continue;
310
#endif
311
                /* Enough room on this page? */
312
                if (sp->units < SLOB_UNITS(size))
313
                        continue;
314
 
315
                /* Attempt to alloc */
316
                prev = sp->list.prev;
317
                b = slob_page_alloc(sp, size, align);
318
                if (!b)
319
                        continue;
320
 
321
                /* Improve fragment distribution and reduce our average
322
                 * search time by starting our next search here. (see
323
                 * Knuth vol 1, sec 2.5, pg 449) */
324
                if (prev != free_slob_pages.prev &&
325
                                free_slob_pages.next != prev->next)
326
                        list_move_tail(&free_slob_pages, prev->next);
327
                break;
328
        }
329
        spin_unlock_irqrestore(&slob_lock, flags);
330
 
331
        /* Not enough space: must allocate a new page */
332
        if (!b) {
333
                b = slob_new_page(gfp & ~__GFP_ZERO, 0, node);
334
                if (!b)
335
                        return 0;
336
                sp = (struct slob_page *)virt_to_page(b);
337
                set_slob_page(sp);
338
 
339
                spin_lock_irqsave(&slob_lock, flags);
340
                sp->units = SLOB_UNITS(PAGE_SIZE);
341
                sp->free = b;
342
                INIT_LIST_HEAD(&sp->list);
343
                set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
344
                set_slob_page_free(sp);
345
                b = slob_page_alloc(sp, size, align);
346
                BUG_ON(!b);
347
                spin_unlock_irqrestore(&slob_lock, flags);
348
        }
349
        if (unlikely((gfp & __GFP_ZERO) && b))
350
                memset(b, 0, size);
351
        return b;
352
}
353
 
354
/*
355
 * slob_free: entry point into the slob allocator.
356
 */
357
static void slob_free(void *block, int size)
358
{
359
        struct slob_page *sp;
360
        slob_t *prev, *next, *b = (slob_t *)block;
361
        slobidx_t units;
362
        unsigned long flags;
363
 
364
        if (unlikely(ZERO_OR_NULL_PTR(block)))
365
                return;
366
        BUG_ON(!size);
367
 
368
        sp = (struct slob_page *)virt_to_page(block);
369
        units = SLOB_UNITS(size);
370
 
371
        spin_lock_irqsave(&slob_lock, flags);
372
 
373
        if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
374
                /* Go directly to page allocator. Do not pass slob allocator */
375
                if (slob_page_free(sp))
376
                        clear_slob_page_free(sp);
377
                clear_slob_page(sp);
378
                free_slob_page(sp);
379
                free_page((unsigned long)b);
380
                goto out;
381
        }
382
 
383
        if (!slob_page_free(sp)) {
384
                /* This slob page is about to become partially free. Easy! */
385
                sp->units = units;
386
                sp->free = b;
387
                set_slob(b, units,
388
                        (void *)((unsigned long)(b +
389
                                        SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
390
                set_slob_page_free(sp);
391
                goto out;
392
        }
393
 
394
        /*
395
         * Otherwise the page is already partially free, so find reinsertion
396
         * point.
397
         */
398
        sp->units += units;
399
 
400
        if (b < sp->free) {
401
                set_slob(b, units, sp->free);
402
                sp->free = b;
403
        } else {
404
                prev = sp->free;
405
                next = slob_next(prev);
406
                while (b > next) {
407
                        prev = next;
408
                        next = slob_next(prev);
409
                }
410
 
411
                if (!slob_last(prev) && b + units == next) {
412
                        units += slob_units(next);
413
                        set_slob(b, units, slob_next(next));
414
                } else
415
                        set_slob(b, units, next);
416
 
417
                if (prev + slob_units(prev) == b) {
418
                        units = slob_units(b) + slob_units(prev);
419
                        set_slob(prev, units, slob_next(b));
420
                } else
421
                        set_slob(prev, slob_units(prev), b);
422
        }
423
out:
424
        spin_unlock_irqrestore(&slob_lock, flags);
425
}
426
 
427
/*
428
 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
429
 */
430
 
431
#ifndef ARCH_KMALLOC_MINALIGN
432
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long)
433
#endif
434
 
435
#ifndef ARCH_SLAB_MINALIGN
436
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long)
437
#endif
438
 
439
void *__kmalloc_node(size_t size, gfp_t gfp, int node)
440
{
441
        unsigned int *m;
442
        int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
443
 
444
        if (size < PAGE_SIZE - align) {
445
                if (!size)
446
                        return ZERO_SIZE_PTR;
447
 
448
                m = slob_alloc(size + align, gfp, align, node);
449
                if (m)
450
                        *m = size;
451
                return (void *)m + align;
452
        } else {
453
                void *ret;
454
 
455
                ret = slob_new_page(gfp | __GFP_COMP, get_order(size), node);
456
                if (ret) {
457
                        struct page *page;
458
                        page = virt_to_page(ret);
459
                        page->private = size;
460
                }
461
                return ret;
462
        }
463
}
464
EXPORT_SYMBOL(__kmalloc_node);
465
 
