OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [Documentation/] [x86_64/] [kernel-stacks] - Blame information for rev 17

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
Most of the text from Keith Owens, hacked by AK
2
 
3
x86_64 page size (PAGE_SIZE) is 4K.
4
 
5
Like all other architectures, x86_64 has a kernel stack for every
6
active thread.  These thread stacks are THREAD_SIZE (2*PAGE_SIZE) big.
7
These stacks contain useful data as long as a thread is alive or a
8
zombie. While the thread is in user space the kernel stack is empty
9
except for the thread_info structure at the bottom.
10
 
11
In addition to the per thread stacks, there are specialized stacks
12
associated with each CPU.  These stacks are only used while the kernel
13
is in control on that CPU; when a CPU returns to user space the
14
specialized stacks contain no useful data.  The main CPU stacks are:
15
 
16
* Interrupt stack.  IRQSTACKSIZE
17
 
18
  Used for external hardware interrupts.  If this is the first external
19
  hardware interrupt (i.e. not a nested hardware interrupt) then the
20
  kernel switches from the current task to the interrupt stack.  Like
21
  the split thread and interrupt stacks on i386 (with CONFIG_4KSTACKS),
22
  this gives more room for kernel interrupt processing without having
23
  to increase the size of every per thread stack.
24
 
25
  The interrupt stack is also used when processing a softirq.
26
 
27
Switching to the kernel interrupt stack is done by software based on a
28
per CPU interrupt nest counter. This is needed because x86-64 "IST"
29
hardware stacks cannot nest without races.
30
 
31
x86_64 also has a feature which is not available on i386, the ability
32
to automatically switch to a new stack for designated events such as
33
double fault or NMI, which makes it easier to handle these unusual
34
events on x86_64.  This feature is called the Interrupt Stack Table
35
(IST).  There can be up to 7 IST entries per CPU. The IST code is an
36
index into the Task State Segment (TSS). The IST entries in the TSS
37
point to dedicated stacks; each stack can be a different size.
38
 
39
An IST is selected by a non-zero value in the IST field of an
40
interrupt-gate descriptor.  When an interrupt occurs and the hardware
41
loads such a descriptor, the hardware automatically sets the new stack
42
pointer based on the IST value, then invokes the interrupt handler.  If
43
software wants to allow nested IST interrupts then the handler must
44
adjust the IST values on entry to and exit from the interrupt handler.
45
(This is occasionally done, e.g. for debug exceptions.)
46
 
47
Events with different IST codes (i.e. with different stacks) can be
48
nested.  For example, a debug interrupt can safely be interrupted by an
49
NMI.  arch/x86_64/kernel/entry.S::paranoidentry adjusts the stack
50
pointers on entry to and exit from all IST events, in theory allowing
51
IST events with the same code to be nested.  However in most cases, the
52
stack size allocated to an IST assumes no nesting for the same code.
53
If that assumption is ever broken then the stacks will become corrupt.
54
 
55
The currently assigned IST stacks are :-
56
 
57
* STACKFAULT_STACK.  EXCEPTION_STKSZ (PAGE_SIZE).
58
 
59
  Used for interrupt 12 - Stack Fault Exception (#SS).
60
 
61
  This allows the CPU to recover from invalid stack segments. Rarely
62
  happens.
63
 
64
* DOUBLEFAULT_STACK.  EXCEPTION_STKSZ (PAGE_SIZE).
65
 
66
  Used for interrupt 8 - Double Fault Exception (#DF).
67
 
68
  Invoked when handling one exception causes another exception. Happens
69
  when the kernel is very confused (e.g. kernel stack pointer corrupt).
70
  Using a separate stack allows the kernel to recover from it well enough
71
  in many cases to still output an oops.
72
 
73
* NMI_STACK.  EXCEPTION_STKSZ (PAGE_SIZE).
74
 
75
  Used for non-maskable interrupts (NMI).
76
 
77
  NMI can be delivered at any time, including when the kernel is in the
78
  middle of switching stacks.  Using IST for NMI events avoids making
79
  assumptions about the previous state of the kernel stack.
80
 
81
* DEBUG_STACK.  DEBUG_STKSZ
82
 
83
  Used for hardware debug interrupts (interrupt 1) and for software
84
  debug interrupts (INT3).
85
 
86
  When debugging a kernel, debug interrupts (both hardware and
87
  software) can occur at any time.  Using IST for these interrupts
88
  avoids making assumptions about the previous state of the kernel
89
  stack.
90
 
91
* MCE_STACK.  EXCEPTION_STKSZ (PAGE_SIZE).
92
 
93
  Used for interrupt 18 - Machine Check Exception (#MC).
94
 
95
  MCE can be delivered at any time, including when the kernel is in the
96
  middle of switching stacks.  Using IST for MCE events avoids making
97
  assumptions about the previous state of the kernel stack.
98
 
99
For more details see the Intel IA32 or AMD AMD64 architecture manuals.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.