466
void kfree(const void *block)
467
{
468
        struct slob_page *sp;
469
 
470
        if (unlikely(ZERO_OR_NULL_PTR(block)))
471
                return;
472
 
473
        sp = (struct slob_page *)virt_to_page(block);
474
        if (slob_page(sp)) {
475
                int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
476
                unsigned int *m = (unsigned int *)(block - align);
477
                slob_free(m, *m + align);
478
        } else
479
                put_page(&sp->page);
480
}
481
EXPORT_SYMBOL(kfree);
482
 
483
/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
484
size_t ksize(const void *block)
485
{
486
        struct slob_page *sp;
487
 
488
        BUG_ON(!block);
489
        if (unlikely(block == ZERO_SIZE_PTR))
490
                return 0;
491
 
492
        sp = (struct slob_page *)virt_to_page(block);
493
        if (slob_page(sp))
494
                return ((slob_t *)block - 1)->units + SLOB_UNIT;
495
        else
496
                return sp->page.private;
497
}
498
EXPORT_SYMBOL(ksize);
499
 
500
struct kmem_cache {
501
        unsigned int size, align;
502
        unsigned long flags;
503
        const char *name;
504
        void (*ctor)(struct kmem_cache *, void *);
505
};
506
 
507
struct kmem_cache *kmem_cache_create(const char *name, size_t size,
508
        size_t align, unsigned long flags,
509
        void (*ctor)(struct kmem_cache *, void *))
510
{
511
        struct kmem_cache *c;
512
 
513
        c = slob_alloc(sizeof(struct kmem_cache), flags, 0, -1);
514
 
515
        if (c) {
516
                c->name = name;
517
                c->size = size;
518
                if (flags & SLAB_DESTROY_BY_RCU) {
519
                        /* leave room for rcu footer at the end of object */
520
                        c->size += sizeof(struct slob_rcu);
521
                }
522
                c->flags = flags;
523
                c->ctor = ctor;
524
                /* ignore alignment unless it's forced */
525
                c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
526
                if (c->align < ARCH_SLAB_MINALIGN)
527
                        c->align = ARCH_SLAB_MINALIGN;
528
                if (c->align < align)
529
                        c->align = align;
530
        } else if (flags & SLAB_PANIC)
531
                panic("Cannot create slab cache %s\n", name);
532
 
533
        return c;
534
}
535
EXPORT_SYMBOL(kmem_cache_create);
536
 
537
void kmem_cache_destroy(struct kmem_cache *c)
538
{
539
        slob_free(c, sizeof(struct kmem_cache));
540
}
541
EXPORT_SYMBOL(kmem_cache_destroy);
542
 
543
void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
544
{
545
        void *b;
546
 
547
        if (c->size < PAGE_SIZE)
548
                b = slob_alloc(c->size, flags, c->align, node);
549
        else
550
                b = slob_new_page(flags, get_order(c->size), node);
551
 
552
        if (c->ctor)
553
                c->ctor(c, b);
554
 
555
        return b;
556
}
557
EXPORT_SYMBOL(kmem_cache_alloc_node);
558
 
559
static void __kmem_cache_free(void *b, int size)
560
{
561
        if (size < PAGE_SIZE)
562
                slob_free(b, size);
563
        else
564
                free_pages((unsigned long)b, get_order(size));
565
}
566
 
567
static void kmem_rcu_free(struct rcu_head *head)
568
{
569
        struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
570
        void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
571
 
572
        __kmem_cache_free(b, slob_rcu->size);
573
}
574
 
575
void kmem_cache_free(struct kmem_cache *c, void *b)
576
{
577
        if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
578
                struct slob_rcu *slob_rcu;
579
                slob_rcu = b + (c->size - sizeof(struct slob_rcu));
580
                INIT_RCU_HEAD(&slob_rcu->head);
581
                slob_rcu->size = c->size;
582
                call_rcu(&slob_rcu->head, kmem_rcu_free);
583
        } else {
584
                __kmem_cache_free(b, c->size);
585
        }
586
}
587
EXPORT_SYMBOL(kmem_cache_free);
588
 
589
unsigned int kmem_cache_size(struct kmem_cache *c)
590
{
591
        return c->size;
592
}
593
EXPORT_SYMBOL(kmem_cache_size);
594
 
595
const char *kmem_cache_name(struct kmem_cache *c)
596
{
597
        return c->name;
598
}
599
EXPORT_SYMBOL(kmem_cache_name);
600
 
601
int kmem_cache_shrink(struct kmem_cache *d)
602
{
603
        return 0;
604
}
605
EXPORT_SYMBOL(kmem_cache_shrink);
606
 
607
int kmem_ptr_validate(struct kmem_cache *a, const void *b)
608
{
609
        return 0;
610
}
611
 
612
static unsigned int slob_ready __read_mostly;
613
 
614
int slab_is_available(void)
615
{
616
        return slob_ready;
617
}
618
 
619
void __init kmem_cache_init(void)
620
{
621
        slob_ready = 1;
622
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.